Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,673)

Search Parameters:
Keywords = implant selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 580 KiB  
Article
MIBG Scintigraphy and Arrhythmic Risk in Myocarditis
by Maria Lo Monaco, Margherita Licastro, Matteo Nardin, Rocco Mollace, Flavia Nicoli, Alessandro Nudi, Giuseppe Medolago and Erika Bertella
Biomedicines 2025, 13(8), 1981; https://doi.org/10.3390/biomedicines13081981 - 15 Aug 2025
Viewed by 38
Abstract
Background: The widespread use of cardiac magnetic resonance imaging (MRI) in clinical practice has enabled the identification of numerous patients with evident damage from previous myocarditis, whether known or unknown. For years, myocardial fibrosis has been a topic of interest due to its [...] Read more.
Background: The widespread use of cardiac magnetic resonance imaging (MRI) in clinical practice has enabled the identification of numerous patients with evident damage from previous myocarditis, whether known or unknown. For years, myocardial fibrosis has been a topic of interest due to its established correlation with arrhythmic events in various clinical settings, including ischemic heart disease, dilated cardiomyopathy, and hypertrophic cardiomyopathy. MIBG scintigraphy is a method widely used in patients who are candidates for defibrillator implantation or have experienced heart failure. This examination evaluates the sympathetic innervation of the myocardium. Objective: To assess the real arrhythmogenic risk of non-ischemic scars identified in symptomatic or asymptomatic patients through the use of MIBG. Methods: Patients were retrospectively selected based on the presence of non-ischemic myocardial fibrosis detected by cardiac MRI, consistent with a myocarditis outcome (even in the absence of a clear history of myocarditis). These patients underwent myocardial scintigraphy with MIBG using a tomographic technique. Results: A total of 50 patients (41 males, mean age 51 ± 16 years) who underwent MRI from 2019 to June 2024 were selected. The primary indication for MRI was ventricular ectopic extrasystoles detected on Holter ECG (n = 12, 54%), while five patients underwent MRI following a known acute infectious event (23%, including three cases of COVID-19 infection). All symptomatic patients presented with chest pain in the acute phase, accompanied by elevated hsTNI levels (mean value: 437 pg/mL). The MRI findings showed normal ventricular volumes (LV: 80 mL/m2, RV: 81 mL/m2) and normal ejection fractions (56% and 53%, respectively). The mean native T1 mapping value was 1013 ms (normal range: 950–1050). T2 mapping values were altered in the 5 patients who underwent MRI during the acute phase (mean value: 57 ms), without segmentation. Additionally, three patients had non-tamponade pericardial effusion. All patients exhibited LGE (nine subepicardial, seven midwall, six patchy). All patients underwent myocardial scintigraphy with MIBG at least 6 months after the acute event, with only one case yielding a positive result. This patient, a 57-year-old male, had the most severe clinical presentation, including more than 65,000 premature ventricular beats (PVBs) and multiple episodes of paroxysmal supraventricular tachycardia (PSVT) recorded on Holter ECG. MRI findings showed severe left ventricular dysfunction, a slightly dilated LV, and midwall LGE at the septum, coinciding with hypokinetic areas. Conclusions: MIBG scintigraphy could be a useful tool in assessing arrhythmic risk in patients with previous myocarditis. It could help reduce the clinical burden of incidental findings of non-ischemic LGE, which does not appear to be independently associated with an increased risk profile. Full article
Show Figures

