Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = in situ fatigue crack propagation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 16022 KiB  
Article
Effects of Anisotropic Microstructure and Load Ratio on Fatigue Crack Propagation Rate in Additively Manufactured Ti-6Al-4V Alloy
by Elad Chakotay, Roni Z. Shneck, Oz Golan, Rami Carmi, Mor Mega, Igal Alon, Raziel Yakov and Arie Busiba
Metals 2024, 14(12), 1405; https://doi.org/10.3390/met14121405 - 9 Dec 2024
Viewed by 979
Abstract
Additive manufacturing (AM) refers to advanced technologies for building 3D objects by adding material layer upon layer using either electron beam melting (EBM) or selective laser melting. AM allows us to produce lighter and more complex parts. However, various defects are created during [...] Read more.
Additive manufacturing (AM) refers to advanced technologies for building 3D objects by adding material layer upon layer using either electron beam melting (EBM) or selective laser melting. AM allows us to produce lighter and more complex parts. However, various defects are created during the AM process, which severely affect fatigue behavior. In the current research, the effects of the anisotropic microstructure in the in-plane and out-of-plane orientations and defects on the fatigue crack propagation rate (FCPR) and crack path were studied. A resonance machine was used to determine the fatigue crack propagation rate (da/dN vs. ΔK) from the near-threshold up to the final fracture, accompanied by in situ Acoustic Emission (AE) monitoring. Micro-Computerized Tomography (µCT) enabled us to characterize surface and microstructural defects. Metallography was used to determine the microstructure vs. orientations and fractography to classify the fatigue fracture propagation modes. Calculations of the local stress distribution were performed to determine the interactions of the cracks with the defects. In the out-of-plane direction, the material exhibited high fatigue fracture toughness accompanied by a slightly lower fatigue crack propagation rate as compared to in-plane orientations. The near-threshold stress intensity factor was slightly higher in the out-of-plane orientation as compared to that in the in-plane one, accompanied by a lower exponent of the Paris law regime. The threshold decreased with an increasing load ratio as expected for both orientations. The crack propagation direction that crosses the elongated grains plays an important role in increasing fatigue resistance in the out-of-plane direction. In the in-plane directions, the crack propagates parallel to the grain boundary, interacts with more defects and exhibits more brittle striations on the fracture surface, resulting in lower fatigue resistance. Full article
(This article belongs to the Special Issue Additive Manufacturing of Metallic Materials)
Show Figures

Figure 1

16 pages, 17582 KiB  
Article
An In Situ Study of Short Crack Initiation and Propagation During Fatigue Testing of a Hot Isostatically Pressed Al-7%Si-0.5%Mg (A357-T6) Alloy Specimen
by Toni Bogdanoff and Murat Tiryakioğlu
Materials 2024, 17(23), 5928; https://doi.org/10.3390/ma17235928 - 4 Dec 2024
Viewed by 1138
Abstract
A hot isostatically pressed specimen of the A357 alloy in T6 condition has been tested for fatigue performance in situ. During testing, multiple small cracks were observed during the first cycle, both in proximity to and far from the stress concentration. These cracks [...] Read more.
A hot isostatically pressed specimen of the A357 alloy in T6 condition has been tested for fatigue performance in situ. During testing, multiple small cracks were observed during the first cycle, both in proximity to and far from the stress concentration. These cracks have competed to form a propagating crack, forming multiple crack paths initially. Once the propagating crack has been established, it has chosen paths from multiple cracks that have opened around the tip to grow further. All small cracks observed to open have been attributed to bifilms, i.e., liquid metal damage. It is imperative to develop processes that minimize liquid metal damage to enhance the fatigue performance of aluminum alloy castings. Full article
(This article belongs to the Special Issue Fatigue Crack Growth in Metallic Materials (Volume II))
Show Figures

