Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (819)

Search Parameters:
Keywords = impermeability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 424
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

32 pages, 5087 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 127
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

27 pages, 7191 KiB  
Review
Advances in Nano-Reinforced Polymer-Modified Cement Composites: Synergy, Mechanisms, and Properties
by Yibo Gao, Jianlin Luo, Jie Zhang, Muhammad Asad Ejaz and Liguang Liu
Buildings 2025, 15(15), 2598; https://doi.org/10.3390/buildings15152598 - 23 Jul 2025
Viewed by 218
Abstract
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead [...] Read more.
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead to degradation in mechanical performances of polymer-modified cement-based composite (PMC). Nanomaterials provide unique advantages in enhancing the properties of PMC due to their characteristic ultrahigh specific surface area, quantum effects, and interface modulation capabilities. This review systematically examines recent advances in nano-reinforced PMC (NPMC), elucidating their synergistic optimization mechanisms. The synergistic effects of nanomaterials—nano-nucleation, pore-filling, and templating mechanisms—refine the microstructure, significantly enhancing the mechanical strength, impermeability, and erosion resistance of NPMC. Furthermore, nanomaterials establish interpenetrating network structures (A composite structure composed of polymer networks and other materials interwoven with each other) with polymer cured film (The film formed after the polymer loses water), enhancing load-transfer efficiency through physical and chemical action while optimizing dispersion and compatibility of nanomaterials and polymers. By systematically analyzing the synergy among nanomaterials, polymer, and cement matrix, this work provides valuable insights for advancing high-performance repair materials. Full article
Show Figures

Figure 1

22 pages, 5401 KiB  
Article
Evaluation of Integral and Surface Hydrophobic Modification on Permeation Resistance of Foam Concrete
by Liangbo Ying, Pengfei Yu, Fuping Wang and Ping Jiang
Coatings 2025, 15(7), 854; https://doi.org/10.3390/coatings15070854 - 20 Jul 2025
Viewed by 333
Abstract
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve [...] Read more.
To investigate the impermeability of foam concrete in various challenging environments, this study evaluates its water resistance by measuring the water contact angle and water absorption. Polyurethane (PU) was used to fabricate polyurethane foam concrete (PFC), enabling a monolithic hydrophobic modification to improve the permeation performance of foam concrete. The study also examines the effects of carbonation and freeze–thaw environments on the permeation resistance of PFC. Graphene oxide (GO), KH-550, and a composite hydrophobic coating (G/S) consisting of GO and KH-550 were employed to enhance the permeation resistance of PFC through surface hydrophobic modification. The functionality of the G/S composite hydrophobic coating was confirmed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). The results showed the following: (1) The water contact angle of PFC increased by 20.2° compared to that of ordinary foam concrete, indicating that PU-based hydrophobic modification can significantly improve its impermeability. (2) After carbonation, a micro–nano composite structure resembling the surface of a lotus leaf developed on the surface of PFC, further enhancing its impermeability. However, freeze–thaw cycles led to the formation and widening of microcracks in the PFC, which compromised its hydrophobic properties. (3) Surface hydrophobic modifications using GO, KH-550, and the G/S composite coating improved the anti-permeability properties of PFC, with the G/S composite showing the most significant enhancement. (4) GO filled the tiny voids and pores on the surface of the PFC, thereby improving its anti-permeability properties. KH-550 replaced water on the surface of PFC and encapsulated surface particles, orienting its R-groups outward to enhance hydrophobicity. The G/S composite emulsion coating formed a hydrophobic silane layer inside the concrete, which enhanced water resistance by blocking water penetration, reducing microscopic pores in the hydrophobic layer, and improving impermeability characteristics. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