Figure 1

16 pages, 4399 KiB  
Article
Influence of Material Selection on the Mechanical Properties of 3D-Printed Tracheal Stents for Surgical Applications
by Aurora Pérez Jiménez, Carmen Sánchez González, Sandra Pérez Teresí, Noelia Landa, Cristina Díaz Jiménez and Mauro Malvé
Polymers 2025, 17(16), 2223; https://doi.org/10.3390/polym17162223 - 15 Aug 2025
Viewed by 147
Abstract
Endotracheal prosthesis placement is employed as a therapeutic intervention for tracheal lesions in cases where conventional surgical approaches are not feasible. The learning curve for endotracheal stent placement can vary depending on the type of stent, the training environment, and the clinician’s prior [...] Read more.
Endotracheal prosthesis placement is employed as a therapeutic intervention for tracheal lesions in cases where conventional surgical approaches are not feasible. The learning curve for endotracheal stent placement can vary depending on the type of stent, the training environment, and the clinician’s prior experience; however, it is generally considered moderately complex. Inadequate practice can have serious consequences, as the procedure involves a critical area such as the airway. The main risks and complications associated with inadequate technique or improper execution can include stent migration, formation of granulation tissue or hyperplasia, tracheal or pulmonary infection, obstruction or fracture of the stent, hemorrhage and tracheal perforation, among others. The purpose of the present study is to summarize important information and evaluate the role of different material features in the 3D printing manufacturing of an appropriate tracheobronchial medical device, which should be as appropriate as possible to facilitate placement during surgical practice. A complex stent design was fabricated using three different biodegradable materials, polycaprolactone (PCL), polydioxanone (PDO), and polymer blend of polylactic acid/polycaprolactone (PLA/PCL), through additive manufacturing, specifically fused filament fabrication (FFF)3D printing. Parameter optimization of the 3D printing process was required for each material to achieve an adequate geometric quality of the stent. Experimental analyses were conducted to characterize the mechanical properties of the printed stents. Flexural strength and radial compression resistance were evaluated, with particular emphasis on radial force due to its clinical relevance in preventing collapse after implantation in the trachea. The results provide valuable insights into how material selection could influence device behavior during placement to support surgical requirements. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

45 pages, 5840 KiB  
Review
Geopolymer Chemistry and Composition: A Comprehensive Review of Synthesis, Reaction Mechanisms, and Material Properties—Oriented with Sustainable Construction
by Sri Ganesh Kumar Mohan Kumar, John M. Kinuthia, Jonathan Oti and Blessing O. Adeleke
Materials 2025, 18(16), 3823; https://doi.org/10.3390/ma18163823 - 14 Aug 2025
Viewed by 123
Abstract
Geopolymers are an environmentally sustainable class of low-calcium alkali-activated materials (AAMs), distinct from high-calcium C–A–S–H gel systems. Synthesized from aluminosilicate-rich precursors such as fly ash, metakaolin, slag, waste glass, and coal gasification fly ash (CGFA), geopolymers offer a significantly lower carbon footprint, valorize [...] Read more.
Geopolymers are an environmentally sustainable class of low-calcium alkali-activated materials (AAMs), distinct from high-calcium C–A–S–H gel systems. Synthesized from aluminosilicate-rich precursors such as fly ash, metakaolin, slag, waste glass, and coal gasification fly ash (CGFA), geopolymers offer a significantly lower carbon footprint, valorize industrial by-products, and demonstrate superior durability in aggressive environments compared to Ordinary Portland Cement (OPC). Recent advances in thermodynamic modeling and phase chemistry, particularly in CaO–SiO2–Al2O3 systems, are improving precursor selection and mix design optimization, while Artificial Neural Network (ANN) and hybrid ML-thermodynamic approaches show promise for predictive performance assessment. This review critically evaluates geopolymer chemistry and composition, emphasizing precursor reactivity, Si/Al and other molar ratios, activator chemistry, curing regimes, and reaction mechanisms in relation to microstructure and performance. Comparative insights into alkali aluminosilicate (AAS) and aluminosilicate phosphate (ASP) systems, supported by SEM and XRD evidence, are discussed alongside durability challenges, including alkali–silica reaction (ASR) and shrinkage. Emerging applications ranging from advanced pavements and offshore scour protection to slow-release fertilizers and biomedical implants are reviewed within the framework of the United Nations Sustainable Development Goals (SDGs). Identified knowledge gaps include standardization of mix design, LCA-based evaluation of novel precursors, and variability management. Aligning geopolymer technology with circular economy principles, this review consolidates recent progress to guide sustainable construction, waste valorization, and infrastructure resilience. Full article
Show Figures