Figure 1

15 pages, 14238 KiB  
Article
Quasi-In Situ Observation of the Microstructural Response during Fatigue Crack Growth of Friction Stir Welded AA2024-T4 Joint
by Jun Yang, Xianmin Chen, Huaxia Zhao, Jihong Dong and Feng Jin
Materials 2024, 17(9), 2106; https://doi.org/10.3390/ma17092106 - 29 Apr 2024
Cited by 1 | Viewed by 1485
Abstract
The reliability of friction stir welded joints is a critical concern, particularly given their potential applications in the aerospace manufacturing industry. This study offers a quasi-in situ observation of the microstructural response during fatigue crack growth (FCG) of a friction stir welded AA2024-T4 [...] Read more.
The reliability of friction stir welded joints is a critical concern, particularly given their potential applications in the aerospace manufacturing industry. This study offers a quasi-in situ observation of the microstructural response during fatigue crack growth (FCG) of a friction stir welded AA2024-T4 joint, aiming to correlate fatigue crack growth behavior with mechanical properties investigated using electron backscatter diffraction (EBSD). Notched compact tension (CT) specimens corresponding to the morphology of the stir zone (SZ), advancing side (AS), and retreating side (RS) were meticulously designed. The findings indicate that the welding process enhances the joint’s resistance to fatigue crack growth, with the base metal exhibiting a shorter fatigue life (i.e., ~105 cycles) compared to the welding zones (SZ ~ 3.5 × 105 cycles, AS ~ 2.5 × 105 cycles, and RS ~ 3.0 × 105 cycles). Crack propagation occurs within the stir zone, traversing refined grains, which primarily contribute to the highest fatigue life and lowest FCG rate. Additionally, cracks initiate in AS and RS, subsequently expanding into the base metal. Moreover, the study reveals a significant release of residual strain at the joint, particularly notable in the Structural-CT-RS (Str-CT-RS) sample compared to the Str-CT-AS sample during the FCG process. Consequently, the FCG rate of Str-CT-AS is higher than that of Str-CT-RS. These findings have significant implications for improving the reliability and performance of aerospace components. Full article
(This article belongs to the Special Issue Advances in Solid-State Welding Processes)
Show Figures

Figure 1

16 pages, 6199 KiB  
Article
Re-Distribution of Welding Residual Stress in Fatigue Crack Propagation Considering Elastic–Plastic Behavior
by Yuxuan Xia, Jingxia Yue, Jiankang Lei, Ke Yang and Yordan Garbatov
J. Mar. Sci. Eng. 2023, 11(12), 2378; https://doi.org/10.3390/jmse11122378 - 17 Dec 2023
Cited by 1 | Viewed by 1836
Abstract
The welding residual stress re-distribution behavior during fatigue crack propagation in butt-welded high-strength steel plates for ship construction is investigated based on experimental test results and numerical analyses. The specimens’ initial welding residual stresses are obtained from X-ray for middle tensile (MT) specimens [...] Read more.
The welding residual stress re-distribution behavior during fatigue crack propagation in butt-welded high-strength steel plates for ship construction is investigated based on experimental test results and numerical analyses. The specimens’ initial welding residual stresses are obtained from X-ray for middle tensile (MT) specimens cut from butt-welded high-strength steel plates. Then, fatigue crack propagation experiments on MT specimens are conducted, and a strain gauge is used to measure the residual stress re-distribution field around cracks. A practical fatigue crack propagation simulation procedure is developed with a dynamic update of in-situ welding residual stress, where the residual stress intensity factor Kres of the MT specimen is deduced. The stress ratio effect on Kres during fatigue crack propagation is analyzed and a good agreement between experimental and numerical results is achieved. Full article
Show Figures