18 pages, 5708 KiB  
Article
Monitoring the Permeability and Evaluating the Impact of Cleaning on Two Permeable Pavement Systems
by Oscar Perez, Lu-Ming Chen, Jui-Wen Chen, Timothy J. Lecher, Lane A. Simpson, Ting-Hao Chen and Paul C. Davidson
Water 2025, 17(14), 2140; https://doi.org/10.3390/w17142140 - 18 Jul 2025
Viewed by 327
Abstract
Permeable pavement is an alternative to conventional impermeable pavement for various applications. However, a common issue with permeable pavement is clogging over time. Permeability is a parameter that reflects the capacity of the pavement to reduce surface runoff; a decline in permeability implies [...] Read more.
Permeable pavement is an alternative to conventional impermeable pavement for various applications. However, a common issue with permeable pavement is clogging over time. Permeability is a parameter that reflects the capacity of the pavement to reduce surface runoff; a decline in permeability implies the occurrence of clogging. In this study, permeability data collected on pervious concrete (PC) and JW Eco-Technology (JW) revealed that JW maintained consistent permeability over time. However, PC displayed reduced values, and several locations along the edges had zero permeability, despite no regular vehicular and pedestrian use. Therefore, a portable pressure washer was used to clean the pavements. The cleaning procedure was able to recover the permeability of the areas that showed signs of clogging (0 to 2.69 cm/s) and restore the permeability of PC up to 4.60–5.58 cm/s for corner and center areas, respectively. Moreover, visual inspection using a borescope further revealed the full function of the JW pores (aqueducts), regardless of cleaning. Regardless, it is recommended that periodic cleaning maintenance be performed for both PC and JW using a pressure washer due to its convenience and efficacy, which will be discussed. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

16 pages, 4299 KiB  
Article
Gas Barrier Properties of Organoclay-Reinforced Polyamide 6 Nanocomposite Liners for Type IV Hydrogen Storage Vessels
by Dávid István Kis, Pál Hansághy, Attila Bata, Nándor Nemestóthy, Péter Gerse, Ferenc Tajti and Eszter Kókai
Nanomaterials 2025, 15(14), 1101; https://doi.org/10.3390/nano15141101 - 16 Jul 2025
Viewed by 278
Abstract
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their [...] Read more.
This study investigates the hydrogen permeability of injection-molded polyamide 6 (PA6) nanocomposites reinforced with organo-modified montmorillonite (OMMT) at varying concentrations (1, 2.5, 5, and 10 wt. %) for potential use as Type IV composite-overwrapped pressure vessel (COPV) liners. While previous work examined their mechanical properties, this study focuses on their crystallinity, morphology, and gas barrier performance. The precise inorganic content was determined using thermal gravimetry analysis (TGA), while differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and scanning electron microscopy (SEM) were used to characterize the structural and morphological changes induced by varying filler content. The results showed that generally higher OMMT concentrations promoted γ-phase formation but also led to increased agglomeration and reduced crystallinity. The PA6/OMMT-1 wt. % sample stood out with higher crystallinity, well-dispersed clay, and low hydrogen permeability. In contrast, the PA6/OMMT-2.5 and -5 wt. % samples showed increased permeability, which corresponded to WAXD and SEM evidence of agglomeration and DSC results indicating a lower degree of crystallinity. PA6/OMMT-10 wt. % showed the most-reduced hydrogen permeability compared to all other samples. This improvement, however, is attributed to a tortuous path effect created by the high filler loading rather than optimal crystallinity or dispersion. SEM images revealed significant OMMT agglomeration, and DSC analysis confirmed reduced crystallinity, indicating that despite the excellent barrier performance, the compromised microstructure may negatively impact mechanical reliability, showing PA6/OMMT-1 wt. % to be the most balanced candidate combining both mechanical integrity and hydrogen impermeability for Type IV COPV liners. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

