ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Generative AI
2.3. Procedure
- -
- 65 dB HL at 125 Hz
- -
- 75 dB HL at 250 Hz
- -
- 90 dB HL at 500 Hz
- -
- 90 dB HL at 1000 Hz
- -
- 95 dB HL at 2000 Hz
- -
- 105 dB HL at 4000 Hz
- -
- 115 dB HL at 6000 Hz
- -
- 70 dB HL at 125 Hz
- -
- 80 dB HL at 250 Hz
- -
- 90 dB HL at 500 Hz
- -
- 95 dB HL at 1000 Hz
- -
- 95 dB HL at 2000 Hz
- -
- 85 dB HL at 4000 Hz
- -
- 90 dB HL at 6000 Hz
2.4. Statistical Analysis
- -
- Accuracy: rated from 1 to 6 to measure how precise the AI responses concerning the clinical data were;
- -
- Completeness: rated from 1 to 3 to determine whether the AI responses included all the required elements.
- -
- “Cochlear implant side” vs. “ChatGPT Side” and “Cochlear implant side” vs. “Microsoft Copilot Side”;
- -
- “Radiological Alterations” vs. “Radiological Alterations Considered by ChatGPT” and “Radiological Alterations” vs. “Radiological Alterations Considered by Microsoft Copilot”;
- -
- “Tinnitus” vs. “Tinnitus Presence ChatGPT” and “Tinnitus” vs. “Tinnitus Presence Microsoft Copilot.”
3. Results
4. Discussion
Study Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CI | Cochlear implant |
gAI | Generative artificial intelligence |
LLMs | Large Language Models |
FOX | Fitting to Outcomes eXpert |
ASSR | Auditory steady-state response |
References
- Arnoldner, C.; Lin, V.Y.W. Expanded Selection Criteria in Adult Cochlear Implantation. Cochlear Implant. Int. 2013, 14 (Suppl. S4), 10–13. [Google Scholar] [CrossRef]
- Leigh, J.R.; Dettman, S.J.; Dowell, R.C. Evidence-Based Guidelines for Recommending Cochlear Implantation for Young Children: Audiological Criteria and Optimizing Age at Implantation. Int. J. Audiol. 2016, 55 (Suppl. S2), S9–S18. [Google Scholar] [CrossRef]
- Ramos, Á.; Guerra-Jiménez, G.; Rodriguez, C.; Borkoski, S.; Falcón, J.C.; Perez, D. Cochlear Implants in Adults over 60: A Study of Communicative Benefits and the Impact on Quality of Life. Cochlear Implant. Int. 2013, 14, 241–245. [Google Scholar] [CrossRef]
- Sharma, S.D.; Cushing, S.L.; Papsin, B.C.; Gordon, K.A. Hearing and Speech Benefits of Cochlear Implantation in Children: A Review of the Literature. Int. J. Pediatr. Otorhinolaryngol. 2020, 133, 109984. [Google Scholar] [CrossRef]
- Warner-Czyz, A.D.; Roland, J.T.; Thomas, D.; Uhler, K.; Zombek, L. American Cochlear Implant Alliance Task Force Guidelines for Determining Cochlear Implant Candidacy in Children. Ear Hear. 2022, 43, 268–282. [Google Scholar] [CrossRef]
- Archbold, S.; Athalye, S.; Mulla, I.; Harrigan, S.; Wolters-Leermakers, N.; Isarin, J.; Knoors, H. Cochlear Implantation in Children with Complex Needs: The Perceptions of Professionals at Cochlear Implant Centres. Cochlear Implant. Int. 2015, 16, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Portelli, D.; Lombardo, C.; Loteta, S.; Galletti, C.; Azielli, C.; Ciodaro, F.; Mento, C.; Aguennouz, M.; Rosa, G.D.; Alibrandi, A.; et al. Exploring the Hearing Improvement and Parental Stress in Children with Hearing Loss Using Hearing Aids or Cochlear Implants. J. Clin. Med. 2024, 14, 2. [Google Scholar] [CrossRef]
