Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (205)

Search Parameters:
Keywords = impedance tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1209 KiB  
Article
Sustainable Membrane-Based Acoustic Metamaterials Using Cork and Honeycomb Structures: Experimental and Numerical Characterization
by Giuseppe Ciaburro and Virginia Puyana-Romero
Buildings 2025, 15(15), 2763; https://doi.org/10.3390/buildings15152763 - 5 Aug 2025
Abstract
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with [...] Read more.
This work presents the experimental and numerical investigation of a novel acoustic metamaterial based on sustainable and biodegradable components: cork membranes and honeycomb cores made from treated aramid paper. The design exploits the principle of localized resonance induced by tensioned membranes coupled with subwavelength cavities, aiming to achieve high sound absorption at low (250–500 Hz) and mid frequencies (500–1400 Hz) with minimal thickness and environmental impact. Three configurations were analyzed, varying the number of membranes (one, two, and three) while keeping a constant core structure composed of three stacked honeycomb layers. Acoustic performance was measured using an impedance tube (Kundt’s tube), focusing on the normal-incidence sound absorption coefficient in the frequency range of 250–1400 Hz. The results demonstrate that increasing the number of membranes introduces multiple resonances and broadens the effective absorption bandwidth. Numerical simulations were performed to predict pressure field distributions. The numerical model showed good agreement with the experimental data, validating the underlying physical model of coupled mass–spring resonators. The proposed metamaterial offers a low-cost, modular, and fully recyclable solution for indoor sound control, combining acoustic performance and environmental sustainability. These findings offer promising perspectives for the application of bio-based metamaterials in architecture and eco-design. Further developments will address durability, high-frequency absorption, and integration in hybrid soundproofing systems. Full article
Show Figures

Figure 1

13 pages, 2055 KiB  
Article
Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation
by Jing Wang, Yumeng Sun, Yongfu Wang, Ying Li and Xiaojiao Gu
Materials 2025, 18(15), 3616; https://doi.org/10.3390/ma18153616 - 31 Jul 2025
Viewed by 224
Abstract
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, [...] Read more.
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, enabling outstanding sound-insulation performance within a deep-subwavelength thickness. Finite-element and transfer-matrix analyses show that increasing the fractal order from one to three raises the number of bandgaps from three to five and expands total stop-band coverage from 17% to over 40% within a deep-subwavelength thickness. Four-microphone impedance-tube measurements on the third-order sample validate a peak transmission loss of 75 dB at 495 Hz, in excellent agreement with simulations. Compared to conventional zigzag and Hilbert-maze designs, this curve fractal architecture delivers enhanced low-frequency broadband insulation, structural lightweighting, and ease of fabrication, making it a promising solution for noise control in machine rooms, ducting systems, and traffic environments. The method proposed in this paper can be applied to noise reduction of transmission parts for ceramic automation production. Full article
Show Figures

Figure 1

24 pages, 7707 KiB  
Article
Improving Building Acoustics with Coir Fiber Composites: Towards Sustainable Construction Systems
by Luis Bravo-Moncayo, Virginia Puyana-Romero, Miguel Chávez and Giuseppe Ciaburro
Sustainability 2025, 17(14), 6306; https://doi.org/10.3390/su17146306 - 9 Jul 2025
Viewed by 481
Abstract
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its [...] Read more.
Studies underscore the significance of coir fibers as a sustainable building material. Based on these insights, this research aims to evaluate coir fiber composite panels of various thicknesses as eco-friendly sound absorbing alternatives to synthetic construction materials like rockwool and fiberglass, aligning its use with the United Nations Sustainable Development Goals. Acoustic absorption was quantified with an impedance tube, and subsequent simulations compared the performance of coir composite panels with that of conventional materials, which constitutes an underexplored evaluation. Using 10 receiver points, the simulations reproduced the acoustic conditions of a multipurpose auditorium before and after the coir covering of parts of the rear and posterior walls. The results indicate that when coir coverings account for approximately 10% of the auditorium surface, reverberation times at 250, 500, 2000, and 4000 Hz are reduced by roughly 1 s. Furthermore, the outcomes reveal that early reflections occur more rapidly in the coir-enhanced model, while the values of the early decay time parameter decrease across all receiver points. Although the original configuration had poor speech clarity, the modified model achieved optimal values at all the measurement locations. These findings underscore the potential of coir fiber panels in enhancing acoustic performance while fostering sustainable construction practices. Full article
(This article belongs to the Special Issue Sustainable Architecture: Energy Efficiency in Buildings)
Show Figures

