Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,023)

Search Parameters:
Keywords = in situ crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4013 KiB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

11 pages, 2151 KiB  
Article
Fabrication of Antibacterial Poly(ethylene terephthalate)/Graphene Nanocomposite Fibers by In Situ Polymerization for Fruit Preservation
by Jiarui Wu, Qinhan Chen, Aobin Han, Min Liu, Wenhuan Zhong, Xiaojue Shao, Yan Jiang, Jing Lin, Zhenyang Luo, Jie Yang and Gefei Li
Molecules 2025, 30(15), 3109; https://doi.org/10.3390/molecules30153109 - 24 Jul 2025
Viewed by 205
Abstract
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers [...] Read more.
A novel polyester/graphene nanocomposite fiber was produced using the in situ polymerization protocol with carboxylated graphene and melt spinning technology. The resulting nanocomposite fibers were characterized by X-ray diffraction (XRD), Raman spectroscopy, differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The fibers containing 0.2 wt% graphene fraction showed an excellent dispersity of graphene nanosheets in polymeric matrix. DSC test showed that the efficient polymer-chain grafting depresses the crystallization of PET chains. This graphene-contained PET fabric exhibited attractive antibacterial properties that can be employed in fruit preservation to ensure food safety. Full article
(This article belongs to the Special Issue Design and Application of Functional Supramolecular Materials)
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Viewed by 219
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

15 pages, 1845 KiB  
Article
Comparing the SEI Formation on Copper and Amorphous Carbon: A Study with Combined Operando Methods
by Michael Stich, Christian Leppin, Falk Thorsten Krauss, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Bernhard Roling and Andreas Bund
Batteries 2025, 11(7), 273; https://doi.org/10.3390/batteries11070273 - 18 Jul 2025
Viewed by 277
Abstract
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce [...] Read more.
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce artifacts or misinterpretations as they do not investigate the SEI in its unaltered state immersed in liquid battery electrolyte. Thus, in this work, we focus on using the non-destructive combination of electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and impedance spectroscopy (EIS) in the same electrochemical cell. EQCM-D can not only probe the solidified products of the SEI but also allows for the monitoring of viscoelastic layers and viscosity changes of the electrolyte at the interphase during the SEI formation. EIS complements those results by providing electrochemical properties of the formed interphase. Our results highlight substantial differences in the physical and electrochemical properties between the SEI formed on copper and on amorphous carbon and show how formation parameters and the additive vinylene carbonate (VC) influence their growth. The EQCM-D results show consistently that much thicker SEIs are formed on carbon substrates in comparison to copper substrates. Full article
(This article belongs to the Special Issue Electrocrystallization in Rechargeable Batteries)
Show Figures