- Bhattad, P.B.; Jain, V. Artificial Intelligence in Modern Medicine—The Evolving Necessity of the Present and Role in Transforming the Future of Medical Care. Cureus 2020, 12, e8041. [Google Scholar] [CrossRef]
- Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Zhu, L.; Mou, W.; Yuan, Z.; Cheng, Q.; Jiang, A.; Luo, P. Advancing Generative AI in Medicine: Recommendations for Standardized Evaluation. Int. J. Surg. 2024, 110, 4547–4551. [Google Scholar] [CrossRef]
- Baldassarre, A.; Padovan, M. Regulatory and Ethical Considerations on Artificial Intelligence for Occupational Medicine. Med. Lav. Work. Environ. Health 2024, 115, e2024013. [Google Scholar] [CrossRef] [PubMed]
- Shoja, M.M.; Van De Ridder, J.M.M.; Rajput, V. The Emerging Role of Generative Artificial Intelligence in Medical Education, Research, and Practice. Cureus 2023, 15, e40883. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Bubeck, S.; Petro, J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N. Engl. J. Med. 2023, 388, 1233–1239. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large Language Models in Medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- Kyong, J.-S.; Suh, M.-W.; Han, J.J.; Park, M.K.; Noh, T.S.; Oh, S.H.; Lee, J.H. Cross-Modal Cortical Activity in the Brain Can Predict Cochlear Implantation Outcome in Adults: A Machine Learning Study. J. Int. Adv. Otol. 2021, 17, 380–386. [Google Scholar] [CrossRef]
- Erfanian Saeedi, N.; Blamey, P.J.; Burkitt, A.N.; Grayden, D.B. Learning Pitch with STDP: A Computational Model of Place and Temporal Pitch Perception Using Spiking Neural Networks. PLoS Comput. Biol. 2016, 12, e1004860. [Google Scholar] [CrossRef]
- Skidmore, J.; Xu, L.; Chao, X.; Riggs, W.J.; Pellittieri, A.; Vaughan, C.; Ning, X.; Wang, R.; Luo, J.; He, S. Prediction of the Functional Status of the Cochlear Nerve in Individual Cochlear Implant Users Using Machine Learning and Electrophysiological Measures. Ear Hear. 2021, 42, 180–192. [Google Scholar] [CrossRef]
- Gao, X.; Grayden, D.; McDonnell, M. Unifying Information Theory and Machine Learning in a Model of Electrode Discrimination in Cochlear Implants. PLoS ONE 2021, 16, e0257568. [Google Scholar] [CrossRef]
- OpenAI. ChatGPT (GPT-4) Language Model. Available online: https://chatgpt.com/ (accessed on 31 January 2025).
- Gupta, B.; Mufti, T.; Sohail, S.S.; Madsen, D.Ø. ChatGPT: A Brief Narrative Review. Cogent Bus. Manag. 2023, 10, 2275851. [Google Scholar] [CrossRef]
- Microsoft. Microsoft Copilot: AI-Powered Productivity Tools. Microsoft Copilot. Available online: https://copilot.microsoft.com/ (accessed on 31 January 2025).
- Microsoft. Microsoft Copilot FAQ. Microsoft Copilot FAQ. Available online: https://www.microsoft.com/it-it/microsoft-copilot/for-individuals/?form=MG0AUO&OCID=MG0AUO#faqs (accessed on 31 January 2025).