Figure 1

13 pages, 229 KiB  
Review
Rib Fractures and Surgical Stabilization: A Narrative Review of Contemporary Management and Outcomes
by Juan F. Figueroa and Susana Fortich
Trauma Care 2025, 5(3), 19; https://doi.org/10.3390/traumacare5030019 - 12 Aug 2025
Viewed by 264
Abstract
Background: Rib fractures are among the most common thoracic injuries following blunt trauma and are associated with significant morbidity, particularly in elderly and polytrauma populations. Historically managed non-operatively, recent advances have redefined the role of surgical stabilization of rib fractures (SSRF) in improving [...] Read more.
Background: Rib fractures are among the most common thoracic injuries following blunt trauma and are associated with significant morbidity, particularly in elderly and polytrauma populations. Historically managed non-operatively, recent advances have redefined the role of surgical stabilization of rib fractures (SSRF) in improving patient outcomes. The objective of this narrative review is to evaluate current evidence surrounding the management of rib fractures, with a focus on indications for SSRF, surgical techniques, special populations, and future directions in care. Methods: A narrative review of the literature was conducted, incorporating relevant randomized controlled trials, cohort studies, clinical guidelines, and expert consensus statements. Emphasis was placed on patient selection criteria, surgical strategies, multimodal analgesia, and emerging technologies. Results: SSRF has demonstrated benefits in short- and long-term outcomes, including improved pain control, reduced ventilator dependence, shorter ICU and hospital stays, and better functional recovery. These outcomes are most evident in patients with flail chest, severe displacement, or failure of conservative therapy. Minimally invasive techniques and 3D-printed implants represent promising innovations. Despite growing evidence, SSRF remains underutilized due to variability in institutional protocols and access to trained personnel. Conclusions: The management of rib fractures continues to evolve with increasing support for surgical intervention in select patients. Wider implementation of SSRF, guided by standardized protocols and advanced technologies, may improve outcomes and reduce complications in this high-risk trauma population. Full article
20 pages, 691 KiB  
Review
Alloy Selection and Manufacturing Technologies for Total Ankle Arthroplasty: A Narrative Review
by Kishen Mitra, Arun K. Movva, Michael O. Sohn, Joshua M. Tennyson, Grayson M. Talaski, Samuel B. Adams and Albert T. Anastasio
Materials 2025, 18(16), 3770; https://doi.org/10.3390/ma18163770 - 11 Aug 2025
Viewed by 261
Abstract
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but [...] Read more.
Total ankle arthroplasty (TAA) has evolved significantly through advances in alloy selection and manufacturing technologies. This narrative review examines the metallurgical foundations of contemporary TAA implants, analyzing primary alloy systems and their mechanical properties. Cobalt-chromium alloys provide superior mechanical strength and durability but present metal ion release concerns, while titanium alloys (Ti6Al4V) optimize biocompatibility with elastic modulus values (101–113 GPa) closer to bone, despite tribological limitations. Novel β-titanium formulations (Ti-35Nb-7Zr-5Ta, Ti10Mo6Zr4Sn3Nb) eliminate toxic aluminum and vanadium components while achieving lower elastic modulus values (50–85 GPa) that better match cortical bone properties. Manufacturing has transitioned from traditional methods (investment casting, forging, CNC machining) toward additive manufacturing technologies. Selective laser melting and electron beam melting enable patient-specific geometries, controlled porosity, and optimized microstructures, though challenges remain with residual stresses, surface finish requirements, and post-processing needs. Emerging biodegradable materials, composite structures, and hybrid implant designs represent promising future directions for addressing current material limitations. This review provides evidence-based insights for alloy selection and manufacturing approaches, emphasizing the critical role of materials engineering in TAA implant performance and clinical outcomes. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys (2nd Edition))
Show Figures

Figure 1

16 pages, 5536 KiB  
Article
Correlation Analysis of Suture Anchor Pull-Out Strength with Cortical Bone Thickness and Cancellous Bone Density on a Finite Element Model
by Jung Ho Kim, Jeon Jong Hyeok, Jae Hyun Woo and Sung Min Kim
Bioengineering 2025, 12(8), 863; https://doi.org/10.3390/bioengineering12080863 - 11 Aug 2025
Viewed by 192
Abstract
This study aimed to assess, using finite element analysis (FEA), the mechanical effects of cortical bone thickness and cancellous bone density on the pull-out strength of suture anchors. A PEEK anchor was modeled and embedded in synthetic bone blocks with cortical thicknesses ranging [...] Read more.
This study aimed to assess, using finite element analysis (FEA), the mechanical effects of cortical bone thickness and cancellous bone density on the pull-out strength of suture anchors. A PEEK anchor was modeled and embedded in synthetic bone blocks with cortical thicknesses ranging from 1 to 5 mm and cancellous densities of 10 PCF, 20 PCF, and 30 PCF. Axial tensile loading simulations were conducted for all combinations, and selected cases were validated through experimental pull-out tests using commercial synthetic bone, demonstrating agreement within ±6%. Both cortical thickness and cancellous density were found to enhance pull-out resistance, though the magnitude and pattern varied with density. At 10 PCF, pull-out strength increased linearly with cortical thickness. At 20 PCF, substantial gains were observed between 2 and 4 mm, followed by a plateau. At 30 PCF, most of the increase was confined between 2 and 3 mm, with minimal improvement thereafter. These findings suggest that fixation strategies should be adapted on the basis of bone quality and provide biomechanical insights to inform patient-specific implant design and surgical planning. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