Figure 1

22 pages, 5786 KiB  
Review
Narrative and Pictorial Review on State-of-the-Art Endovascular Treatment for Focal Non-Infected Lesions of the Abdominal Aorta: Anatomical Challenges, Technical Solutions, and Clinical Outcomes
by Mario D’Oria, Marta Ascione, Paolo Spath, Gabriele Piffaretti, Enrico Gallitto, Wassim Mansour, Antonino Maria Logiacco, Giovanni Badalamenti, Antonio Cappiello, Giulia Moretti, Luca Di Marzo, Gianluca Faggioli, Mauro Gargiulo and Sandro Lepidi
J. Clin. Med. 2025, 14(13), 4798; https://doi.org/10.3390/jcm14134798 - 7 Jul 2025
Viewed by 495
Abstract
The natural history of focal non-infected lesions of the abdominal aorta (fl-AA) remains unclear and largely depends on their aetiology. These lesions often involve a focal “tear” or partial disruption of the arterial wall. Penetrating aortic ulcers (PAUs) and intramural hematomas (IMHs) are [...] Read more.
The natural history of focal non-infected lesions of the abdominal aorta (fl-AA) remains unclear and largely depends on their aetiology. These lesions often involve a focal “tear” or partial disruption of the arterial wall. Penetrating aortic ulcers (PAUs) and intramural hematomas (IMHs) are examples of focal tears in the aortic wall that can either progress to dilatation (saccular aneurysm) or fail to fully propagate through the medial layers, potentially leading to aortic dissection. These conditions typically exhibit a morphology consistent with eccentric saccular aneurysms. The management of focal non-infected pathologies of the abdominal aorta remains a subject of debate. Unlike fusiform abdominal aortic aneurysms, the inconsistent definitions and limited information regarding the natural history of saccular aneurysms (sa-AAAs) have prevented the establishment of universally accepted practice guidelines for their management. As emphasized in the latest 2024 ESVS guidelines, the focal nature of these diseases makes them ideal candidates for endovascular repair (class of evidence IIa—level C). Moreover, the Society for Vascular Surgery just referred to aneurysm diameter as an indication for treatment suggesting using a smaller diameter compared to fusiform aneurysms. Consequently, the management of saccular aneurysms is likely heterogeneous amongst different centres and different operators. Endovascular repair using tube stent grafts offers benefits like reduced recovery times but carries risks of migration and endoleak due to graft rigidity. These complications can influence long-term success. In this context, the use of endovascular bifurcated grafts may provide a more effective solution for treating these focal aortic pathologies. It is essential to achieve optimal sealing regions through anatomical studies of aortic morphology. Additionally, understanding the anatomical characteristics of focal lesions in challenging necks or para-visceral locations is indeed crucial in device choice. Off-the-shelf devices are favoured for their time and cost efficiency, but new endovascular technologies like fenestrated endovascular aneurysm repair (FEVAR) and custom-made devices enhance treatment success and patient safety. These innovations provide stent grafts in various lengths and diameters, accommodating different aortic anatomies and reducing the risk of type III endoleaks. Although complicated PAUs and focal saccular aneurysms rarely arise in the para-visceral aorta, the consequences of rupture in this segment might be extremely severe. Experience borrowed from complex abdominal and thoracoabdominal aneurysm repair demonstrates that fenestrated and branched devices can be deployed safely when anatomical criteria are respected. Elective patients derive the greatest benefit from a fenestrated graft, while urgent cases can be treated confidently with off-the-shelf multibranch systems, reserving other types of repairs for emergent or bail-out cases. While early outcomes of these interventions are promising, it is crucial to acknowledge that limited aortic coverage can still impede effective symptom relief and lead to complications such as aneurysm expansion or rupture. Therefore, further long-term studies are essential to consolidate the technical results and evaluate the durability of various graft options. Full article
(This article belongs to the Special Issue Clinical Advances in Aortic Disease and Revascularization)
Show Figures