- González Corbelle, J.; Bugarín-Diz, A.; Alonso-Moral, J.; Taboada, J. Dealing with Hallucination and Omission in Neural Natural Language Generation: A Use Case on Meteorology. In Proceedings of the 15th International Conference on Natural Language Generation, Waterville, ME, USA, 18–22 July 2022; pp. 121–130. [Google Scholar] [CrossRef]
- Quah, B.; Yong, C.W.; Lai, C.W.M.; Islam, I. Performance of Large Language Models in Oral and Maxillofacial Surgery Examinations. Int. J. Oral Maxillofac. Surg. 2024, 53, 881–886. [Google Scholar] [CrossRef]
- Demir, S. Evaluation of Responses to Questions About Keratoconus Using ChatGPT-4.0, Google Gemini and Microsoft Copilot: A Comparative Study of Large Language Models on Keratoconus. Eye Contact Lens Sci. Clin. Pract. 2025, 51, e107–e111. [Google Scholar] [CrossRef]
- Tepe, M.; Emekli, E. Assessing the Responses of Large Language Models (ChatGPT-4, Gemini, and Microsoft Copilot) to Frequently Asked Questions in Breast Imaging: A Study on Readability and Accuracy. Cureus 2024, 16, e59960. [Google Scholar] [CrossRef] [PubMed]
- Thor, M.; Iyer, A.; Jiang, J.; Apte, A.; Veeraraghavan, H.; Allgood, N.B.; Kouri, J.A.; Zhou, Y.; LoCastro, E.; Elguindi, S.; et al. Deep Learning Auto-Segmentation and Automated Treatment Planning for Trismus Risk Reduction in Head and Neck Cancer Radiotherapy. Phys. Imaging Radiat. Oncol. 2021, 19, 96–101. [Google Scholar] [CrossRef]
- Haider, S.P.; Mahajan, A.; Zeevi, T.; Baumeister, P.; Reichel, C.; Sharaf, K.; Forghani, R.; Kucukkaya, A.S.; Kann, B.H.; Judson, B.L.; et al. PET/CT Radiomics Signature of Human Papilloma Virus Association in Oropharyngeal Squamous Cell Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2978–2991. [Google Scholar] [CrossRef]
- Reiter, A.; Leonard, S.; Sinha, A.; Ishii, M.; Taylor, R.H.; Hager, G.D. Endoscopic-CT: Learning-Based Photometric Reconstruction for Endoscopic Sinus Surgery. Proc. SPIE Int. Soc. Opt. Eng. 2016, 9784, 978418. [Google Scholar] [CrossRef] [PubMed]
- Parsel, S.M.; Riley, C.A.; Todd, C.A.; Thomas, A.J.; McCoul, E.D. Differentiation of Clinical Patterns Associated with Rhinologic Disease. Am. J. Rhinol. Allergy 2021, 35, 179–186. [Google Scholar] [CrossRef]
- McKee, S.P.; Liang, X.; Yao, W.C.; Anderson, B.; Ahmad, J.G.; Allen, D.Z.; Hasan, S.; Chua, A.J.; Mokashi, C.; Islam, S.; et al. Predicting Sinonasal Inverted Papilloma Attachment Using Machine Learning: Current Lessons and Future Directions. Am. J. Otolaryngol. 2025, 46, 104549. [Google Scholar] [CrossRef] [PubMed]
- Abousetta, A.; El Kholy, W.; Hegazy, M.; Kolkaila, E.; Emara, A.; Serag, S.; Fathalla, A.; Ismail, O. A Scoring System for Cochlear Implant Candidate Selection Using Artificial Intelligence. Hear. Balance Commun. 2023, 21, 114–121. [Google Scholar] [CrossRef]
- Crowson, M.G.; Dixon, P.; Mahmood, R.; Lee, J.W.; Shipp, D.; Le, T.; Lin, V.; Chen, J.; Chan, T.C.Y. Predicting Postoperative Cochlear Implant Performance Using Supervised Machine Learning. Otol. Neurotol. 2020, 41, e1013–e1023. [Google Scholar] [CrossRef]