23 pages, 8193 KiB  
Article
Optimization Study of Hengqin Island Cycling System Based on Habitat Theory
by Sijing Wang and Jianyi Zheng
Urban Sci. 2025, 9(8), 312; https://doi.org/10.3390/urbansci9080312 - 11 Aug 2025
Viewed by 232
Abstract
With the global trend of green travel and demand for improving the quality of slow-moving systems in coastal cities, the optimization of the cycling system is crucial for improving the quality of the human environment. Based on the theory of “human–environment interaction” in [...] Read more.
With the global trend of green travel and demand for improving the quality of slow-moving systems in coastal cities, the optimization of the cycling system is crucial for improving the quality of the human environment. Based on the theory of “human–environment interaction” in habitat studies, the 22.15 km cycling route around Hengqin Island was studied considering the dimensions of energy flow, information interaction, and spatial–temporal utilization through field surveys, meteorological data analysis, and behavioral observation. The results showed that climate and topography significantly affect cyclists’ energy consumption and cycling efficiency, especially in hot and humid conditions in summer, greatly affecting the cycling experience. Meanwhile, the lack of a physical marking system and the disconnection of information transmission lead to difficulties in route selection, and there are significant time and seasonal variations in cycling behavior. Accordingly, microclimate adjustment, cultural symbol implantation, and flexible facility layout strategies are proposed to enhance the environmental comfort and information interaction efficiency of the cycling system. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

16 pages, 1845 KiB  
Systematic Review
Leadless vs. Transvenous Pacemakers in Patients with End-Stage Renal Disease: A Systematic Review and Meta-Analysis
by Ștefan Bogdan, Mircea Ioan Alexandru Bistriceanu, Cosmin Gabriel Ursu, Andrei Constantin Anghel, Darie Ioan Andreescu, Alexandru Ababei, Silvia Deaconu and Alexandru Deaconu
Biomedicines 2025, 13(8), 1952; https://doi.org/10.3390/biomedicines13081952 - 9 Aug 2025
Viewed by 416
Abstract
Background: Patients with end-stage renal disease (ESRD) are at elevated risk for device-related complications following pacemaker implantation. Leadless pacemakers (LPMs) offer theoretical advantages over transvenous pacemakers (TVPs), but their safety and efficacy in this high-risk population remain unclear. Our aim was to [...] Read more.
Background: Patients with end-stage renal disease (ESRD) are at elevated risk for device-related complications following pacemaker implantation. Leadless pacemakers (LPMs) offer theoretical advantages over transvenous pacemakers (TVPs), but their safety and efficacy in this high-risk population remain unclear. Our aim was to compare clinical outcomes and complication profiles between leadless and transvenous pacemakers in patients with ESRD. Methods: We conducted a systematic review and meta-analysis according to PRISMA guidelines, including three retrospective studies comparing LPMs and TVPs in ESRD patients. The primary endpoint was overall complications post-implantation. Secondary outcomes included early mortality (within 30 days), access site complications, device-related events, thrombotic events, and respiratory complications. A random-effects model was used to pool odds ratios (ORs) and 95% confidence intervals (CIs). Results: Three studies comprising 10.075 ESRD patients were included. No significant difference was found in overall complications (OR 1.35, 95% CI 0.78–2.33, p = 0.14) or early mortality (OR 1.01, 95% CI 0.42–2.43, p = 0.97) between LPM and TVP groups. However, LPMs were associated with increased access site complications (OR 2.51, 95% CI 1.06–5.90, p = 0.04), thrombotic events (OR 1.42, 95% CI 1.14–1.78, p = 0.03), and respiratory complications (OR 1.43, 95% CI 1.01–2.03, p = 0.05). Device-related complication rates were similar (OR, 1.09; 95% CI, 0.63–1.88; p = 0.30). Heterogeneity was low across most outcomes. Conclusions: Among patients with ESRD, leadless pacemakers did not reduce overall complications or short-term mortality compared to transvenous systems and were associated with increased risk of certain procedural complications. These findings could support a personalized approach to device selection in ESRD and highlight the need for further prospective studies to guide clinical decision-making in this population. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

