Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Included Patients
3.2. Baseline Characteristics
3.3. Procedural Characteristics
3.4. Primary Outcomes
3.5. Secondary Outcomes
3.6. Hemodynamic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71, Erratum in Circulation 2024, 150, e267. [Google Scholar]
- Abdel-Wahab, M.; Mehilli, J.; Frerker, C.; Neumann, F.J.; Kurz, T.; Tölg, R.; Zachow, D.; Guerra, E.; Massberg, S.; Schäfer, U.; et al. Comparison of balloon-expandable vs. self-expandable valves in patients undergoing transcatheter aortic valve replacement: The CHOICE randomized clinical trial. JAMA 2014, 311, 1503–1514. [Google Scholar] [CrossRef] [PubMed]
- Tamburino, C.; Bleiziffer, S.; Thiele, H.; Scholtz, S.; Hildick-Smith, D.; Cunnington, M.; Wolf, A.; Barbanti, M.; Tchetchè, D.; Garot, P.; et al. Comparison of Self-Expanding Bioprostheses for Transcatheter Aortic Valve Replacement in Patients With Symptomatic Severe Aortic Stenosis: SCOPE 2 Randomized Clinical Trial. Circulation 2020, 142, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Kurz, T.; Feistritzer, H.J.; Stachel, G.; Hartung, P.; Eitel, I.; Marquetand, C.; Nef, H.; Doerr, O.; Lauten, A.; et al. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: The randomized SOLVE-TAVI trial. Eur. Heart J. 2020, 41, 1890–1899. [Google Scholar] [CrossRef]
- Makkar, R.R.; Cheng, W.; Waksman, R.; Satler, L.F.; Chakravarty, T.; Groh, M.; Abernethy, W.; Russo, M.J.; Heimansohn, D.; Hermiller, J.; et al. Self-expanding intra-annular versus commercially available transcatheter heart valves in high and extreme risk patients with severe aortic stenosis (PORTICO IDE): A randomised, controlled, non-inferiority trial. Lancet 2020, 396, 669–683. [Google Scholar] [CrossRef]
- Baumbach, A.; van Royen, N.; Amat-Santos, I.J.; Hudec, M.; Bunc, M.; Ijsselmuiden, A.; Laanmets, P.; Unic, D.; Merkely, B.; Hermanides, R.S.; et al. LANDMARK comparison of early outcomes of newer-generation Myval transcatheter heart valve series with contemporary valves (Sapien and Evolut) in real-world individuals with severe symptomatic native aortic stenosis: A randomised non-inferiority trial. Lancet 2024, 403, 2695–2708. [Google Scholar] [CrossRef]
- Terkelsen, C.J.; Freeman, P.; Dahl, J.S.; Thim, T.; Nørgaard, B.L.; Mogensen, N.S.B.; Tang, M.; Eftekhari, A.; Povlsen, J.A.; Poulsen, S.H.; et al. SAPIEN 3 versus Myval transcatheter heart valves for transcatheter aortic valve implantation (COMPARE-TAVI 1): A multicentre, randomised, non-inferiority trial. Lancet 2025, 405, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Testa, L.; Criscione, E.; Popolo Rubbio, A.; Squillace, M.; Ielasi, A.; Tespili, M.; Brambilla, N.; Bedogni, F. Safety and performance parameters of the Myval transcatheter aortic valve bioprosthesis: The SAPPHIRE prospective registry. Cardiovasc. Revasc. Med. 2023, 55, 22–27. [Google Scholar] [CrossRef]
- Seth, A.; Kumar, V.; Singh, V.P.; Kumar, D.; Varma, P.; Rastogi, V. Myval: A Novel Transcatheter Heart Valve for the Treatment of Severe Aortic Stenosis. Interv. Cardiol. 2023, 18, e12. [Google Scholar] [CrossRef]