Figure 1

16 pages, 2702 KiB  
Article
Cytological Observation of Distant Hybridization Barrier and Preliminary Investigation of Hybrid Offspring in Tea Plants
by Xiaoli Mo, Yihao Wang, Yahui Huang, Zhen Zeng and Changyu Yan
Plants 2025, 14(13), 2061; https://doi.org/10.3390/plants14132061 - 5 Jul 2025
Viewed by 408
Abstract
The undertaking of distant hybridization holds paramount significance for the innovation of tea germplasm resources and the cultivation of superior, specialized tea varieties. However, challenges manifest during the process of tea plant distant hybridization breeding, with reproductive barriers impeding the successful acquisition of [...] Read more.
The undertaking of distant hybridization holds paramount significance for the innovation of tea germplasm resources and the cultivation of superior, specialized tea varieties. However, challenges manifest during the process of tea plant distant hybridization breeding, with reproductive barriers impeding the successful acquisition of hybrid progeny; the precise stages at which these barriers occur remain unclear. In this study, utilizing Camellia sinensis cv. Jinxuan as the maternal parent, as well as C. gymnogyna Chang and C. sinensis cv. Yinghong No.9 as the paternal parents, interspecific distant hybridization (DH) and intraspecific hybridization (IH) were conducted. The investigation involved the observation of pollen germination and pollen tube behavior on the stigma, the scrutiny of the developmental dynamics of the ovary post-hybridization, and the examination of the stages and reasons for reproductive disorders during tea tree distant hybridization. The findings indicate that both IH and DH exhibit pre-fertilization barriers. The pre-embryonic development of hybrids obtained from DH is normal, but there is a significant fruit drop during the stage of fruit development. The germination rate of mature seeds obtained from DH is low, and there are pronounced post-fertilization disorders, which are the primary reasons for the difficulty in achieving successful tea plant distant hybridization. An analysis of the genetic variation in phenotypes and chemical components in the progeny after distant hybridization revealed widespread variation and rich genetic diversity. The identification of progeny with a high amino acid and caffeine content holds promise for future production and breeding, providing valuable theoretical references for the selection of parents in the creation of low-caffeine-content tea germplasm resources. Full article
Show Figures

Figure 1

30 pages, 3586 KiB  
Article
Acoustic Analysis of Soundproofing Materials Using Recycled Rubber from Automobiles
by Miroslav Badida, Miriam Andrejiova, Miriama Pinosova and Marek Moravec
Materials 2025, 18(13), 3144; https://doi.org/10.3390/ma18133144 - 2 Jul 2025
Viewed by 298
Abstract
This article provides a comprehensive analysis of the acoustic properties of recycled rubber crumb, examined in two forms—loose granular and compacted specimens. The aim was to compare their acoustic properties depending on the size of the fraction, the thickness of the sample, and [...] Read more.
This article provides a comprehensive analysis of the acoustic properties of recycled rubber crumb, examined in two forms—loose granular and compacted specimens. The aim was to compare their acoustic properties depending on the size of the fraction, the thickness of the sample, and the degree of compaction, with measurements performed using a model BSWA SW433 impedance tube in the frequency band 100–2500 Hz. Experimental samples of recycled rubber crumb were prepared with various thicknesses (2, 4.5, and 7 cm) and of various fractions (0–4 mm), and the granular samples were compacted under a pressure of 250–750 kPa. The results showed that the highest transmission loss (TL) is achieved by fine fractions at higher pressure and with greater sample thickness; Fraction 1 (below 1 mm) at a pressure of 750 kPa and a thickness of 7 cm had the best acoustic properties. Through regression analysis, mathematical models of the dependence of transmission loss on the monitored parameters for all types of samples (granular/compacted) were created. The regression analysis confirmed that the thickness, pressure, and size of the fraction significantly affect the acoustic properties of the material. Recycled rubber crumb therefore represents an efficient and environmentally sustainable alternative to traditional insulation materials, and optimizing its parameters enables a wide range of practical acoustic applications in construction, transport infrastructure, and manufacturing industries. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