Figure 1

14 pages, 3266 KiB  
Article
Modal Decomposition of Acoustic Emissions from Pencil-Lead Breaks in an Isotropic Thin Plate
by Xinyue Yao, Benjamin Steven Vien, Nik Rajic, Cedric Rosalie, L. R. Francis Rose, Chris Davies and Wing Kong Chiu
Sensors 2023, 23(4), 1988; https://doi.org/10.3390/s23041988 - 10 Feb 2023
Cited by 10 | Viewed by 2357
Abstract
Acoustic emission (AE) testing and Lamb wave inspection techniques have been widely used in non-destructive testing and structural health monitoring. For thin plates, the AEs arising from structural defect development (e.g., fatigue crack propagation) propagate as Lamb waves, and Lamb wave modes can [...] Read more.
Acoustic emission (AE) testing and Lamb wave inspection techniques have been widely used in non-destructive testing and structural health monitoring. For thin plates, the AEs arising from structural defect development (e.g., fatigue crack propagation) propagate as Lamb waves, and Lamb wave modes can be used to provide important information about the growth and localisation of defects. However, few sensors can be used to achieve the in situ wavenumber–frequency modal decomposition of AEs. This study explores the ability of a new multi-element piezoelectric sensor array to decompose AEs excited by pencil lead breaks (PLBs) on a thin isotropic plate. In this study, AEs were generated by out-of-plane (transverse) and in-plane (longitudinal) PLBs applied at the edge of the plate, and waveforms were recorded by both the new sensor array and a commercial AE sensor. Finite element analysis (FEA) simulations of PLBs were also conducted and the results were compared with the experimental results. To identify the wave modes present, the longitudinal and transverse PLB test results recorded by the new sensor array at five different plate locations were compared with FEA simulations using the same arrangement. Two-dimensional fast Fourier Transforms were then applied to the AE wavefields. It was found that the AE modal composition was dependent on the orientation of the PLB direction. The results suggest that this new sensor array can be used to identify the AE wave modes excited by PLBs in both in-plane and out-of-plane directions. Full article
(This article belongs to the Special Issue Acoustic Sensors and Their Applications)
Show Figures

Figure 1

22 pages, 40096 KiB  
Article
In Situ Measurement of Cyclic Plastic Zone and Internal Strain Response of Q&P Steel near Fatigue Crack Tip Region Based on Micro-DIC
by Hongli Gao, Zhiyuan Lin, Xinwei Huang, Hongbin Shang and Jingsong Zhan
Materials 2022, 15(17), 6114; https://doi.org/10.3390/ma15176114 - 2 Sep 2022
Cited by 12 | Viewed by 2603
Abstract
The shape and internal dynamic response characteristics of the plastic zone near the fatigue crack tip region, especially the cyclic plastic zone (CPZ), are the main factors affecting the fatigue crack initiation and propagation behaviors of ductile metal materials. The existing methods for [...] Read more.
The shape and internal dynamic response characteristics of the plastic zone near the fatigue crack tip region, especially the cyclic plastic zone (CPZ), are the main factors affecting the fatigue crack initiation and propagation behaviors of ductile metal materials. The existing methods for characterizing the CPZ have some problems, which include the complexity of the process, the difficulty of achieving in situ measurement, and the inability to characterize the dynamic response in the CPZ during the crack propagation process. Therefore, a novel method is proposed for the in situ measurement of the CPZ near the crack tip region based on image stitching and matching algorithms, a load–strain loop curve characteristic judgement algorithm, and the microscopic digital image correlation (DIC) method. A microscopic camera and a macroscopic camera are used to simultaneously capture the micro crack tip speckle images and the global crack image of the two sides of the Compact Tension (CT) specimen for calculating in situ crack length and crack tip strain fields. The proposed method was performed and verified by a fatigue crack growth (FCG) test and micro-hardness experiments with Quenching and Partitioning 980 (Q&P980) steel, and the results show that the method is feasible because the maximum error is less than 5%. A “butterfly wings” shape of the CPZ and a strain concentration phenomenon in the CPZ of the Q&P980 were observed. Moreover, as the fatigue crack propagates, the area of the CPZ and the degree of the strain concentration increase gradually. This method, which can obtain the in situ and tracking measurements of the crack tip CPZ, will help to increase our understanding of CPZ characteristics, the FCG mechanism, and the behavior of Q&P steel and the plastic metal materials similar to Q&P steel. Full article
Show Figures