26 pages, 7157 KiB  
Article
Urban Heat Islands and Land-Use Patterns in Zagreb: A Composite Analysis Using Remote Sensing and Spatial Statistics
by Dino Bečić and Mateo Gašparović
Land 2025, 14(7), 1470; https://doi.org/10.3390/land14071470 - 15 Jul 2025
Viewed by 826
Abstract
Urban heat islands (UHIs) present a growing environmental issue in swiftly urbanizing regions, where impermeable surfaces and a lack of vegetation increase local temperatures. This research analyzes the spatial distribution of urban heat islands in Zagreb, Croatia, utilizing remote sensing data, urban planning [...] Read more.
Urban heat islands (UHIs) present a growing environmental issue in swiftly urbanizing regions, where impermeable surfaces and a lack of vegetation increase local temperatures. This research analyzes the spatial distribution of urban heat islands in Zagreb, Croatia, utilizing remote sensing data, urban planning metrics, and spatial-statistical analysis. Composite rasters of land surface temperature (LST) and the Normalized Difference Vegetation Index (NDVI) were generated from four cloud-free Landsat 9 images obtained in the summer of 2024. The data were consolidated into regulatory planning units through zonal statistics, facilitating the evaluation of the impact of built-up density and designated green space on surface temperatures. A composite UHI index was developed by combining normalized land surface temperature (LST) and normalized difference vegetation index (NDVI) measurements, while spatial clustering was examined with Local Moran’s I and Getis-Ord Gi*. The results validate spatial patterns of heat intensity, with high temperatures centered in densely built residential areas. This research addresses the gap in past UHI studies by providing a reproducible approach for detecting thermal stress zones, linking satellite data with spatial planning variables. The results support the development of localized climate adaptation methods and highlight the importance of integrating green infrastructure into urban planning methodologies. Full article
(This article belongs to the Special Issue Urban Land Use Change and Its Spatial Planning)
Show Figures

Figure 1

22 pages, 6497 KiB  
Article
Experimental Study and Application of TPO Waterproofing Membrane Lapping Process Parameters
by Keyong Wang, Zhenhua Zang, Jie Li, Zhenyue Shi, Mingcai Liu, Zhipeng Li, Qingbiao Wang, Yandong Shang, Chenglin Tian, Zifan Jia and Hui Wang
Materials 2025, 18(14), 3313; https://doi.org/10.3390/ma18143313 - 14 Jul 2025
Viewed by 278
Abstract
Taking the TPO waterproofing membrane as an example, this paper studies the influence of temperature, speed and welding pressure on the welding quality of a TPO waterproofing membrane lap area through a peel test and a water impermeability test, determines the optimal construction [...] Read more.
Taking the TPO waterproofing membrane as an example, this paper studies the influence of temperature, speed and welding pressure on the welding quality of a TPO waterproofing membrane lap area through a peel test and a water impermeability test, determines the optimal construction process, and observes and compares the permeable path through laser confocal microscope. Finally, it is applied to the actual effect test in the project. The results show that the welding pressure test tool for the lap area of the waterproofing membrane is designed to meet the welding work test requirements of various lap areas of the waterproofing membrane. The peel strength increases first and then decreases with the increase in welding temperature, and the optimal construction temperature is 400 °C. The optimal construction speed is 4 m/min; at 400 °C welding temperature, the peel strength increases first and then decreases slightly with the increase in welding pressure. The optimal construction pressure is 14.97 N; under the condition of 0.2 MPa, 30 min to 0.6 MPa, 120 min, the water impermeability test of the overlapping area was qualified. In this paper, the optimal construction technology of a TPO waterproofing membrane is determined, which provides guidance for its application and promotion in engineering. Full article
Show Figures

Figure 1

25 pages, 1049 KiB  
Review
The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
by Anna Kwarciak-Kozłowska and Magdalena Madeła
Water 2025, 17(14), 2089; https://doi.org/10.3390/w17142089 - 13 Jul 2025
Viewed by 684
Abstract
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable [...] Read more.
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable surfaces contains a variety of plastic particles originating from tire abrasion or waste disposal. This article presents an overview of current research on the occurrence of MPs in stormwater. The potential of selected green infrastructure solutions—particularly bioretention systems, constructed wetlands, and permeable pavements—for their reduction is assessed. Individual solutions present how the change in filter material, selection of vegetation, or the method of conducting the process (e.g., direction of stormwater flow in constructed wetlands) affects their effectiveness. The potential of green infrastructure is also compared with the traditional gray solution of sewage management in cities. This article emphasizes the importance of integrating such solutions in spatial planning as an effective tool to combat climate change and limit the spread of microplastics in the environment. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