- Montonati, C.; Pellegrini, D.; d’Atri, D.O.; Pellicano, M.; Briguglia, D.; Giannini, F.; De Blasio, G.; Guagliumi, G.; Tespili, M.; Ielasi, A. A novel balloon-expandable transcatheter aortic valve bioprosthesis: Myval and Myval Octacor. Expert Rev. Cardiovasc. Ther. 2024, 22, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Rao, R.S.; Chandra, P.; Goel, P.K.; Bharadwaj, P.; Joseph, G.; Jose, J.; Mahajan, A.U.; Mehrotra, S.; Sengottovelu, G.; et al. First-in-human evaluation of a novel balloon-expandable transcatheter heart valve in patients with severe symptomatic native aortic stenosis: The MyVal-1 study. EuroIntervention 2020, 16, 421–429. [Google Scholar] [CrossRef]
- Kilic, T.; Ielasi, A.; Ninios, V.; Korkmaz, L.; Panagiotakos, D.; Yerlikaya, G.; Ozderya, A.; Montonati, C.; Tespili, M.; Coskun, S.; et al. Clinical outcomes of the Myval transcatheter heart valve system in patients with severe aortic valve stenosis: A two-year follow-up observational study. Arch. Med. Sci. 2024, 20, 410–419. [Google Scholar] [CrossRef]
- Barki, M.; Ielasi, A.; Buono, A.; Maliandi, G.; Pellicano, M.; Bande, M.; Casilli, F.; Messina, F.; Uccello, G.; Briguglia, D.; et al. Clinical Comparison of a Novel Balloon-Expandable Versus a Self-Expanding Transcatheter Heart Valve for the Treatment of Patients with Severe Aortic Valve Stenosis: The EVAL Registry. J. Clin. Med. 2022, 11, 959. [Google Scholar] [CrossRef]
- Halim, J.; Rooijakkers, M.; den Heijer, P.; El Haddad, M.; van den Branden, B.; Vos, J.; Schölzel, B.; Meuwissen, M.; van Gameren, M.; El Messaoudi, S.; et al. Assessing the Novel Myval Balloon-Expandable Valve with the Evolut Valve: A Propensity-Matched Study. J. Clin. Med. 2023, 12, 4213. [Google Scholar] [CrossRef]
- Ubben, T.; Tigges, E.; Kim, W.K.; Holzamer, A.; Breitenbach, I.; Sodian, R.; Rothe, J.; Hochholzer, W.; Hakmi, S.; Neumann, F.J. German Experience with a Novel Balloon-Expandable Heart Valve Prosthesis for Transcatheter Aortic Valve Implantation-Outcomes of the MYLAND (MYvaL germAN stuDy) Study. J. Clin. Med. 2024, 13, 3163. [Google Scholar] [CrossRef]
- Reardon, M.J.; Chehab, B.; Smith, D.; Walton, A.S.; Worthley, S.G.; Manoharan, G.; Sultan, I.; Yong, G.; Harrington, K.; Mahoney, P.; et al. 30-Day Clinical Outcomes of a Self-Expanding Transcatheter Aortic Valve: The International PORTICO NG Study. JACC Cardiovasc. Interv. 2023, 16, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Généreux, P.; Piazza, N.; Alu, M.C.; Nazif, T.; Hahn, R.T.; Pibarot, P.; Bax, J.J.; Leipsic, J.A.; Blanke, P.; Blackstone, E.H.; et al. Valve Academic Research Consortium 3: Updated endpoint definitions for aortic valve clinical research. Eur. Heart J. 2021, 42, 1825–1857. [Google Scholar] [CrossRef]
- Gorla, R.; De Marco, F.; Morganti, S.; Finotello, A.; Brambilla, N.; Testa, L.; Agnifili, M.L.; Tusa, M.; Auricchio, F.; Bedogni, F. Transcatheter aortic valve implantation with the Portico and Evolut R bioprostheses in patients with elliptic aortic annulus. EuroIntervention 2020, 15, e1588–e1591. [Google Scholar] [CrossRef] [PubMed]