Figure 1

14 pages, 6934 KiB  
Article
Low Cycle Fatigue Crack Damage Behavior of TC21 Titanium Alloy with Basketweave Microstructure
by Baohua Nie, Shuai Liu, Xianyi Huang, Haiying Qi, Binqing Shi, Zihua Zhao and Dongchu Chen
Crystals 2022, 12(9), 1211; https://doi.org/10.3390/cryst12091211 - 28 Aug 2022
Cited by 6 | Viewed by 2121
Abstract
Low cycle fatigue (LCF) crack initiation, propagation and damage behaviors of TC21 alloy with basketweave microstructure were investigated. The process of LCF damage was observed by a long-focus optical microscopic imaging system, and fatigue crack propagation was analyzed through in-situ SEM fatigue. The [...] Read more.
Low cycle fatigue (LCF) crack initiation, propagation and damage behaviors of TC21 alloy with basketweave microstructure were investigated. The process of LCF damage was observed by a long-focus optical microscopic imaging system, and fatigue crack propagation was analyzed through in-situ SEM fatigue. The results indicated that LCF crack damage displayed different sensitivity to cyclic stress. LCF microcracks initiated from slip bands and propagated through the microcrack coalescences at high stress, while LCF cracks tended to initiate at the αL/β interface and connect with these interface microcracks. Furthermore, the LCF damage model was established on the basis of Lemaitre damage theory. When the maximum stress exceeded yield stress, LCF damage increased sharply and fatigue life decreased significantly, which agreed with experiment data. Full article
(This article belongs to the Special Issue Advances in High Strength Steels)
Show Figures

Figure 1

20 pages, 37142 KiB  
Article
In Situ Measurement of the Strain Field at the Fatigue Crack Tip Based on Sub-Image Stitching and Matching DIC
by Zhiyuan Lin, Hongbin Shang, Hongli Gao and Xinwei Huang
Materials 2022, 15(15), 5150; https://doi.org/10.3390/ma15155150 - 25 Jul 2022
Cited by 7 | Viewed by 2240
Abstract
Studying the in situ measurement and evolution of the strain field at the crack tip during fatigue crack growth (FCG) is of great significance for understanding the fracture characteristics of materials and predicting fatigue life. Herein, a new method is proposed for the [...] Read more.
Studying the in situ measurement and evolution of the strain field at the crack tip during fatigue crack growth (FCG) is of great significance for understanding the fracture characteristics of materials and predicting fatigue life. Herein, a new method is proposed for the in-situ measurement of the strain field at the fatigue crack tip based on microscopic digital image correlation (DIC). The method proposed solves the problem of the existing in situ strain field measurement method being unable to dynamically track the crack tip and take the crack tip image due to the limitation of the field of view of the microscopic camera. A macroscopic camera is used to capture the global crack images on one side of the compact tension (CT) specimen. Meanwhile, a microscopic camera is used to track and capture the crack propagation speckle image on the other side of the CT specimen. The proposed method was verified by experiments with Quenching and Partitioning 980 (Q&P980) steel, and the results showed that the method has high accuracy, with the average measurement error being less than 5% and the maximum error being less than 10%. A butterfly shape of the measured strain field and the strain concentration near the crack tip were observed. The success of this method will help to obtain better insight into and understanding of the fracture behavior of metal materials as well as precise prediction of the fatigue life of metal materials. Full article
Show Figures

Figure 1

16 pages, 10503 KiB  
Article
Influence of Residual Stresses on the Crack Initiation and Short Crack Propagation in a Martensitic Spring Steel
by Anna Wildeis, Hans-Jürgen Christ and Robert Brandt
Metals 2022, 12(7), 1085; https://doi.org/10.3390/met12071085 - 24 Jun 2022
Cited by 13 | Viewed by 3060
Abstract
The crack initiation and short crack propagation in a martensitic spring steel were investigated by means of in-situ fatigue testing. Shot peened samples as well as untreated samples were exposed to uniaxial alternating stress to analyze the impact of compressive residual stresses. The [...] Read more.
The crack initiation and short crack propagation in a martensitic spring steel were investigated by means of in-situ fatigue testing. Shot peened samples as well as untreated samples were exposed to uniaxial alternating stress to analyze the impact of compressive residual stresses. The early fatigue damage started in both sample conditions with the formation of slip bands, which subsequently served as crack initiation sites. Most of the slip bands and, correspondingly, most of the short fatigue cracks initiated at or close to prior austenite grain boundaries. The observed crack density of the emerging network of short cracks increased with the number of cycles and with increasing applied stress amplitudes. Furthermore, the prior austenite grain boundaries acted as obstacles to short crack propagation in both sample conditions. Compressive residual stresses enhanced the fatigue strength, and it is assumed that this beneficial effect was due to a delayed transition from short crack propagation to long crack propagation and a shift of the crack initiation site from the sample surface to the sample interior. Full article
Show Figures