22 pages, 13052 KiB  
Article
Influence of the Fill Value Parameters on Acoustic and Physical–Mechanical Performance of 3D-Printed Panels
by Mihai Alin Pop, Mihaela Coșniță, Sebastian-Marian Zaharia, Lucia Antoaneta Chicoș, Cătălin Croitoru, Ionuț Claudiu Roată and Dorin Cătană
Polymers 2025, 17(13), 1806; https://doi.org/10.3390/polym17131806 - 28 Jun 2025
Viewed by 377
Abstract
This study investigates the acoustic and mechanical performance of three types of 3D-printed polylactic acid (PLA) panels with varying infill densities (5–100%) and structural configurations. Using fused filament fabrication (FFF), panels were designed as follows: Type 1 (core infill only), Type 2 (core [...] Read more.
This study investigates the acoustic and mechanical performance of three types of 3D-printed polylactic acid (PLA) panels with varying infill densities (5–100%) and structural configurations. Using fused filament fabrication (FFF), panels were designed as follows: Type 1 (core infill only), Type 2 (core infill + 1.6 mm shell), and Type 3 (core infill + multi-layer shells). Acoustic testing via impedance tube revealed that Type 2 panels with a 65% infill density achieved the highest sound absorption coefficient (α = 0.99), while Type 1 panels exhibited superior sound transmission loss (TLn = 53.3 dB at 60% infill). Mechanical testing demonstrated that shell layers improved tensile and bending resistance by 25.7% and 36.9%, respectively, but reduced compressive strength by 23.6%. Microscopic analysis highlighted ductile failure in Type 2 and brittle fracture in Type 3. The optimal panel thickness for acoustic performance was identified as 4 mm, balancing material efficiency and sound absorption. These findings underscore the potential of tailored infill parameters in sustainable noise-control applications. Full article
Show Figures

Figure 1

14 pages, 5518 KiB  
Article
Experimental and Theoretical Acoustic Performance of Esparto Grass Fibers
by Rubén Maderuelo-Sanz and Juan Miguel Meneses-Rodríguez
Acoustics 2025, 7(2), 32; https://doi.org/10.3390/acoustics7020032 - 25 May 2025
Viewed by 1047
Abstract
Nowadays, natural fiber-based materials are widely used in the building sector, where the use of green and sustainable products is of growing interest. One of these fibrous materials is the esparto, a plant belonging to the Gramineae family, with a height up to [...] Read more.
Nowadays, natural fiber-based materials are widely used in the building sector, where the use of green and sustainable products is of growing interest. One of these fibrous materials is the esparto, a plant belonging to the Gramineae family, with a height up to 1 m. It grows in arid places with scarce rainfall, being common in some areas of the Iberian Peninsula. Due to its morphology, it can be used to replace conventional materials used in soundproofing and building applications. In this work, the acoustic properties of esparto fibers are studied using impedance tube measurements and via a phenomenological acoustic model where the input parameters are some non-acoustic properties such as porosity, density, tortuosity, and flow resistivity. The experimental results obtained showed the good acoustic performance of esparto fibers, with a high sound absorption coefficient along the usual frequency bandwidth. Furthermore, the theoretical results obtained using the phenomenological model exhibited a strong correlation with the sound absorption spectra obtained through experimental measurements. Full article
Show Figures

Figure 1

20 pages, 3567 KiB  
Article
Methodology for Testing Acoustic Absorption of Lightweight Fabrics with 3D Microstructures Using Impedance Tube
by David Caballol, Mónica Morales-Segura and Alejandro Morgado
Acoustics 2025, 7(2), 31; https://doi.org/10.3390/acoustics7020031 - 23 May 2025
Viewed by 597
Abstract
In this study, the limits of using the impedance tube, or Kundt tube, are examined using the two-microphone method to obtain the normal acoustic absorption coefficient when analyzing the sound absorption properties of lightweight acoustic fabrics. Lightweight porous fabrics with 3D microstructures that [...] Read more.
In this study, the limits of using the impedance tube, or Kundt tube, are examined using the two-microphone method to obtain the normal acoustic absorption coefficient when analyzing the sound absorption properties of lightweight acoustic fabrics. Lightweight porous fabrics with 3D microstructures that have been previously evaluated in reverberation chambers are used. For these materials, a test methodology will be developed in the impedance tube that aims to replicate the conditions of the tests carried out in the reverberation chamber. The samples are tested maintaining the same separation from the final rigid wall and are placed in the impedance tube in two different ways: first, exposing the flat samples to the wave, and second, in pleated format. The results show that it is not possible to consider the results obtained with both methodologies in samples of light textiles with three-dimensional microstructures to be the same. The similarity is limited to low frequencies (100–315 Hz) but bias, excessive dispersion of the data, different global results and shape indicators obtained suggest that both methods are not identical. Full article
Show Figures