- Hameau, R.; Ancona, M.B.; Romano, V.; Ferri, L.; Bellini, B.; Russo, F.; Vella, C.; Papageorgiu, C.; Napoli, F.; Licciardi, M.; et al. Management of TAVI Underexpansion with Self-Expanding Valves: A Practical Approach. J. Cardiovasc. Dev. Dis. 2025, 12, 215. [Google Scholar] [CrossRef]
- Kilic, T.; Coskun, S.; Mirzamidinov, D.; Yilmaz, I.; Yavuz, S.; Sahin, T. Myval Transcatheter Heart Valve: The Future of Transcatheter Valve Replacement and Significance in Current Timeline. J. Clin. Med. 2024, 13, 6857. [Google Scholar] [CrossRef]
- Matetic, A.; Kristić, I.; Crnčević, N.; Zanchi, J.; Domjanović Škopinić, T.; Baković Kramarić, D.; Runjić, F. Sex-specific anatomic differences in patients undergoing transcatheter aortic valve implantation: Insights from the ST-TAVI registry. Hell. J. Cardiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Schäfer, U.; Tchetche, D.; Nef, H.; Arnold, M.; Avanzas, P.; Rudolph, T.; Scholtz, S.; Barbanti, M.; Kempfert, J.; et al. Incidence and outcome of peri-procedural transcatheter heart valve embolization and migration: The TRAVEL registry (TranscatheteR HeArt Valve EmboLization and Migration). Eur. Heart J. 2019, 40, 3156–3165. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, S.; González-Manzanares, R.; Jiménez-Quevedo, P.; Piñón, P.; Asmarats, L.; Amat-Santos, I.; Fernández-Nofrerias, E.; Valle, R.D.; Muñoz-García, E.; Ferrer-Gracia, M.C.; et al. Coronary Obstruction After Transcatheter Aortic Valve Replacement: Insights From the Spanish TAVI Registry. JACC Cardiovasc. Interv. 2023, 16, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Fontana, G.P.; Bedogni, F.; Groh, M.; Smith, D.; Chehab, B.M.; Garrett, H.E.; Yong, G.; Worthley, S.; Manoharan, G.; Walton, A.; et al. Safety Profile of an Intra-Annular Self-Expanding Transcatheter Aortic Valve and Next-Generation Low-Profile Delivery System. JACC Cardiovasc. Interv. 2020, 13, 2467–2478. [Google Scholar] [CrossRef]
Baseline Characteristics | Overall Cohort | Matched Cohort | ||||
---|---|---|---|---|---|---|
Myval (n = 97) | Portico (n = 47) | p-Value | Myval (n = 34) | Portico (n = 34) | p-Value | |
Age (Years), Median (IQR) | 81.0 (77.5, 86.2) (n = 97) | 82.9 (79.8, 85.3) (n = 47) | 0.248 | 80.9 (75.6, 84.9) (n = 34) | 82.8 (79.7, 85.2) (n = 34) | 0.081 |
Sex, n (%) | n = 97 | n = 47 | n = 34 | n = 34 | ||
Male | 52 (53.6) | 16 (34.0) | 0.043 | 21 (61.8) | 15 (44.1) | 0.224 |
Female | 45 (46.4) | 31 (66.0) | 13 (38.2) | 19 (55.9) | ||
BMI (kg/m2), Median (IQR) | 28.0 (24.8, 31.8) (n = 97) | 27.7 (25.7, 31.9) (n = 45) | 0.393 | 26.5 (24.8, 29.3) (n = 34) | 27.9 (25.7, 31.7) (n = 34) | 0.112 |
Body surface area (m2), Median (IQR) | 1.8 (1.7, 2.1) (n = 97) | 1.8 (1.7, 2.0) (n = 45) | 0.322 | 1.8 (1.7, 2.0) (n = 34) | 1.85 (1.7, 1.98) (n = 34) | 1.000 |
Creatinine (µmol/L), Mean ± SD | 102.3 ± 68.6 (n = 97) | 96.5 ± 26.5 (n = 45) | 0.581 | 108.5 ± 50.9 (n = 34) | 98.3 ± 23.6 (n = 34) | 0.295 |
Indication, n (%) | n = 97 | n = 47 | n = 34 | n = 34 | ||
Stenosis | 96 (99.0) | 46 (97.9) | 0.548 | 33 (97.1) | 33 (97.1) | 1.000 |
Regurgitation | 1 (1.0) | 1 (2.1) | 1 (2.9) | 1 (2.9) | ||
Etiology, n (%) | n = 97 | n = 47 | n = 34 | n = 34 | ||
Degenerative | 91 (93.8) | 44 (93.6) | 1.000 | 32 (94.1) | 32 (94.1) | 1.000 |