12 pages, 630 KiB  
Article
Ten-Year Clinical and Functional Outcomes of Anterograde Calcaneo-Stop Arthroereisis for Idiopathic Flexible Flatfoot in Children: A Single-Center Cohort Study
by Giovanni Trisolino, Marco Ramella, Valeria Pizzuti, Marco Todisco, Stefania Claudia Parisi, Tosca Cerasoli and Gino Rocca
Children 2025, 12(8), 1047; https://doi.org/10.3390/children12081047 - 9 Aug 2025
Viewed by 279
Abstract
Background: Idiopathic painful flexible flatfoot (FFF) in childhood can persist into adulthood, yet long-term data on subtalar arthroereisis via the calcaneo-stop (C-Stop) procedure are scarce. We aimed to evaluate clinical and functional outcomes at ≥10 years post-surgery and compare them with age-matched normative [...] Read more.
Background: Idiopathic painful flexible flatfoot (FFF) in childhood can persist into adulthood, yet long-term data on subtalar arthroereisis via the calcaneo-stop (C-Stop) procedure are scarce. We aimed to evaluate clinical and functional outcomes at ≥10 years post-surgery and compare them with age-matched normative values in healthy populations. Methods: We conducted a single-time-point long-term follow-up on a subset of 232 children (age 10–14 years) selected from a retrospective cohort of 494 patients who underwent bilateral anterograde C-Stop between 2010 and 2014. Inclusion required idiopathic symptomatic FFF refractory to conservative care and a minimum 10-year follow-up. At a mean follow-up of 12.1 ± 2.5 years, patients completed the Foot and Ankle Ability Measure (FAAM) and Tegner Activity Scale (TAS). Secondary data included anthropometrics, implant details, accessory procedures, screw removal, and complications. Results: Respondents demonstrated excellent function: FAAM total 98.8 ± 3.7 (range 75–100) with 87.5% achieving the ceiling score; FAAM–ADL 99.3 ± 3.2; FAAM–Sport 98.0 ± 6.4. The mean TAS was 3.7 ± 2.0, with 53% active in sports—72% low-impact, 12% high-impact non-competitive, and 4% competitive. Sex and history of complications produced statistically significant but clinically small differences (<3% on FAAM total; <6 points on subscales). No outcome differences were observed by age or BMI, accessory procedures, or screw removal status. Conclusions: Ten years after C-Stop arthroereisis in childhood, patients exhibit functional scores comparable to normative values, high rates of ceiling effect on FAAM, and a modest level of physical activity predominantly in low-impact sports. Full article
(This article belongs to the Section Pediatric Orthopedics & Sports Medicine)
Show Figures

Figure 1

17 pages, 1328 KiB  
Article
Developing a Classification of Spinal Medical Devices: Has the Time Come? Review of the Literature and a Proposal for Spine Registries
by Veronica Mari, Simona Pascucci, Andrea Piazzolla, Pedro Berjano, Michela Franzò, Letizia Sampaolo, Eugenio Carrani and Marina Torre
Bioengineering 2025, 12(8), 853; https://doi.org/10.3390/bioengineering12080853 - 8 Aug 2025
Viewed by 204
Abstract
Registries require standardized component libraries based on predefined taxonomies to ensure detailed and structured descriptions of implanted devices, enabling effective monitoring of implant safety. Considering the growing use of spinal implantable devices, we aimed to propose a comprehensive classification framework for spinal devices, [...] Read more.
Registries require standardized component libraries based on predefined taxonomies to ensure detailed and structured descriptions of implanted devices, enabling effective monitoring of implant safety. Considering the growing use of spinal implantable devices, we aimed to propose a comprehensive classification framework for spinal devices, to be integrated into the Italian Spine registry framework. The taxonomy was created using a detailed process that included reviewing existing literature, analyzing technical documents, selecting important device characteristics, obtaining feedback from manufacturers, and converting the information into a format suitable for IT systems. Our findings showed the lack of a globally accepted classification system. We identified four primary categories, further refined into subcategories, complemented by attributes for device identification, traceability, and characterization, then structured them using XSD schemas. Our proposal represents the first known attempt to implement a taxonomy for spinal implants, with the potential to serve as an international reference. A structured classification system would enhance registry interoperability, facilitate cross-registry comparability, and improve the early detection of adverse events, thereby strengthening patient safety and clinical outcomes. Furthermore, the adoption of a unified classification framework would improve surgeons’ clinical practice and support policymakers in developing early prevention strategies, ultimately improving patient care. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Figure 1