Figure 1

13 pages, 6501 KiB  
Article
Pyrite-Hosted Inclusions in the Southern Ore Belt of the Bainaimiao Porphyry Cu Deposit: Composition and δ34S Characteristics
by Liwen Wu, Yushan Zuo, Yongwang Zhang, Jianjun Yang, Yimin Liu, Guobin Zhang, Hong Zhang, Peng Zhang and Rui Liu
Minerals 2025, 15(7), 729; https://doi.org/10.3390/min15070729 - 12 Jul 2025
Viewed by 257
Abstract
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the [...] Read more.
This study presents a comprehensive case analysis of pyrite-hosted solid inclusions and their metallogenic significance in the Bainaimiao porphyry Cu deposit in NE China, which is genetically linked to the early Silurian granodiorite intrusion and porphyry dykes. Solid inclusions in pyrite from the deposit’s southern ore belt were analyzed across distinct mineralization stages. Using Electron Probe Micro-Analysis (EPMA) and in situ sulfur isotope analysis (MC-ICP-MS), inclusion assemblages in pyrite were identified, including pyrrhotite-chalcopyrite solid solutions, biotite, and dolomite. The results demonstrate that these inclusions primarily formed through coprecipitation with pyrite during crystal growth. Early-stage mineralizing fluids exhibited extreme temperatures exceeding 700 °C, coupled with low oxygen fugacity (fO2) and low sulfur fugacity (fS2). Sulfur isotope compositions (δ34S: −5.85 to −4.97‰) indicate a dominant mantle-derived magmatic sulfur source, with contributions from reduced sulfur in sedimentary rocks. Combined with regional geological evolution, the Bainaimiao deposit is classified as a porphyry-type deposit. Its ore-forming materials were partially derived from Mesoproterozoic submarine volcanic exhalative sedimentary source beds, which were later modified and enriched by granodiorite porphyry magmatism. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 10945 KiB  
Article
Temperature-Dependent Deformation Mechanisms in Ti65 Alloy: An In Situ Tensile Study
by Haitao Li, Chenxu Li, Dongmei Chen, Yujing Liu, Zibo Zhao, Bohua Zhang, Meng Qi, Jianrong Liu and Qingjiang Wang
Materials 2025, 18(14), 3270; https://doi.org/10.3390/ma18143270 - 11 Jul 2025
Viewed by 336
Abstract
Understanding the relationship between deformation behavior and mechanisms at elevated temperatures is of great significance for applications of high-temperature titanium alloys. This study systematically investigates the plastic deformation behavior of Ti65 alloy under both room-temperature and high-temperature conditions through in situ tensile testing, [...] Read more.
Understanding the relationship between deformation behavior and mechanisms at elevated temperatures is of great significance for applications of high-temperature titanium alloys. This study systematically investigates the plastic deformation behavior of Ti65 alloy under both room-temperature and high-temperature conditions through in situ tensile testing, combined with slip trace analysis, crystal orientation analysis, and geometrical compatibility factor evaluation. TEM observations and molecular dynamics simulations reveal that plastic deformation is predominantly accommodated by basal and prismatic slip systems with minimal pyramidal slip contribution at room temperature. However, elevated temperatures significantly promote pyramidal <a> and <c+a> slip due to thermal activation. This transition stems from a shift in deformation mechanisms: while room-temperature deformation relies on multi-slip and grain rotation to accommodate strain, high-temperature deformation is governed by efficient slip transfer across grain boundaries enabled by enhanced geometrical compatibility. Consistent with this, thermal activation at elevated temperatures reduces the critical resolved shear stress (CRSS), preferentially activating 1/3<11–23> dislocations and thereby substantially improving plastic deformation capability. These findings provide critical insights into the temperature-dependent deformation mechanisms of Ti65 alloy, offering valuable guidance for performance optimization in high-temperature applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 5287 KiB  
Article
Antimicrobial Effects of Abies alba Essential Oil and Its Application in Food Preservation
by Milena D. Vukić, Nenad L. Vuković, Marina Radović Jakovljević, Marija S. Ristić and Miroslava Kačániová
Plants 2025, 14(13), 2071; https://doi.org/10.3390/plants14132071 - 7 Jul 2025
Viewed by 437
Abstract
The emergence of antimicrobial resistance and the increasing demand for a healthier lifestyle have set new goals for science and industry. In the search for new, more effective, and environmentally friendly antimicrobial agents, special attention is being paid to natural resources. In this [...] Read more.
The emergence of antimicrobial resistance and the increasing demand for a healthier lifestyle have set new goals for science and industry. In the search for new, more effective, and environmentally friendly antimicrobial agents, special attention is being paid to natural resources. In this regard, essential oils derived from plants, which are widely used in the cosmetic, food, and pharmaceutical industries, are one of the solutions. In view of the above, this study aims to investigate the biological effects of Abies alba essential oil (AAEO). The chemical profile of AAEO was evaluated by GC/MS analysis, which revealed a high abundance of limonene (52.2%) and α-pinene (36.2%). Antioxidant activity evaluation showed a higher potential of AAEO in scavenging ABTS radical species with an IC50 value of 1.18 ± 0.05 mg/mL. In vitro antimicrobial activity was determined by disc diffusion and minimum inhibitory concentration assays and showed that AAEO was more efficient in inhibiting the growth of G+ bacterial species. On contrary, in situ evaluations of antimicrobial effects of AAEO on different food models (strawberry, kiwi, white radish, and beetroot) resulted in more efficient suppression of G bacterial species. Although AAEO showed low effects on yeasts determined by in vitro methods, in situ investigations showed its higher potential in eradication of Candida yeast. The antibiofilm properties of the AAEO matrix were determined by means of crystal violet assay and MALDI-TOF MS Biotyper analysis against biofilm-forming Salmonella enterica. The analysis performed led to the conclusion that AAEO, when applied prior to biofilm formation, may contribute to the removal of planktonic cells and alter the abiotic surface, thereby reducing the suitability of Salmonella enterica for microbial attachment. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Activities of Essential Oils)
Show Figures