24 pages, 3171 KiB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 383
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 3034 KiB  
Article
Numerical Simulation of Impermeability of Composite Geomembrane in Rigid Landfills
by Ming Huang, Teng Tu, Yueling Jing and Fan Yang
Modelling 2025, 6(3), 65; https://doi.org/10.3390/modelling6030065 - 10 Jul 2025
Viewed by 248
Abstract
To investigate the impermeability characteristics of composite geomembranes in rigid landfills, a three-dimensional finite element seepage analysis model, which incorporates a composite geomembrane, was established based on a case study of a rigid landfill project in Tongling. Utilizing the seepage mechanism of the [...] Read more.
To investigate the impermeability characteristics of composite geomembranes in rigid landfills, a three-dimensional finite element seepage analysis model, which incorporates a composite geomembrane, was established based on a case study of a rigid landfill project in Tongling. Utilizing the seepage mechanism of the composite geomembrane, the seepage distribution patterns of the hazardous waste leachate within the unit cell were computed under representative operating conditions. Different thickness amplification factor schemes for the equivalent treatment of the composite geomembrane were comparatively analyzed, considering both isotropic and anisotropic seepage conditions. The relationships between the seepage flow rate, velocity, and thickness amplification factor were determined. The results showed that the leachate experiences a rapid drop in the water head as it passes through the composite geomembrane, with a low seepage flow rate and velocity, highlighting the membrane’s significant impermeability effect. The finite element analysis indicated that thickness amplification of the composite geomembrane based on the flow equivalence is feasible to some degree, but treating the geomembrane as an anisotropic material during the equivalent process better approximates the actual conditions. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Graphical abstract

22 pages, 4251 KiB  
Article
Application of Curtain Grouting for Seepage Control in the Dongzhuang Dam: A 3D Fracture Network Modeling Approach
by Ning Xia, Wen Nie, Zhenjia Yang, Yang Wu and Tuo Li
Buildings 2025, 15(14), 2415; https://doi.org/10.3390/buildings15142415 - 10 Jul 2025
Viewed by 288
Abstract
This study presents a 3D fracture network modeling approach for designing curtain grouting systems in building foundations, utilizing geological mapping data from the Dongzhuang Project. A one-dimensional Markov chain model is applied to simulate the transitions in fracture density, while fracture orientation and [...] Read more.
This study presents a 3D fracture network modeling approach for designing curtain grouting systems in building foundations, utilizing geological mapping data from the Dongzhuang Project. A one-dimensional Markov chain model is applied to simulate the transitions in fracture density, while fracture orientation and size are characterized using Fisher and statistical distribution models. To enhance the prediction accuracy, a correction method is introduced to refine the transition matrices. The model’s reliability is validated using tunnel wall fracture data and borehole detection, demonstrating strong agreement in both trend and magnitude. In under 100,000 simulations, when the allowable absolute error is set to 1, the optimal accuracy can reach 80%. Reliability analysis confirms the robustness of the approach, with 99.91% of predictions within a ± 2 error margin. The final fracture network model effectively captures spatial heterogeneity and fracture penetration across various foundation layers; the spatial distribution density index of fractures can provide a reference basis for optimizing the layout of impermeable curtains in complex geological conditions. This integrated modeling approach offers a reliable tool for improving grouting strategies in building foundation projects and other civil infrastructure. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Article
The Physiological and Biochemical Mechanisms Bioprimed by Spermosphere Microorganisms on Ormosia henryi Seeds
by Meng Ge, Xiaoli Wei, Yongming Fan, Yan Wu, Mei Fan and Xueqing Tian
Microorganisms 2025, 13(7), 1598; https://doi.org/10.3390/microorganisms13071598 - 7 Jul 2025
Viewed by 333
Abstract
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto [...] Read more.
The hard-seed coat of Ormosia henryi significantly impedes germination efficiency in massive propagation, while conventional physical dormancy-breaking methods often result in compromised seed vigor, asynchronous seedling emergence, and diminished stress tolerance. Seed biopriming, an innovative technique involving the inoculation of beneficial microorganisms onto seed surfaces or into germination substrates, enhances germination kinetics and emergence uniformity through microbial metabolic functions and synergistic interactions with seed exudates. Notably, spermosphere-derived functional bacteria isolated from native spermosphere soil demonstrate superior colonization capacity and sustained bioactivity. This investigation employed selective inoculation of these indigenous functional strains to systematically analyze dynamic changes in endogenous phytohormones, enzymatic activities, and storage substances during critical germination phases, thereby elucidating the physiological mechanisms underlying biopriming-enhanced germination. The experimental results demonstrated significant improvements in germination parameters through biopriming. Inoculation with the Bacillus sp. strain achieved a peak germination rate (76.19%), representing a 16.19% increase over the control (p < 0.05). The biopriming treatment effectively improved the seed vigor, broke the impermeability of the seed coat, accelerated the germination speed, and positively regulated physiological indicators, especially amylase activity and the ratio of gibberellic acid to abscisic acid. This study establishes a theoretical framework for microbial chemotaxis and rhizocompetence in seed priming applications while providing an eco-technological solution for overcoming germination constraints in O. henryi cultivation. The optimized biopriming protocol addresses both low germination rates and post-germination growth limitations, providing technical support for the seedling cultivation of O. henryi. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