Figure 1

19 pages, 6754 KiB  
Article
New Challenges in Assessment of the Acoustic Properties of Coating Polymers
by Mariana Domnica Stanciu, Maria Violeta Guiman and Silviu Marian Năstac
Polymers 2025, 17(10), 1418; https://doi.org/10.3390/polym17101418 - 21 May 2025
Cited by 1 | Viewed by 411
Abstract
The study presented in this paper investigates the influence of coating polymers on the acoustic properties of resonant spruce wood. It evaluates absorption, acoustic reflection, and resonance frequency spectrum characteristics in both unvarnished and varnished samples, with the interface between the coating polymer [...] Read more.
The study presented in this paper investigates the influence of coating polymers on the acoustic properties of resonant spruce wood. It evaluates absorption, acoustic reflection, and resonance frequency spectrum characteristics in both unvarnished and varnished samples, with the interface between the coating polymer and the wood modifying the acoustic response. The novelty of the research consists in evaluating the acoustic and dynamic parameters of resonant spruce wood boards, varnished with varnishes with different chemical properties (oil-based varnish, spirit varnish, nitrocellulose varnish). The study focuses on the influence of the type of varnish and the thickness of the varnish film on the frequency spectrum, damping coefficient, quality factor, acoustic absorption coefficient, and sound reflection. The sound absorption coefficient increases with the number of varnish layers and is influenced by the sound’s frequency range, the type of varnish, and the quality of the wood—factors that collectively enhance acoustic performance. For instance, oil-based varnish applied in 5 or 10 layers contributes to a fuller sound at a frequency of 1.5 kHz. In contrast, spirit varnish, which has a lower acoustic absorption coefficient at this frequency, and a reduced damping coefficient, can lead to a nasal tone, although the frequency spectrum turns out to have the richest. Applying more than 10 layers of varnish softens the sound when using oil-based varnish but sharpens it with spirit varnish on resonant wood. Thus, the acoustic performance of a soundboard can be tailored by selecting the appropriate varnishing system and number of layers applied. However, a detailed analysis of the timbre of musical instruments finished with these varnishes is necessary to confirm their influence on the acoustic quality of the instruments. Full article
(This article belongs to the Special Issue Advances in Wood and Wood Polymer Composites)
Show Figures

Figure 1

15 pages, 3341 KiB  
Article
Digitally Controlled Piezoelectric Metamaterial for Low-Frequency and High-Efficiency Sound Absorption
by Xiaodong Zhang, Jing Nie, Jinhong He, Fengbin Lin and Yang Liu
Materials 2025, 18(9), 2102; https://doi.org/10.3390/ma18092102 - 3 May 2025
Cited by 1 | Viewed by 598
Abstract
This study proposes a membrane-type metamaterial with digitally controlled piezoelectric actuation for low-frequency sound absorption applications. The hybrid structure integrates an aluminum membrane functionally bonded with programmable piezoelectric patches (PZTs) and a sealed air cavity. Two innovative control strategies—Resistance Enhancement and Resonance Enhancement—dynamically [...] Read more.
This study proposes a membrane-type metamaterial with digitally controlled piezoelectric actuation for low-frequency sound absorption applications. The hybrid structure integrates an aluminum membrane functionally bonded with programmable piezoelectric patches (PZTs) and a sealed air cavity. Two innovative control strategies—Resistance Enhancement and Resonance Enhancement—dynamically adjust circuit impedance to maximize electromechanical energy conversion efficiency, thereby optimizing absorption at targeted frequencies. These strategies are implemented via a real-time digital feedback system. A coupled piezoelectric-structural-acoustic model is established to characterize the system’s transfer function, with validation through both finite element simulations and impedance tube experiments. Numerical and experimental results demonstrate nearly complete absorption around the resonant frequency, and the bandwidth can be further broadened through multi-resonance superposition. Theoretical analysis confirms that the active control strategies simultaneously modulate the acoustic impedance components (resistance and reactance), thereby optimizing electromechanical energy conversion efficiency. This work establishes a novel active-control methodology for low-frequency and high-efficiency noise mitigation. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