Figure 1

15 pages, 2160 KiB  
Article
Open-Pore Skeleton Prussian Blue as a Cathode Material to Achieve High-Performance Sodium Storage
by Wenxin Song, Yaxin Li, Jiahao Chen, Huihua Min, Xinyuan Wu, Xiaomin Liu and Hui Yang
Materials 2025, 18(13), 3174; https://doi.org/10.3390/ma18133174 - 4 Jul 2025
Viewed by 404
Abstract
Prussian blue and its analogs (PBAs), considered potential cathode materials for sodium-ion batteries (SIBs), still confront multiple challenges. For example, many defect vacancies and high crystal water content are generated during the fast crystallization of PBAs, impairing the rate performance. The stress accumulation [...] Read more.
Prussian blue and its analogs (PBAs), considered potential cathode materials for sodium-ion batteries (SIBs), still confront multiple challenges. For example, many defect vacancies and high crystal water content are generated during the fast crystallization of PBAs, impairing the rate performance. The stress accumulation during Na+ insertion/extraction destabilizes the lattice framework and then damages the electrochemical performance. Herein, iron-based Prussian blue with an open-pore skeleton structure (PB-3) is prepared using a facile template method which employs PVP and sodium citrate to control the crystallization rate and adjust the particle morphology. The prepared materials exhibit excellent kinetic properties and are conducive to mitigate the volume changes during ion insertion/extraction processes. PB-3 electrode not only exhibits a superior rate performance (92 mAh g−1 reversible capacity at 2000 mA g−1), but also presents superior cycling performance (capacity retention remained at 90.2% after 600 cycles at a current density of 500 mA g−1). The highly reversible sodium ion insertion/extraction mechanism of PB-3 is investigated by ex situ XRD tests, which proves that the stabilized lattice structure can enhance the long cycling performance. In addition, the considerable capacitance contributes to the rate performance. This study provides valuable insights for the subsequent development of high-performance and stable cathodes for SIBs. Full article
(This article belongs to the Special Issue Development of Electrode Materials for Sodium Ion Batteries)
Show Figures