13 pages, 1248 KiB  
Systematic Review
The Natural History and Clinical Outcomes of Transmembrane Protein 43 Cardiomyopathy: A Systematic Review
by Annagrazia Cecere, Marika Martini, Maria Bueno Marinas, Ilaria Rigato, Alessandro Parodi, Kalliopi Pilichou and Barbara Bauce
J. Clin. Med. 2025, 14(16), 5611; https://doi.org/10.3390/jcm14165611 - 8 Aug 2025
Viewed by 197
Abstract
Background: Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder characterized by structural and functional myocardial alterations, often accompanied by ventricular arrhythmias (VAs), which may ultimately result in sudden cardiac death (SCD). While mutations in genes coding for desmosomal components are commonly identified in [...] Read more.
Background: Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disorder characterized by structural and functional myocardial alterations, often accompanied by ventricular arrhythmias (VAs), which may ultimately result in sudden cardiac death (SCD). While mutations in genes coding for desmosomal components are commonly identified in affected individuals, genetic variants involving non-desmosomal proteins have recently been recognized as contributors to the disease’s etiology. In 2008, a mutation in the transmembrane protein 43 (TMEM43) was identified as being responsible for a fully penetrant, sex-related, and severe form of ACM. This review aimed to systematically synthesize the current evidence on the natural history, electrocardiographic, and imaging findings as well as the clinical outcomes of TMEM43 cardiomyopathy. Methods: A systematic search was performed in the PubMed, Scopus, and Web of Science databases, following the PRISMA guidelines, using the terms “TMEM43” AND “cardiomyopathy”. After an initial screening of 144 retrieved articles, 80 were considered relevant. Upon a full-text review and eligibility assessment, 12 studies involving 903 individuals harboring TMEM43 variants were selected for inclusion. Results: Male patients more frequently carried the pathogenic TMEM43 variant (n = 505, 55.9%) and exhibited an earlier arrhythmic onset of the disease (33.2 years old versus 46.2 years old in female patients), supporting the need for earlier implantable cardioverter–defibrillator implantation (30.4 versus 42.2 years old). Palpitations, chest pain, and syncope were the most common presenting symptoms. Baseline electrocardiograms commonly demonstrated poor R wave progression, QRS prolongation, and premature ventricular contractions (PVCs). Arrhythmic events, including malignant VAs and SCD, were early manifestations of the disease, especially in male patients. Frequent PVCs and left ventricular dilation were considered early markers of the disease and were predictive of arrhythmic events. Conversely, heart failure was reported as a late clinical outcome, requiring heart transplantation in a minority of cases (1.5%). Conclusions:TMEM43 cardiomyopathy is a fully penetrant autosomal dominant form of ACM, characterized by a well-defined clinical phenotype that is more severe and presents earlier in male patients. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

16 pages, 824 KiB  
Article
ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study
by Daniele Portelli, Sabrina Loteta, Mariangela D’Angelo, Cosimo Galletti, Leonard Freni, Rocco Bruno, Francesco Ciodaro, Angela Alibrandi and Giuseppe Alberti
Audiol. Res. 2025, 15(4), 100; https://doi.org/10.3390/audiolres15040100 - 6 Aug 2025
Viewed by 340
Abstract
Background/Objectives: Artificial Intelligence (AI) is increasingly being applied in otolaryngology, including cochlear implants (CIs). This study evaluates the accuracy and completeness of ChatGPT-4 and Microsoft Copilot in determining the appropriate implantation side based on audiological and radiological data, as well as the [...] Read more.
Background/Objectives: Artificial Intelligence (AI) is increasingly being applied in otolaryngology, including cochlear implants (CIs). This study evaluates the accuracy and completeness of ChatGPT-4 and Microsoft Copilot in determining the appropriate implantation side based on audiological and radiological data, as well as the presence of tinnitus. Methods: Data from 22 CI patients (11 males, 11 females; 12 right-sided, 10 left-sided implants) were used to query both AI models. Each patient’s audiometric thresholds, hearing aid benefit, tinnitus presence, and radiological findings were provided. The AI-generated responses were compared to the clinician-chosen sides. Accuracy and completeness were scored by two independent reviewers. Results: ChatGPT had a 50% concordance rate for right-side implantation and a 70% concordance rate for left-side implantation, while Microsoft Copilot achieved 75% and 90%, respectively. Chi-square tests showed significant associations between AI-suggested and clinician-chosen sides for both AI (p < 0.05). ChatGPT outperformed Microsoft Copilot in identifying radiological alterations (60% vs. 40%) and tinnitus presence (77.8% vs. 66.7%). Cronbach’s alpha was >0.70 only for ChatGPT accuracy, indicating better agreement between reviewers. Conclusions: Both AI models showed significant alignment with clinician decisions. Microsoft Copilot was more accurate in implantation side selection, while ChatGPT better recognized radiological alterations and tinnitus. These results highlight AI’s potential as a clinical decision support tool in CI candidacy, although further research is needed to refine its application in complex cases. Full article
Show Figures