Rheumatic | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Valve-in-Valve (ViV) | 6 (6.2) | 3 (6.4) | 2 (5.9) | 2 (5.9) | ||
EuroScore II, Median (IQR) | 3.8 (2.3, 6.3) (n = 96) | 3.3 (2.3, 5.0) (n = 41) | 0.597 | 4.9 (3.1, 8.5) (n = 33) | 3.2 (2.2, 4.6) (n = 34) | 0.044 |
STS score, Median (IQR) | 2.9 (2.1, 4.0) (n = 97) | 3.4 (2.9, 4.8) (n = 41) | 0.095 | 4.0 (2.7, 5.4) (n = 34) | 3.6 (2.6, 5.1) (n = 34) | 0.716 |
LVEF, (%), Mean ± SD | 58.2 ± 13.0 (n = 96) | 59.3 ± 10.7 (n = 39) | 0.623 | 51.7 ± 13.1 (n = 34) | 60.1 ± 10.0 (n = 34) | 0.005 |
Aortic mean gradient (mmHg), Mean ± SD | 45.1 ± 12.5 (n = 96) | 43.8 ± 10.7 (n = 41) | 0.542 | 43.7 ± 13.1 (n = 34) | 44.0 ± 11.4 (n = 34) | 0.929 |
Aortic valve area (cm2), Mean ± SD | 0.73 ± 0.19 (n = 95) | 0.72 ± 0.19 (n = 42) | 0.720 | 0.74 ± 0.25 (n = 32) | 0.74 ± 0.21 (n = 34) | 0.280 |
AV block I | 8 (8.3) | 6 (12.8) | 0.386 | 3 (8.8) | 4 (11.8) | 1.000 |
AV block II | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
RBBB | 8 (8.3) | 3 (6.4) | 1.000 | 2 (5.9) | 3 (8.8) | 1.000 |
LBBB | 10 (10.3) | 3 (6.4) | 0.547 | 8 (23.5) | 1 (2.9) | 0.027 |
Electrosystolic rhythm | 3 (3.1) | 5 (10.6) | 0.114 | 3 (8.8) | 4 (11.8) | 1.000 |
Atrial fibrillation—slow ventricular response | 22 (22.7) | 12 (25.5) | 0.866 | 8 (23.5) | 10 (29.4) | 0.783 |
Systolic pulmonary artery pressure (mm Hg), Median (IQR) | 38.0 (30.8, 44.3) (n = 60) | 38.5 (33.3, 48.0) (n = 30) | 0.566 | 42.0 (34.3, 51.3) (n = 18) | 38.0 (33.0, 48.0) (n = 29) | 0.615 |
Annular perimeter (mm), Median (IQR) | 78.0 (74.2, 83.4) (n = 91) | 76.2 (73.6, 81.8) (n = 45) | 0.122 | 78.4 (75.5, 85.3) (n = 31) | 76.50 (73.6, 82.4) (n = 33) | 0.094 |
Annular area (mm2), Median (IQR) | 451.5 (413.8, 524.5) (n = 92) | 439.5 (405.3, 487.3) (n = 46) | 0.070 | 465.0 (416.0, 534.0) (n = 31) | 439.5 (409.8, 504.5) (n = 34) | 0.095 |
NYHA class before, n (%) | n = 97 | n = 46 | n = 34 | n = 34 | ||
1 | 4 (4.1) | 0 (0.0) | 0.275 | 1 (2.9) | 0 (0.0) | 0.491 |
2 | 17 (17.5) | 12 (26.1) | 5 (14.7) | 9 (26.5) | ||
3 | 68 (70.1) | 28 (60.9) | 23 (67.7) | 22 (64.7) | ||
4 | 8 (8.3) | 6 (13.0) | 5 (14.7) | 3 (8.8) |
Outcomes, n (%) | Unmatched Cohort | Matched Cohort | ||||
---|---|---|---|---|---|---|
Myval (n = 97) | Portico (n = 47) | p-Value | Myval (n = 34) | Portico (n = 34) | p-Value | |
Primary outcomes | ||||||
1-year mortality | 5 (5.2) (n = 96) | 3 (7.0) (n = 43) | 0.703 | 0 (0.0) (n = 33) | 2 (5.9) (n = 34) | 0.492 |
30-day mortality | 2 (2.1) (n = 96) | 1 (2.2) (n = 46) | 1.000 | 0 (0.0) (n = 33) | 1 (2.9) (n = 34) | 1.000 |
Post-procedural death until hospital discharge | 2 (2.2) (n = 93) | 0 (0.0) (n = 41) | 1.000 | 0 (0.0) (n = 33) | 0 (0.0) (n = 30) | - |
Procedural death | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
Secondary outcomes | ||||||
Paravalvular regurgitation | n = 93 | n = 45 | - | n = 33 | n = 32 | - |
None/Trace | 70 (75.3) | 31 (68.9) | 0.175 | 25 (73.5) | 21 (65.6) | 0.373 |
Mild | 22 (23.7) | 11 (24.4) | 9 (26.5) | 9 (28.1) | ||
Moderate | 1 (1.1) | 3 (6.7) | 0 (0.0) | 2 (6.3) | ||
Severe | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