Figure 1

16 pages, 2885 KiB  
Article
In Situ Synthesis, Crystallization Behavior, and Physical Properties of Biobased Poly(propyl thiophenedicarboxylate)/Multi-Walled Carbon Nanotubes Composites
by Chaoran Zhang, Shiwei Feng and Zhaobin Qiu
Macromol 2025, 5(3), 31; https://doi.org/10.3390/macromol5030031 - 3 Jul 2025
Viewed by 263
Abstract
Poly(propylene thiophenedicarboxylate) (PPTh) is a new type of fully biobased polyester with excellent thermal, mechanical, and barrier properties; however, its practical application has been seriously restricted by the relatively slow crystallization rate. To further improve the crystallization rate and broaden the potential application [...] Read more.
Poly(propylene thiophenedicarboxylate) (PPTh) is a new type of fully biobased polyester with excellent thermal, mechanical, and barrier properties; however, its practical application has been seriously restricted by the relatively slow crystallization rate. To further improve the crystallization rate and broaden the potential application field of PPTh, PPTh/multi-walled carbon nanotubes (MWCNTs) composites were successfully synthesized via an in situ melt polycondensation process in this research. Low contents of MWCNTs were well dispersed in the PPTh matrix. MWCNTs significantly increased the melt crystallization temperature and isothermal crystallization rate of PPTh, indicating the effective heterogeneous nucleating agent role. PPTh/MWCNTs composites displayed the same crystal structure as PPTh. In addition, the introduction of MWCNTs significantly enhanced both the Young’s modulus and the tensile strength of PPTh. From a sustainable viewpoint, biobased PPTh/MWCNTs composites reported in this research were of significant importance and interest as they showed remarkably improved crystallization rates and mechanical properties. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 17089 KiB  
Article
Sedimentary Characteristics and Genetic Mechanisms of Non-Evaporitic Gypsum in a Half-Graben Basin: A Case Study from the Zhanhua Sag, Bohai Bay Basin, China
by Muxin Cai, Jianguo Zhang, Zaixing Jiang, Junliang Li, Tao Meng, Peng Liu and Chao Jiang
J. Mar. Sci. Eng. 2025, 13(7), 1300; https://doi.org/10.3390/jmse13071300 - 2 Jul 2025
Viewed by 356
Abstract
Gypsum and salt rocks have been proven to act as seals for abundant oil and gas reserves on a global scale, with significant potential for hydrocarbon preservation and evolution. Notably, the sedimentary dynamics of non-evaporitic gypsum in terrestrial half-graben basins remain underexplored, particularly [...] Read more.
Gypsum and salt rocks have been proven to act as seals for abundant oil and gas reserves on a global scale, with significant potential for hydrocarbon preservation and evolution. Notably, the sedimentary dynamics of non-evaporitic gypsum in terrestrial half-graben basins remain underexplored, particularly regarding its genetic link to hydrocarbon accumulation in interbedded mudstones. This study is based on the Zhanhua Sag, in which thick-layered gypsum rocks with dark mudstone are deposited. The gypsum crystals show the intermittent deposition characteristics. The cumulative thickness of the gypsum-containing section reaches a maximum of over 110 m. The spatial distribution of gypsum thickness correlates strongly with the location of deep-seated faults. The strontium and sulfur isotopes of gypsum indicate deep hydrothermal fluids as mineral sources, and negative oxygen isotope excursions also suggest that gypsum layers precipitated in situ from hot brine. Total organic carbon and Rock-Eval data indicate that the deep-lake gypsum rock system has excellent hydrocarbon potential, especially in the mudstone interlayers. This study developed a depositional model of deep-lake gypsum rocks with thermal brine genesis in half-graben basins. The gypsum-bearing system is rich in mudstone interlayers. These gypsum–mudstone interbeds represent promising targets for shale oil exploration after the initial breakthrough during the extraction process. These insights provide a theoretical framework for understanding gypsum-related petroleum systems in half-graben basins across the globe, offering guidance for hydrocarbon exploration in analogous sedimentary environments. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 468 KiB  
Review
Can New Remineralizing Agents Serve as Fluoride Alternatives in Caries Prevention? A Scoping Review
by Jekaterina Gudkina, Bennett T. Amaechi, Stephen H. Abrams and Anda Brinkmane
Oral 2025, 5(3), 47; https://doi.org/10.3390/oral5030047 - 2 Jul 2025
Viewed by 1758
Abstract
Background: Due to limitations of fluoride (F) treatment as a main caries preventive measure, it is important to consider the use of other dental caries preventive measures to reduce caries prevalence, especially in its early stages. Recently, new remineralizing agents appeared on the [...] Read more.
Background: Due to limitations of fluoride (F) treatment as a main caries preventive measure, it is important to consider the use of other dental caries preventive measures to reduce caries prevalence, especially in its early stages. Recently, new remineralizing agents appeared on the market, with their commercial availability in a variety of oral care products. Objectives: The purposes include providing a scoping review that represents caries remineralizing efficacies of only commercially available products and their existing adverse effects (if it is presented) and ensuring that only evidence-based approved products are included. Methods: The following databases were used in searching scientific literature on 28 October 2024: PubMed, PubMed Advanced Search, MeSH database, and PubMed Clinical Queries. The study selection criteria were as follows: for laboratory, in vitro, and/or in situ—remineralization of enamel-scanning electron microscopy, spectroscopy, microhardness test, light microscopy, profilometry, transverse microhardness microradiography, integrated mineral loss, light microscopy, photothermal radiometry; if it was a randomized controlled trial—CONSORT protocol, ICDAS system (to detect dental caries), diagnostic additional devices; antibacterial ability-colony forming units, DNA-based sequencing, scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy. Results: This review includes 98 papers: 14 of them describing the current status of caries patterns in the world, 60 studies (45 laboratory studies and 15 RCTs), and 24 systematic reviews were analyzed in order to detect whether new remineralizing agents can replace fluoride in further caries prevention. Conclusions: All reviewed new remineralization agents could be used without additives to treat early caries lesions, but the combination with F promotes better remineralization. Only HAP demonstrated its potential to serve as an alternative to fluoride in oral care products. However, further clinical studies are needed to prove its role in the remineralizing process of initial caries lesions. One also needs to ensure that both the clinical trials and in vitro lab studies use the best gold standards to validate any changes in the tooth structure, both remineralization and demineralization. Full article
Show Figures