- Nemati, P.; Imani, M.; Farahmandghavi, F.; Mirzadeh, H.; Marzban-Rad, E.; Nasrabadi, A.M. Dexamethasone-Releasing Cochlear Implant Coatings: Application of Artificial Neural Networks for Modelling of Formulation Parameters and Drug Release Profile. J. Pharm. Pharmacol. 2013, 65, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, L.; Tan, S.; Tang, A. Application of UNETR for Automatic Cochlear Segmentation in Temporal Bone CTs. Auris Nasus Larynx 2023, 50, 212–217. [Google Scholar] [CrossRef]
- Zhang, D.; Noble, J.H.; Dawant, B.M. Automatic Detection of the Inner Ears in Head CT Images Using Deep Convolutional Neural Networks. Proc. SPIE—Int. Soc. Opt. Eng. 2018, 10574, 1057427. [Google Scholar] [CrossRef] [PubMed]
- Waltzman, S.B.; Kelsall, D.C. The Use of Artificial Intelligence to Program Cochlear Implants. Otol. Neurotol. 2020, 41, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Wathour, J.; Govaerts, P.J.; Lacroix, E.; Naïma, D. Effect of a CI Programming Fitting Tool with Artificial Intelligence in Experienced Cochlear Implant Patients. Otol. Neurotol. 2023, 44, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Salvago, P.; Vaccaro, D.; Plescia, F.; Vitale, R.; Cirrincione, L.; Evola, L.; Martines, F. Client Oriented Scale of Improvement in First-Time and Experienced Hearing Aid Users: An Analysis of Five Predetermined Predictability Categories through Audiometric and Speech Testing. J. Clin. Med. 2024, 13, 3956. [Google Scholar] [CrossRef]
- Portelli, D.; Ciodaro, F.; Loteta, S.; Alberti, G.; Bruno, R. Audiological Assessment with Matrix Sentence Test of Percutaneous vs Transcutaneous Bone-Anchored Hearing Aids: A Pilot Study. Eur. Arch. Otorhinolaryngol. 2023, 280, 4065–4072. [Google Scholar] [CrossRef]
- Alberti, G.; Portelli, D.; Loteta, S.; Galletti, C.; D’Angelo, M.; Ciodaro, F. Open-Fitting Hearing Aids: A Comparative Analysis between Open behind-the-Ear and Open Completely-in-the-Canal Instant-Fit Devices. Eur. Arch. Otorhinolaryngol. 2024, 281, 6009–6019. [Google Scholar] [CrossRef] [PubMed]
- Portelli, D.; Loteta, S.; Ciodaro, F.; Salvago, P.; Galletti, C.; Freni, L.; Alberti, G. Functional Outcomes for Speech-in-Noise Intelligibility of NAL-NL2 and DSL v.5 Prescriptive Fitting Rules in Hearing Aid Users. Eur. Arch. Otorhinolaryngol. 2024, 281, 3227–3235. [Google Scholar] [CrossRef]
KERRYPNX | Frequency | Percentile (%) |
---|---|---|
Sex | 22 | 100 |
Males | 11 | 50 |
Females | 11 | 50 |
Cochlear implant side | 22 | 100 |
Right | 12 | 54.5 |
Left | 10 | 45.5 |
Radiological abnormalities | 22 | 100 |
Yes | 10 | 45.5 |
No | 12 | 54.5 |
Tinnitus | 22 | 100 |
Yes | 9 | 40.9 |
No | 13 | 59.1 |
Min | Max | Mean | SD | |
---|---|---|---|---|
ChatGPT Accuracy Reviewer 1 | 2 | 6 | 4.77 | 1.478 |
Microsoft Copilot Accuracy Reviewer 1 | 4 | 6 | 5.27 | 0.985 |
ChatGPT Completeness Reviewer 1 | 1 | 3 | 2.27 | 0.883 |
Microsoft Copilot Completeness Reviewer 1 | 1 | 3 | 2.18 | 0.958 |
ChatGPT Accuracy Reviewer 2 | 2 | 6 | 4.82 | 1.468 |
Microsoft Copilot Accuracy Reviewer 2 | 2 | 6 | 5.41 | 1.008 |
ChatGPT Completeness Reviewer 2 | 1 | 3 | 2.45 | 0.596 |
Microsoft Copilot Completeness Reviewer 2 | 1 | 3 | 2.41 | 0.666 |
ChatGPT | ||||
Cochlear Implant Side | ||||
Right | Left | Total | ||
Chat GPT side | Right | 6 | 1 | 7 |