Figure 1

12 pages, 3053 KiB  
Article
Influence of Sample Wetting Method on ESC-Behavior of PMMA under Dynamic Fatigue Crack Propagation
by Tobias Bubmann, Simon Shi, Alexander Brueckner, Teresa Menzel, Holger Ruckdäschel, Alois K. Schlarb and Volker Altstädt
Materials 2022, 15(12), 4114; https://doi.org/10.3390/ma15124114 - 9 Jun 2022
Cited by 3 | Viewed by 2147
Abstract
Environmental stress cracking (ESC) is one of the most prominent failure mechanisms for polymer components. The high sensitivity of plastics in regard to environmental influences has always meant that plastics as materials have been viewed very critically in outdoor applications. Recently, the massive [...] Read more.
Environmental stress cracking (ESC) is one of the most prominent failure mechanisms for polymer components. The high sensitivity of plastics in regard to environmental influences has always meant that plastics as materials have been viewed very critically in outdoor applications. Recently, the massive occurrence of microplastics in the environment means that questions about the long-term stability of plastic parts and the studies of plastic fragmentation are of great scientific interest. ESC behavior also plays an important role in connection with the formation of microplastics. In this work, the influence of two different sample wetting methods on ESC behavior was investigated. In case A, the sample was in situ wetted with the medium during the measurement by using a sponge. In case B, the sample was wetted by storage in the medium prior to measurement. Different stress cracking agents (SCA) were examined for polymethylmethacrylate (PMMA). Fracture-mechanical fatigue crack propagation (FCP) tests were carried out to quantitatively determine the sensitivity to ESC. Correlations between the absorption behavior and the ESC behavior of the SCA and the resulting morphological phenomena were established. Depending on the wetting method, significant differences in FCP were observed. The in situ wetting of the samples (case A) during the FCP measurement with ethylene glycol (EG) and with deionized water (DI) led to a significant shift in the crack propagation curves to higher ∆K—compared to the PMMA reference. In the case of n-heptane (NH), a more brittle crack propagation behavior was observed due to the chemical interaction with PMMA. The previously immersed samples (case B) give different results. Storage in NH and EG showed no influence on the crack propagation behavior. Samples immersed in DI showed a completely different course of crack growth. At a certain load, a sudden deceleration of the crack propagation and thus a horizontal curve could be seen. Above a certain ∆K value, crack growth began again. Depending on the immersion time (14, 30, or 60 days), this so-called stepped behavior shifted to lower da/dN values. Full article
Show Figures