Graphical abstract

14 pages, 4844 KiB  
Article
In Situ Epitaxial Quantum Dot Passivation Enables Highly Efficient and Stable Perovskite Solar Cells
by Yahya A. Alzahrani, Raghad M. Alqahtani, Raghad A. Alqarni, Jenan R. Alnakhli, Shahad A. Anezi, Ibtisam S. Almalki, Ghazal S. Yafi, Sultan M. Alenzi, Abdulaziz Aljuwayr, Abdulmalik M. Alessa, Huda Alkhaldi, Anwar Q. Alanazi, Masaud Almalki and Masfer H. Alkahtani
Nanomaterials 2025, 15(13), 978; https://doi.org/10.3390/nano15130978 - 24 Jun 2025
Viewed by 581
Abstract
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial [...] Read more.
We report an advanced passivation strategy for perovskite solar cells (PSCs) by introducing core–shell structured perovskite quantum dots (PQDs), composed of methylammonium lead bromide (MAPbBr3) cores and tetraoctylammonium lead bromide (tetra-OAPbBr3) shells, during the antisolvent-assisted crystallization step. The epitaxial compatibility between the PQDs and the host perovskite matrix enables effective passivation of grain boundaries and surface defects, thereby suppressing non-radiative recombination and facilitating more efficient charge transport. At an optimal PQD concentration of 15 mg/mL, the modified PSCs demonstrated a remarkable increase in power conversion efficiency (PCE) from 19.2% to 22.85%. This enhancement is accompanied by improved device metrics, including a rise in open-circuit voltage (Voc) from 1.120 V to 1.137 V, short-circuit current density (Jsc) from 24.5 mA/cm2 to 26.1 mA/cm2, and fill factor (FF) from 70.1% to 77%. Spectral response analysis via incident photon-to-current efficiency (IPCE) revealed enhanced photoresponse in the 400–750 nm wavelength range. Additionally, long-term stability assessments showed that PQD-passivated devices retained more than 92% of their initial PCE after 900 h under ambient conditions, outperforming control devices which retained ~80%. These findings underscore the potential of in situ integrated PQDs as a scalable and effective passivation strategy for next-generation high-efficiency and stable perovskite photovoltaics. Full article
(This article belongs to the Special Issue Nanomaterials for Inorganic and Organic Solar Cells)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 585
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

