Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Characterization of Coating during CVD Process
3.2. Effect of Coating Thickness on Fatigue Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, D.C.; Brill, U. High-Temperature-Strength Nickel Alloy. Adv. Mater. Process. 2000, 158, 31–34. [Google Scholar]
- Wanhill, R.J.H. Fatigue of air supply manifold support rod in military jet engines. J. Fail. Anal. Prev. 2004, 4, 53–61. [Google Scholar] [CrossRef]
- Kaufman, M. Properties of cast Mar-M-247 for Turbine Blisk applications. Superalloys 1984, 43–52. [Google Scholar] [CrossRef]
- Fritz, L.J.; Koster, W.P. Tensile and Creep Rupture Properties of (1) Uncoated and (2) Coated Engineering Alloys at Elevated Temperatures; NASA Technical Report, NAS CR-135138; NASA: Washington, DC, USA, 1977. [Google Scholar]
- NCO. Alloy IN-738 Technical Data; The International Nickel Company, Inc.: New York, NY, USA; Available online: https://www.nickelinstitute.org/media/1709/in_738alloy_preliminarydata_497_.pdf (accessed on 1 December 2020).
- Wee, S.; Do, J.; Kim, K.; Lee, C.; Seok, C.; Choi, B.-G.; Choi, Y.; Kim, W. Review on Mechanical Thermal Properties of Superalloys and Thermal Barrier Coating Used in Gas Turbines. Appl. Sci. 2020, 10, 5476. [Google Scholar] [CrossRef]
- Garimella, L.; Liaw, P.K.; Klarstrom, D.L. Fatigue behavior in nickel-based superalloys: A literature review. JOM 1997, 49, 67. [Google Scholar] [CrossRef]
- Kawahara, Y. Application of High Temperature Corrosion-Resistant Materials and Coatings under Severe Corrosive Environment in Waste-to-Energy Boilers. J. Therm. Spray Technol. 2007, 16, 202–213. [Google Scholar] [CrossRef]
- Sadeghi, E.; Markocsan, N.; Joshi, S. Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants: Part II—Effect of Environment and Outlook. J. Therm. Spray Technol. 2019, 28, 1789–1850. [Google Scholar] [CrossRef] [Green Version]
- Jozwik, P.; Polkowski, W.; Bojar, Z. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities. Materials 2015, 8, 2537–2568. [Google Scholar] [CrossRef]
- Cinca, N.; Lima, C.R.C.; Guilemany, J.M. An overview of intermetallics research and application: Status of thermal spray coatings. J. Mater. Res. Technol. 2013, 2, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Bochenek, K.; Basista, M. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Prog. Aerosp. Sci. 2015, 79, 136–146. [Google Scholar] [CrossRef]
- Curry, N.; Markocsan, N.; Li, X.-H.; Tricoire, A.; Dorfman, M. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry. J. Therm. Spray Technol. 2011, 20, 108–115. [Google Scholar] [CrossRef]
- Stekovic, S. Low Cycle Fatigue and Fracture of a Coated Superalloy CMSX-4. In Fracture of Nano and Engineering Materials and Structures; Gdoutos, E.E., Ed.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Okazaki, M. High-temperature strength of Ni-base superalloy coatings. Sci. Technol. Adv. Mater. 2001, 2, 357–366. [Google Scholar] [CrossRef]
- Rodriguez, P.; Mannan, S.L. High temperature low cycle fatigue. Sadhana 1995, 20, 123–164. [Google Scholar] [CrossRef]
- Šmíd, M.; Horník, V.; Hutař, P.; Hrbáček, K.; Kunz, L. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures. Trans. Indian Inst. Met. 2016, 69, 393–397. [Google Scholar] [CrossRef]