50.0% | 10.0% | 31.8% | ||
Left | 2 | 7 | 9 | |
16.7% | 70.0% | 41.0% | ||
Bilateral | 4 | 1 | 5 | |
33.3% | 10.0% | 22.7% | ||
No implant | 0 | 1 | 1 | |
0.0% | 10.0% | 4.5% | ||
Total | 12 | 10 | 22 | |
100.0% | 100.0% | 100.0% | ||
Pearson chi-square test | p-value | |||
0.029 * | ||||
Microsoft Copilot | ||||
Cochlear Implant Side | ||||
Right | Left | Total | ||
Microsoft Copilot side | Right | 9 | 0 | 9 |
75.0% | 0.0% | 40.9% | ||
Left | 0 | 9 | 9 | |
0.0% | 90.0% | 40.9% | ||
Bilateral | 3 | 1 | 4 | |
25.0% | 10.0% | 18.2% | ||
Total | 12 | 10 | 22 | |
100.0% | 100.0% | 100.0% | ||
Pearson chi-square test | p-value | |||
<0.001 * |
ChatGPT | ||||
Radiological Abnormalities | ||||
No | Yes | Total | ||
Radiological Alterations Considered by ChatGPT | No | 12 | 4 | 16 |
100.0% | 40.0% | 72.7% | ||
Yes | 0 | 6 | 6 | |
0.0% | 60.0% | 27.3% | ||
Total | 12 | 10 | 22 | |
100.0% | 100.0% | 100.0% | ||
Pearson chi-square test | p-value | |||
0.002 * | ||||
Microsoft Copilot | ||||
Radiological Abnormalities | ||||
No | Yes | Total | ||
Radiological Alterations Considered by Microsoft Copilot | No | 12 | 6 | 18 |
100.0% | 60.0% | 81.8% | ||
Yes | 0 | 4 | 4 | |
0.0% | 40.0% | 18.2% | ||
Total | 12 | 10 | 22 | |
100.0% | 100.0% | 100.0% | ||
Pearson chi-square test | p-value | |||
0.015 * |
ChatGPT | ||||
Tinnitus | ||||
No | Yes | Total | ||
Tinnitus presence ChatGPT | No | 13 | 2 | 15 |
100.0% | 22.2% | 68.2% | ||
Yes | 0 | 7 | 7 | |
0.0% | 77.8% | 31.8% | ||
Total | 13 | 9 | 22 | |
100.0% | 100.0% | 100.0% | ||
Pearson chi-square test | p-value | |||
<0.001 * | ||||
Microsoft Copilot | ||||
Tinnitus | ||||
No | Yes | Total | ||
Tinnitus presence Microsoft Copilot | No | 13 100.0% | 3 33.3% | 16 72.7% |
Yes | 0 0.0% | 6 66.7% | 6 27.3% | |
Total | 13 100.0% | 9 100.0% | 22 100.0% | |
Pearson chi-square test | p-value | |||
0.001 * |
Cronbach’s Alpha | |
---|---|
ChatGPT Accuracy | 0.710 * |
Microsoft Copilot Accuracy | 0.218 |
ChatGPT Completeness | 0.321 |
Microsoft Copilot Completeness | 0.381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portelli, D.; Loteta, S.; D’Angelo, M.; Galletti, C.; Freni, L.; Bruno, R.; Ciodaro, F.; Alibrandi, A.; Alberti, G. ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study. Audiol. Res. 2025, 15, 100. https://doi.org/10.3390/audiolres15040100
Portelli D, Loteta S, D’Angelo M, Galletti C, Freni L, Bruno R, Ciodaro F, Alibrandi A, Alberti G. ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study. Audiology Research. 2025; 15(4):100. https://doi.org/10.3390/audiolres15040100
Chicago/Turabian StylePortelli, Daniele, Sabrina Loteta, Mariangela D’Angelo, Cosimo Galletti, Leonard Freni, Rocco Bruno, Francesco Ciodaro, Angela Alibrandi, and Giuseppe Alberti. 2025. "ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study" Audiology Research 15, no. 4: 100. https://doi.org/10.3390/audiolres15040100
APA StylePortelli, D., Loteta, S., D’Angelo, M., Galletti, C., Freni, L., Bruno, R., Ciodaro, F., Alibrandi, A., & Alberti, G. (2025). ChatGPT and Microsoft Copilot for Cochlear Implant Side Selection: A Preliminary Study. Audiology Research, 15(4), 100. https://doi.org/10.3390/audiolres15040100