14 pages, 2310 KiB  
Article
High-Performance Electrochromic Energy Storage Devices Based on Hexagonal WO3 and SnO2/PB Composite Films
by Yi Wang, Zilong Zhang, Ze Wang, Yujie Yan, Tong Feng and An Xie
Materials 2025, 18(12), 2871; https://doi.org/10.3390/ma18122871 - 17 Jun 2025
Cited by 1 | Viewed by 342
Abstract
Electrochromic devices have garnered significant interest owing to their promising applications in smart multifunctional electrochromic energy storage systems (EESDs) and their emerging next-generation electronic technologies. Tungsten oxide (WO3), possessing both electrochromic and pseudocapacitive characteristics, offers great potential for developing multifunctional devices [...] Read more.
Electrochromic devices have garnered significant interest owing to their promising applications in smart multifunctional electrochromic energy storage systems (EESDs) and their emerging next-generation electronic technologies. Tungsten oxide (WO3), possessing both electrochromic and pseudocapacitive characteristics, offers great potential for developing multifunctional devices with enhanced performance. However, achieving an efficient and straightforward synthesis of WO3 electrochromic films, while simultaneously ensuring high coloration efficiency and energy storage capability, remains a significant challenge. In this work, a low-temperature hydrothermal approach is employed to directly grow hexagonal-phase WO3 films on FTO substrates. This process utilizes sorbitol to promote nucleation and rubidium sulfate to regulate crystal growth, enabling a one-step in situ fabrication strategy. To complement the high-performance WO3 cathode, a composite PB/SnO2 film was designed as the anode, offering improved electrochromic properties and enhanced stability. The assembled EESD exhibited fast bleaching/coloration response and a high coloration efficiency of 101.2 cm2 C−1. Furthermore, it exhibited a clear and reversible change in optical properties, shifting from a transparent state to a deep blue color, with a transmittance modulation reaching 81.47%. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

15 pages, 19836 KiB  
Article
Construction of A NiS/g-C3N4 Co-Catalyst-Based S-Scheme Heterojunction and Its Performance in Photocatalytic CO2 Reduction
by Qianyu Zhao and Hengbo Yin
Catalysts 2025, 15(6), 599; https://doi.org/10.3390/catal15060599 - 17 Jun 2025
Viewed by 449
Abstract
NiS nanoparticles were chemically deposited on the surface of g-C3N4, in situ, followed by high-temperature calcination to prepare x-NiS/g-C3N4 co-catalyst-based S-scheme heterojunction photocatalysts. Due to the intrinsic charge accumulation preference on specific crystal planes of g-C [...] Read more.
NiS nanoparticles were chemically deposited on the surface of g-C3N4, in situ, followed by high-temperature calcination to prepare x-NiS/g-C3N4 co-catalyst-based S-scheme heterojunction photocatalysts. Due to the intrinsic charge accumulation preference on specific crystal planes of g-C3N4, NiS nanoparticles selectively deposited on its surface and formed a strong interfacial contact, thereby constructing an S-scheme heterojunction with co-catalytic functionality. This structure effectively suppressesd the recombination of electron–hole pairs in the valence band, significantly enhancing the separation efficiency of photogenerated charge carriers, and thereby improving performance in photocatalytic CO2 reduction. Compared with pure g-C3N4, the x-NiS/g-C3N4 photocatalysts exhibit superior CO2 reduction activity. Among them, the sample with 1.0% NiS loading showed the best performance, achieving CO and CH4 production rates of 27.34 μmol/g and 13.87 μmol/g, respectively, within 4 h. Full article
(This article belongs to the Special Issue Catalytic Carbon Emission Reduction and Conversion in the Environment)
Show Figures

Figure 1

Back to TopTop