Figure 1

11 pages, 1461 KiB  
Article
Comparative Analysis of Orbital Morphology Accuracy in 3D Models Based on Cone-Beam and Fan-Beam Computed Tomography Scans for Reconstructive Planning
by Natalia Bielecka-Kowalska, Bartosz Bielecki-Kowalski and Marcin Kozakiewicz
J. Clin. Med. 2025, 14(15), 5541; https://doi.org/10.3390/jcm14155541 - 6 Aug 2025
Viewed by 254
Abstract
Background/Objectives: Orbital reconstruction remains one of the most demanding procedures in maxillofacial surgery. It requires not only precise anatomical knowledge but also poses multiple intraoperative challenges. Limited surgical visibility—especially in transconjunctival or transcaruncular approaches—demands exceptional precision from the surgeon. At the same time, [...] Read more.
Background/Objectives: Orbital reconstruction remains one of the most demanding procedures in maxillofacial surgery. It requires not only precise anatomical knowledge but also poses multiple intraoperative challenges. Limited surgical visibility—especially in transconjunctival or transcaruncular approaches—demands exceptional precision from the surgeon. At the same time, the complex anatomical structure of the orbit, its rich vascularization and innervation, and the risk of severe postoperative complications—such as diplopia, sensory deficits, impaired ocular mobility, or in the most serious cases, post-traumatic blindness due to nerve injury or orbital compartment syndrome—necessitate the highest level of surgical accuracy. In this context, patient-specific implants (PSIs), commonly fabricated from zirconium oxide or ultra-high-density polyethylene, have become invaluable. Within CAD-based reconstructive planning, especially for orbital implants, critical factors include the implant’s anatomical fit, passive stabilization on intact bony structures, and non-interference with orbital soft tissues. Above all, precise replication of the orbital dimensions is essential for optimal clinical outcomes. This study compares the morphological accuracy of orbital structures based on anthropometric measurements from 3D models generated from fan-beam computed tomography (FBCT) and cone-beam computed tomography (CBCT). Methods: A cohort group of 500 Caucasian patients aged 8 to 88 years was analyzed. 3D models of the orbits were generated from FBCT and CBCT scans. Anthropometric measurements were taken to evaluate the morphological accuracy of the orbital structures. The assessed parameters included orbital depth, orbital width, the distance from the infraorbital rim to the infraorbital foramen, the distance between the piriform aperture and the infraorbital foramen, and the distance from the zygomatico-orbital foramen to the infraorbital rim. Results: Statistically significant differences were observed between virtual models derived from FBCT and those based on CBCT in several key parameters. Discrepancies were particularly evident in measurements of orbital depth, orbital width, the distance from the infraorbital rim to the infraorbital foramen, the distance between the piriform aperture and the infraorbital foramen, and the distance from the zygomatico-orbital foramen to the infraorbital rim. Conclusions: The statistically significant discrepancies in selected orbital dimensions—particularly in regions of so-called thin bone—demonstrate that FBCT remains the gold standard in the planning and design of CAD/CAM patient-specific orbital implants. Despite its advantages, including greater accessibility and lower radiation dose, CBCT shows limited reliability in the context of orbital and infraorbital reconstruction planning. Full article
(This article belongs to the Special Issue State-of-the-Art Innovations in Oral and Maxillofacial Surgery)
Show Figures