Figure 1

18 pages, 7500 KiB  
Article
A Novel Approach for Real-Time Quality Monitoring in Machining of Aerospace Alloy through Acoustic Emission Signal Transformation for DNN
by David Adeniji, Kyle Oligee and Julius Schoop
J. Manuf. Mater. Process. 2022, 6(1), 18; https://doi.org/10.3390/jmmp6010018 - 25 Jan 2022
Cited by 20 | Viewed by 4375
Abstract
Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which is retained at temperatures above 800 °C. However, low damage tolerance, i.e., brittle material behavior with a propensity to [...] Read more.
Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which is retained at temperatures above 800 °C. However, low damage tolerance, i.e., brittle material behavior with a propensity to rapid crack propagation, has limited the application of γ-TiAl. Any cracks introduced during manufacturing would dramatically lower the useful (fatigue) life of γ-TiAl components, making the workpiece surface’s quality from finish machining a critical component to product quality and performance. To address this issue and enable more widespread use of γ-TiAl, this research aims to develop a real-time non-destructive evaluation (NDE) quality monitoring technique based on acoustic emission (AE) signals, wavelet transform, and deep neural networks (DNN). Previous efforts have opted for traditional approaches to AE signal analysis, using statistical feature extraction and classification, which face challenges such as the extraction of good/relevant features and low classification accuracy. Hence, this work proposes a novel AI-enabled method that uses a convolutional neural network (CNN) to extract rich and relevant features from a two-dimensional image representation of 1D time-domain AE signals (known as scalograms), subsequently classifying the AE signature based on pedigreed experimental data and finally predicting the process-induced surface quality. The results of the present work show good classification accuracy of 80.83% using scalogram images, in-situ experimental data, and a VGG-19 pre-trained neural network, establishing the significant potential for real-time quality monitoring in manufacturing processes. Full article
Show Figures

Figure 1

13 pages, 8138 KiB  
Article
Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance
by Dominik Kukla, Mateusz Kopec, Kehuan Wang, Cezary Senderowski and Zbigniew L. Kowalewski
Materials 2021, 14(14), 3824; https://doi.org/10.3390/ma14143824 - 8 Jul 2021
Cited by 9 | Viewed by 2732
Abstract
In this paper, the fatigue performance of the aluminide layer-coated and as-received MAR 247 nickel superalloy with three different initial microstructures (fine grain, coarse grain and column-structured grain) was monitored using nondestructive, eddy current methods. The aluminide layers of 20 and 40 µm [...] Read more.
In this paper, the fatigue performance of the aluminide layer-coated and as-received MAR 247 nickel superalloy with three different initial microstructures (fine grain, coarse grain and column-structured grain) was monitored using nondestructive, eddy current methods. The aluminide layers of 20 and 40 µm were obtained through the chemical vapor deposition (CVD) process in the hydrogen protective atmosphere for 8 and 12 h at the temperature of 1040 °C and internal pressure of 150 mbar. A microstructure of MAR 247 nickel superalloy and the coating were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). It was found that fatigue performance was mainly driven by the initial microstructure of MAR 247 nickel superalloy and the thickness of the aluminide layer. Furthermore, the elaborated methodology allowed in situ eddy current measurements that enabled us to localize the area with potential crack initiation and its propagation during 60,000 loading cycles. Full article
Show Figures

Figure 1

31 pages, 12942 KiB  
Article
About the Role of Interfaces on the Fatigue Crack Propagation in Laminated Metallic Composites
by Philip Manuel Pohl, Frank Kümmel, Christopher Schunk, Itziar Serrano-Munoz, Henning Markötter, Mathias Göken and Heinz Werner Höppel
Materials 2021, 14(10), 2564; https://doi.org/10.3390/ma14102564 - 14 May 2021
Cited by 17 | Viewed by 3506
Abstract
The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with [...] Read more.
The influence of gradients in hardness and elastic properties at interfaces of dissimilar materials in laminated metallic composites (LMCs) on fatigue crack propagation is investigated experimentally for three different LMC systems: Al/Al-LMCs with dissimilar yield stress and Al/Steel-LMCs as well as Al/Ti/Steel-LMCs with dissimilar yield stress and Young’s modulus, respectively. The damage tolerant fatigue behavior in Al/Al-LMCs with an alternating layer structure is enhanced significantly compared to constituent monolithic materials. The prevalent toughening mechanisms at the interfaces are identified by microscopical methods and synchrotron X-ray computed tomography. For the soft/hard transition, crack deflection mechanisms at the vicinity of the interface are observed, whereas crack bifurcation mechanisms can be seen for the hard/soft transition. The crack propagation in Al/Steel-LMCs was studied conducting in-situ scanning electron microscope (SEM) experiments in the respective low cycle fatigue (LCF) and high cycle fatigue (HCF) regimes of the laminate. The enhanced resistance against crack propagation in the LCF regime is attributed to the prevalent stress redistribution, crack deflection, and crack bridging mechanisms. The fatigue properties of different Al/Ti/Steel-LMC systems show the potential of LMCs in terms of an appropriate selection of constituents in combination with an optimized architecture. The results are also discussed under the aspect of tailored lightweight applications subjected to cyclic loading. Full article
(This article belongs to the Special Issue Recent Advances in Mechanisms of Fracture and Fatigue)
Show Figures