Pacemaker implantation after TAVI | 10 (10.5) (n = 95) | 5 (11.6) (n = 43) | 1.000 | 3 (9.1) (n = 33) | 5 (15.6) (n = 32) | 0.475 |
Complications | ||||||
Neurological complications | 3 (3.2) (n = 94) | 0 (0.0) (n = 44) | 0.551 | 1 (3.0) (n = 33) | 0 (0.0) (n = 33) | - |
Cardiac complications | 4 (4.2) (n = 95) | 4 (9.3) (n = 43) | 0.256 | 1 (3.0) (n = 33) | 3 (9.1) (n = 33) | 0.613 |
New pericardial effusion | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
Tamponade | 0 (0.0) | 1 (2.1) | 0.326 | 0 (0.0) | 1 (2.9) | 1.000 |
Annular rupture | 1 (1.0) | 0 (0.0) | 1.000 | 0 (0.0) | 0 (0.0) | - |
Valve embolization | 0 (0) | 1 (2.1) | 0.326 | 0 (0.0) | 0 (0.0) | - |
Improper valve position | 0 (0) | 2 (4.3) | 0.105 | 0 (0.0) | 2 (5.9) | 0.493 |
Conversion to heart surgery | 0 (0.0) | 1 (2.1) | 0.326 | 0 (0.0) | 0 (0.0) | - |
Peri-procedural MI (<72 h) | 3 (3.1) | 0 (0.0) | 0.551 | 1 (2.9) | 0 (0.0) | 1.000 |
Spontaneous MI (>72 h) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
Bleeding | 7 (7.4) | 3 (7.0) | 1.000 | 3 (9.1) | 3 (9.4) | 1.000 |
Minor bleeding | 5 (5.2) | 1 (2.1) | 0.664 | 2 (5.9) | 1 (2.9) | 1.000 |
Major bleeding | 1 (1.0) | 2 (4.3) | 0.248 | 1 (2.9) | 2 (5.9) | 1.000 |
Life-threatening bleeding | 1 (1.0) | 0 (0.0) | 1.000 | 0 (0.0) | 0 (0.0) | - |
Creatinine after (µmol/L), Median (IQR) | 60.5 (54.0, 68.0) (n = 92) | 62.0 (54.7, 71.0) (n = 43) | 0.806 | 87.5 (75.5, 110.8) (n = 34) | 90.0 (76.8, 111.5) (n = 32) | 0.908 |
Post-Procedure | ||||||
---|---|---|---|---|---|---|
Unmatched Cohort | Matched Cohort | |||||
Myval (n = 97) | Portico (n = 47) | p-Value | Myval (n = 34) | Portico (n = 34) | p-Value | |
Aortic Vmax (m/s), Mean ± SD | 2.1 ± 0.5 (n = 93) | 2.0 ± 0.4 (n = 41) | 0.062 | 1.9 ± 0.3 (n = 33) | 1.9 ± 0.4 (n = 32) | 1.000 |
Aortic mean gradient (mm Hg), Mean ± SD | 11.1 ± 5.2 (n = 93) | 8.5 ± 4.5 (n = 38) | 0.007 | 8.9 ± 2.5 (n = 33) | 8.1 ± 4.7 (n = 29) | 0.398 |
AVA (cm2), Mean ± SD | 1.8 ± 0.4 (n = 94) | 1.8 ± 0.5 (n = 44) | 0.517 | 1.9 ± 0.4 (n = 34) | 1.8 ± 0.5 (n = 32) | 0.372 |
LVEF (%), Mean ± SD | 59.9 ± 12.5 (n = 86) | 61.7 ± 11.2 (n = 40) | 0.412 | 54.1 ± 14.1 (n = 33) | 61.1 ± 11.4 (n = 31) | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunc, M.; Verček, G.; Vitez, L.; Holc, P.; Steblovnik, K.; Šušteršič, M. Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience. Medicina 2025, 61, 1419. https://doi.org/10.3390/medicina61081419
Bunc M, Verček G, Vitez L, Holc P, Steblovnik K, Šušteršič M. Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience. Medicina. 2025; 61(8):1419. https://doi.org/10.3390/medicina61081419
Chicago/Turabian StyleBunc, Matjaž, Gregor Verček, Luka Vitez, Primož Holc, Klemen Steblovnik, and Miha Šušteršič. 2025. "Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience" Medicina 61, no. 8: 1419. https://doi.org/10.3390/medicina61081419
APA StyleBunc, M., Verček, G., Vitez, L., Holc, P., Steblovnik, K., & Šušteršič, M. (2025). Head-to-Head Comparison of Meril Myval Series Balloon-Expandable and Abbott Portico Series Self-Expanding Transcatheter Aortic Valves—A Single-Center Experience. Medicina, 61(8), 1419. https://doi.org/10.3390/medicina61081419