Figure 1

13 pages, 1183 KiB  
Article
Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience
by Matjaž Bunc, Gregor Verček, Luka Vitez, Primož Holc, Klemen Steblovnik and Miha Šušteršič
Medicina 2025, 61(8), 1419; https://doi.org/10.3390/medicina61081419 - 6 Aug 2025
Viewed by 230
Abstract
Background and Objectives: Transcatheter heart valve (THV) selection is challenging as self-expanding valves (SEVs) are associated with lower post-procedural mean aortic gradients, while balloon-expandable valves (BEVs) have lower rates of paravalvular leak (PVL) and permanent pacemaker implantation (PPI). We aimed to compare [...] Read more.
Background and Objectives: Transcatheter heart valve (THV) selection is challenging as self-expanding valves (SEVs) are associated with lower post-procedural mean aortic gradients, while balloon-expandable valves (BEVs) have lower rates of paravalvular leak (PVL) and permanent pacemaker implantation (PPI). We aimed to compare the 30-day and 1-year outcomes following Myval BEV (Meril Life Sciences, Vapi, Gujarat, India) and intra-annular Portico SEV (Abbott, St. Paul, MN, USA) implantation. Materials and Methods: We retrospectively analyzed the data from the all-comer TAVI registry of the University Medical Centre Ljubljana, Slovenia, from October 2017 to August 2023. Safety and efficacy outcomes following Myval BEV and Portico SEV implantation were compared overall and after propensity score matching. Results: Of the total 1152 THVs implanted, 97 patients (8%) received a Myval BEV and 47 (4%) a Portico SEV. After propensity score matching, there were no significant differences between the two patient cohorts regarding 30-day (Myval 0.0% vs. Portico 2.9%, p = 1.000) and 1-year mortality (Myval 0.0% vs. Portico 5.9%, p = 0.492). Likewise, the rates of new PPI, device failure (mean aortic gradient and more than mild PVL), and periprocedural in-hospital complications were comparable between the two groups. Conclusions: In this retrospective analysis of two intra-annular THVs, the Myval BEV was associated with comparable short- and mid-term outcomes as the Portico SEV. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

13 pages, 1197 KiB  
Systematic Review
Catheter Ablation vs. Standard Implantable Cardioverter Defibrillator Therapy in Symptomatic Brugada Syndrome: A Systematic Review and Meta-Analysis of Controlled Studies
by Paschalis Karakasis, Panagiotis Theofilis, Konstantinos Pamporis, Antonios P. Antoniadis and Nikolaos Fragakis
Med. Sci. 2025, 13(3), 115; https://doi.org/10.3390/medsci13030115 - 6 Aug 2025
Viewed by 385
Abstract
Background: Catheter ablation of the arrhythmogenic substrate has emerged as a promising therapeutic strategy for symptomatic Brugada syndrome (BrS). However, high-quality comparative evidence against conventional implantable cardioverter-defibrillator (ICD)-based management remains limited. Objectives: This meta-analysis aimed to evaluate the efficacy of catheter [...] Read more.
Background: Catheter ablation of the arrhythmogenic substrate has emerged as a promising therapeutic strategy for symptomatic Brugada syndrome (BrS). However, high-quality comparative evidence against conventional implantable cardioverter-defibrillator (ICD)-based management remains limited. Objectives: This meta-analysis aimed to evaluate the efficacy of catheter ablation in reducing ventricular fibrillation (VF) recurrence in symptomatic BrS compared to standard therapy. Methods: Medline, Cochrane Library, and Scopus were systematically searched through 1 June 2025. Study selection, data extraction, and quality assessment were independently conducted by three reviewers. Random-effects meta-analyses were used to pool risk estimates. Results: Three studies (two randomized controlled trials, one observational cohort; 130 symptomatic BrS patients) were included. Over a median follow-up of 3.9 years, catheter ablation was associated with a significantly lower risk of VF recurrence compared to standard therapy [risk ratio (RR) = 0.19, 95% confidence interval (CI) = (0.06, 0.60); I2 = 36%, p for heterogeneity = 0.21], with no deaths reported in any group. A sensitivity analysis restricted to randomized trials confirmed similar findings in favor of ablation. Conclusions: Catheter ablation was associated with reduced VF recurrence compared to ICD therapy alone, supporting its potential role as first-line treatment in symptomatic BrS or as an alternative for patients who decline ICD implantation. Full article
Show Figures

Figure 1

Back to TopTop