Figure 1

23 pages, 74030 KiB  
Article
A Method for Evaluation the Fatigue Microcrack Propagation in Human Cortical Bone Using Differential X-ray Computed Tomography
by Petr Koudelka, Daniel Kytyr, Tomas Fila, Jan Sleichrt, Vaclav Rada, Petr Zlamal, Pavel Benes, Vendula Bendova, Ivana Kumpova and Michal Vopalensky
Materials 2021, 14(6), 1370; https://doi.org/10.3390/ma14061370 - 11 Mar 2021
Cited by 4 | Viewed by 2937
Abstract
Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) [...] Read more.
Fatigue initiation and the propagation of microcracks in a cortical bone is an initial phase of damage development that may ultimately lead to the formation of macroscopic fractures and failure of the bone. In this work, a time-resolved high-resolution X-ray micro-computed tomography (CT) was performed to investigate the system of microcracks in a bone sample loaded by a simulated gait cycle. A low-cycle (1000 cycles) fatigue loading in compression with a 900 N peak amplitude and a 0.4 Hz frequency simulating the slow walk for the initialization of the internal damage of the bone was used. An in-house developed laboratory X-ray micro-CT imaging system coupled with a compact loading device were employed for the in situ uni-axial fatigue experiments reaching a μ2μm effective voxel size. To reach a comparable quality of the reconstructed 3D images with the SEM microscopy, projection-level corrections and focal spot drift correction were performed prior to the digital volume correlation and evaluation using differential tomography for the identification of the individual microcracks in the microstructure. The microcracks in the intact bone, the crack formation after loading, and the changes in the topology of the microcracks were identified on a volumetric basis in the microstructure of the bone. Full article
(This article belongs to the Special Issue 4D X-ray Computed Tomography for Material Science)
Show Figures

Figure 1

16 pages, 13896 KiB  
Article
Intrinsic Fatigue Crack Growth in Al-Cu-Li-Mg-Zr Alloys: The Effect of the Iron Constituent Particles
by Min Hao, Liang Wang, Jun-Zhou Chen, Ren Wang and Guo-Ai Li
Metals 2021, 11(1), 110; https://doi.org/10.3390/met11010110 - 7 Jan 2021
Cited by 2 | Viewed by 2882
Abstract
The influence of iron (Fe)-containing constituent particles on the behavior of fatigue crack initiation and propagation of Al-Cu-Li-Mg-Zr alloys has been studied using fatigue crack growth (FCG) tests and in-situ fatigue testing and detailed metallographic examination based on scanning electron microscopy. Experimental results [...] Read more.
The influence of iron (Fe)-containing constituent particles on the behavior of fatigue crack initiation and propagation of Al-Cu-Li-Mg-Zr alloys has been studied using fatigue crack growth (FCG) tests and in-situ fatigue testing and detailed metallographic examination based on scanning electron microscopy. Experimental results show that the alloy with a low level of Fe content (2A97-T3 sheet) exhibited a lower density, accompanying equivalent tensile strength and FCG rate compared to the damage-tolerant 2524-T3 sheet. It was found that the fatigue b growth of both alloys is dominated by transgranular mode, accompanied by intergranular expansion, and the high level of Fe content alloy presents more characteristics of intergranular. Coarse constituent particles were detrimental to the resistance against FCG. It is postulated here that the micro-cracks formed around the coarse Fe-containing particles are merged with the primary crack to produce a bridging effect, accelerating the growth of fatigue cracks in the alloy with a high level of Fe content. Full article
Show Figures

Figure 1

Back to TopTop