- Šmíd, M.; Horník, V.; Kunz, L.; Hrbácek, K.; Hutar, P. High Cycle Fatigue Data Transferability of MAR-M247 Superalloy from Separately Cast Specimens to Real Gas Turbine Blade. Metals 2020, 10, 1460. [Google Scholar] [CrossRef]
- Maggiani, G.; Roy, M.; Colantoni, S.; Withers, P.; Stramare, S.; Monti, C.; Bernardini, L. High temperature low cycle fatigue characterization of equiaxed MAR-M-247. Int. J. Fatigue 2019, 123, 225–237. [Google Scholar] [CrossRef]
- Madhukar, S.; Reddy, B.R.H.; Kumar, G.A.; Naik, R.P. A Study on Improvement of Fatigue Life of materials by Surface Coatings Int. J. Curr. Eng. Technol. 2018, 8, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Blachnio, J.; Bogman, M. A non-destructive method to assess condition of gas turbine blades, based on the analysis of blade-surface images. Russ. J. Nondestruct. Test. 2010, 46, 860–866. [Google Scholar] [CrossRef]
- Bogdan, M.; Błachnio, J.; Kułaszka, A.; Derlatka, M. Assessing the Condition of Gas Turbine Rotor Blades with the Optoelectronic and Thermographic Methods. Metals 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Vijaya Lakshmi, M.R.; Mondal, A.K.; Jadhav, C.K.; Sreedhar, S. Quantitative NDE of Aero Engine Turbine Rotor Blade—A case study. In Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation (NDE 2011), Chennai, India, 6–10 December 2011; pp. 301–304. [Google Scholar]
- Gao, C.; Meeker, W.C.; Mayton, D. Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation. Reliab. Eng. Syst. Saf. 2014, 131, 229–235. [Google Scholar] [CrossRef]
- Gryguc, A.; Behravesh, S.; Jahed, H.; Wells, M.; Williams, B.; Gruber, R.; Duquett, A.; Sparrow, T.; Lambrou, M.; Su, X. Effect of thermomechanical processing defects on fatigue and fracture behaviour of forged magnesium. Fratt. ed Integrità Strutt. 2020, 15, 213–227. [Google Scholar] [CrossRef]
- Kukla, D.; Kopec, M.; Kowalewski, Z.L.; Politis, D.J.; Jozwiak, S.; Senderowski, C. Thermal Barrier Stability and Wear Behavior of CVD Deposited Aluminide Coatings for MAR 247 Nickel Superalloy. Materials 2020, 12, 3863. [Google Scholar] [CrossRef]
- Kopec, M.; Kukla, D.; Yuan, X.; Rejmer, W.; Kowalewski, Z.L.; Senderowski, C. Aluminide Thermal Barrier Coating for High Temperature Performance of MAR 247 Nickel Based Superalloy. Coatings 2021, 11, 48. [Google Scholar] [CrossRef]
- Basak, A.; Das, S. Microstructure of nickel-base superalloy MAR-M247 additively manufactured through scanning laser epitaxy (SLE). J. Alloys Compd. 2017, 705, 806–816. [Google Scholar] [CrossRef]
- Liu, F.; Lin, X.; Yang, G.; Song, M.; Chen, J.; Huang, W. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy. Opt. Laser Technol. 2011, 43, 208–213. [Google Scholar] [CrossRef]
- Zhan, Z.; He, Y.; Li, L.; Liu, H.; Dai, Y. Low-temperature formation and oxidation resistance of ultrafine aluminide coatings on Ni-base superalloy. Surf. Coat. Technol. 2009, 203, 2337–2342. [Google Scholar] [CrossRef]
- Sulak, I.; Obrtlik, K.; Celko, L. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247. Kovove Mater. 2016, 54, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Eder, M.A.; Haselbach, P.U.; Mishin, O.V. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples. J. Mater. Eng. Perform. 2018, 27, 3184–3198. [Google Scholar] [CrossRef] [Green Version]
- Bergengren, Y.; Melander, A. An Experimental and Theoretical-Study of the Fatigue Properties of Hot-Dip-Galvanized High-Strength Sheet Steel. Int. J. Fatigue 1992, 14, 154–162. [Google Scholar] [CrossRef]