37 pages, 888 KiB  
Review
A Review of the Effects of Nanomaterials on the Properties of Concrete
by Qi Yang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Buildings 2025, 15(13), 2363; https://doi.org/10.3390/buildings15132363 - 5 Jul 2025
Viewed by 550
Abstract
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on [...] Read more.
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on concrete performance. It provides a detailed explanation of the characteristics of three common nanomaterials: nano-silica, nano-calcium carbonate, and carbon nanotubes. This study analyzes how these materials improve the microstructure, accelerate hydration reactions, and enhance interfacial transition zones, thereby enhancing the mechanical properties, durability, and workability of concrete. For conventional engineering projects, nano-calcium carbonate is the preferred choice owing to its low cost and its capacity to improve workability and early-age strength. For high-strength and durable structures, nano-silica is selected due to its high specific surface area (ranging from 100 to 800 m2/g) and its superior compactness and impermeability. In the context of intelligent buildings, carbon nanotubes are the most suitable option because of their exceptional thermal conductivity and electrical conductivity (with axial thermal conductivity reaching 2000–6000 W/m*K and electrical conductivity ranging from 103 to 106 S/cm). However, it should be noted that carbon nanotubes are the most expensive among the three materials. Additionally, this study discusses the issues and challenges currently faced by the application of nanomaterials in concrete and looks ahead to future research directions, aiming to provide a reference for further research and engineering applications of nanomaterials in the field of concrete. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Building Materials)
Show Figures

Figure 1

14 pages, 2172 KiB  
Article
Engineering Properties and Microscopic Mechanisms of Permeable and Flexible Polymer-Improved Sand
by Yang Zeng, Yongli Xie and Jiaxiang Liu
Polymers 2025, 17(13), 1856; https://doi.org/10.3390/polym17131856 - 2 Jul 2025
Viewed by 288
Abstract
Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, [...] Read more.
Grouting is an effective method for enhancing the stability of poor strata such as sand layers. The performance of the grouting materials directly influences the effect of stratum reinforcement. To meet the urgent demand for efficient grouting materials, this study selected a high-permeability, flexible polymer (PFP) as the grouting material. The influences of the PFP content, curing time, and dry density on the mechanical and impermeable properties of PFP-improved sand were systematically analyzed via unconfined compressive tests, split tensile tests, and variable head permeability tests. Moreover, the section morphology and pore characteristics of the PFP-improved sand were qualitatively described and quantitatively analyzed by scanning electron microscopy (SEM) and image processing software. The results indicated that the mechanical properties and impermeability of the test sand were significantly improved by adding the PFP, and the improvement effect continued to increase with increasing PFP content, curing time, and dry density. The compressive strength and splitting tensile strength of PFP30 (PFP content of 30%, curing time of 28 d, dry density of 1.5 g/cm3) reached 8.3 MPa and 1.4 MPa, respectively. The permeability coefficient reduced to 5.41 × 10−6 cm/s. The microscopic results revealed that the PFP effectively cemented the isolated sand particles through bridging, filling, and encapsulation as well as substantially filled the internal pores of the test sand. The percentage of the pore area, the total number of pores, and the maximum pore diameter of the test sand were significantly reduced. The pore area percentage, the total number of pores, and the maximum pore diameter of PFP30 were reduced to 0.124, 30, and 213.84 μm, respectively. This study reveals that PFP has potential for application in the grouting construction of poor strata, such as sand layers. Full article
(This article belongs to the Special Issue Polymers Reinforced Civil Engineering Materials and Components)
Show Figures

Figure 1

Back to TopTop