- Akebono, H.; Komotori, J.; Shimizu, M. Effect of coating microstructure on the fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy. Int. J. Fatigue 2008, 30, 814–821. [Google Scholar] [CrossRef]
- Akebono, H.; Komotori, J.; Suzuki, H. The effect of coating thickness on fatigue properties of steel thermally sprayed with ni-based self-fluxing alloy Int. J. Mod. Phys. B 2006, 20, 3599–3604. [Google Scholar] [CrossRef]
- Antolovich, S.D. Microstructural aspects of fatigue in Ni-basesuperalloys. Philos. Trans. R. Soc. A 2015, 373, 20140128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhtarov, S.; Utyashev, F. Effect of microstructure refinement on low cycle fatigue behavior of Alloy 718. MATEC Web Conf. 2014, 14, 04001. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Bennett, C.J.; Hyde, C.J. A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks. Mater. Des. 2020, 196, 109093. [Google Scholar] [CrossRef]
- Zilberstein, V.; Walrath, K.; Grundy, D.; Schlicker, D.; Goldfine, N.; Abramovici, E.; Yentzer, T. MWM eddy-current arrays for crack initiation and growth monitoring. Int. J. Fatigue 2003, 25, 1147–1155. [Google Scholar] [CrossRef]
- Jiao, S.; Cheng, L.; Li, X.; Li, P.; Ding, H. Monitoring fatigue cracks of a metal structure using an eddy current sensor EURASIP. J. Wirel. Commun. Netw. 2016, 188, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Potthoff, M.; Peterseim, J.; Thale, W. Monitoring of Low Cycle Fatigue Damage with Eddy Current. In Proceedings of the 19th World Conference on Non-Destructive Testing, Munich, Germany, 13–17 June 2016. [Google Scholar]
- Sajjadi, S.; Zebarjad, S.M. Study of fracture mechanisms of a Ni-Base superalloy at different temperatures. J. Achiev. Mater. Manuf. 2006, 18, 227–230. [Google Scholar]
- Sajjadi, S.; Nategh, S.; Guthrie, R.I.L. Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111. Mater. Sci. Eng. A 2002, 325, 484–489. [Google Scholar] [CrossRef]
C | Cr | Mn | Si | W | Co | Al | Ni |
---|---|---|---|---|---|---|---|
0.09 | 8.80 | 0.10 | 0.25 | 9.70 | 9.50 | 5.70 | bal. |
Point | Al | Si | Ti | Cr | Co | Ni |
---|---|---|---|---|---|---|
1 | 25.01 | x | x | 2.66 | 7.78 | 64.55 |
2 | 23.68 | x | x | 3.23 | 7.95 | 65.15 |
3 | 21.79 | x | 0.49 | 4.63 | 8.69 | 64.41 |
4 | 19.31 | 0.34 | 0.89 | 6.52 | 9.57 | 63.00 |
5 | 18.73 | 0.51 | 1.07 | 5.95 | 9.84 | 63.64 |
6 | 17.41 | 0.53 | 1.20 | 7.07 | 9.44 | 63.98 |
7 | 6.47 | 0.23 | 0.65 | 7.21 | 9.71 | 59.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukla, D.; Kopec, M.; Wang, K.; Senderowski, C.; Kowalewski, Z.L. Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance. Materials 2021, 14, 3824. https://doi.org/10.3390/ma14143824
Kukla D, Kopec M, Wang K, Senderowski C, Kowalewski ZL. Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance. Materials. 2021; 14(14):3824. https://doi.org/10.3390/ma14143824
Chicago/Turabian StyleKukla, Dominik, Mateusz Kopec, Kehuan Wang, Cezary Senderowski, and Zbigniew L. Kowalewski. 2021. "Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance" Materials 14, no. 14: 3824. https://doi.org/10.3390/ma14143824
APA StyleKukla, D., Kopec, M., Wang, K., Senderowski, C., & Kowalewski, Z. L. (2021). Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance. Materials, 14(14), 3824. https://doi.org/10.3390/ma14143824