15 pages, 9956 KiB  
Article
Improvement of Sound-Absorbing Dips in Nonwoven Fabric Sheet with Back Air Space: Division of Back Air Space by Additional Nonwoven Fabric Sheet
by Shuichi Sakamoto, Kodai Sato, Gaku Muroi, Yusuke Nakao, Kaito Kuboki and Nobuhito Taguchi
Acoustics 2025, 7(2), 25; https://doi.org/10.3390/acoustics7020025 - 30 Apr 2025
Viewed by 1011
Abstract
This study was conducted to improve the sound absorption dips in nonwoven fabric sheets with a back air space. Considering the particle velocity distribution in the back air space, another nonwoven sheet was added to divide the air space into layers. The sound [...] Read more.
This study was conducted to improve the sound absorption dips in nonwoven fabric sheets with a back air space. Considering the particle velocity distribution in the back air space, another nonwoven sheet was added to divide the air space into layers. The sound absorption coefficient of the sound-absorbing structure was theoretically derived using the transfer matrix method. The nonwoven sheet model with the Rayleigh model and the air space behind the nonwoven sheet were mathematically represented using the transfer matrix. The transfer function method was employed to combine the transfer matrices to obtain the sound absorption coefficient. A two-microphone acoustic impedance tube was used to measure the sound absorption coefficient, and the theoretical and experimental values were compared. The sound absorption dip of the first order was improved by placing a nonwoven sheet at a position half the thickness of the back air space. It was theoretically predicted that placing the nonwoven sheet at 1/4 of the back air space thickness from the rigid wall would improve the first- and second-order sound absorption dips. By selecting the conditions, a similar trend was observed during the experiments. The study shows that the higher the ventilation resistance of the added nonwoven fabric sheet, the more improved the sound absorption dip. Full article
Show Figures

Figure 1

13 pages, 5193 KiB  
Article
Deep-Subwavelength Composite Metamaterial Unit for Concurrent Ventilation and Broadband Acoustic Insulation
by Xiaodong Zhang, Jinhong He, Jing Nie, Yang Liu, Huiyong Yu, Qi Chen and Jianxing Yang
Materials 2025, 18(9), 2029; https://doi.org/10.3390/ma18092029 - 29 Apr 2025
Viewed by 570
Abstract
Balancing ventilation and broadband sound insulation remains a significant challenge in noise control engineering, particularly when simultaneous airflow and broadband noise reduction are required. Conventional porous absorbers and membrane-type metamaterials remain fundamentally constrained by ventilation-blocking configurations or narrow operational bandwidths. This study presents [...] Read more.
Balancing ventilation and broadband sound insulation remains a significant challenge in noise control engineering, particularly when simultaneous airflow and broadband noise reduction are required. Conventional porous absorbers and membrane-type metamaterials remain fundamentally constrained by ventilation-blocking configurations or narrow operational bandwidths. This study presents a ventilated composite metamaterial unit (VCMU) co-integrating optimized labyrinth channels and the Helmholtz resonators within a single-plane architecture. This design achieves exceptional ventilation efficiency through a central flow channel while maintaining sub-λ/30 thickness (λ/31 at 860 Hz). Coupled transfer matrix modeling and finite-element simulations reveal that Fano–Helmholtz resonance mechanisms synergistically generate broadband transmission loss (STL) spanning 860–1634 Hz, with six STL peaks in the 860 and 1634 Hz bands (mean 18.4 dB). Experimental validation via impedance tube testing confirmed excellent agreement with theoretical and simulation results. The geometric scalability allows customizable acoustic bandgaps through parametric control. This work provides a promising solution for integrated ventilation and noise reduction, with potential applications in building ventilation systems, industrial pipelines, and other noise-sensitive environments. Full article
Show Figures

Graphical abstract

13 pages, 9188 KiB  
Article
Sound Absorption of Hydroponically Grown Plants
by Gino Iannace, Antonella Bevilacqua, Amelia Trematerra and Giovanni Amadasi
Acoustics 2025, 7(2), 24; https://doi.org/10.3390/acoustics7020024 - 23 Apr 2025
Viewed by 1188
Abstract
Hydroponics is a method of growing plants without soil and serves as an efficient agricultural production system. Compared to traditional farming, hydroponic crops offer significant water savings while also reducing the need for chemical pesticides by eliminating soil-borne diseases and pests. Additionally, hydroponic [...] Read more.
Hydroponics is a method of growing plants without soil and serves as an efficient agricultural production system. Compared to traditional farming, hydroponic crops offer significant water savings while also reducing the need for chemical pesticides by eliminating soil-borne diseases and pests. Additionally, hydroponic materials are being studied as a potential food source for space missions and as a substitute for industrially produced animal feed during winter. This paper explores the acoustic absorption properties of green materials derived from hydroponic systems. The roots of wheat grown in a porous layer formed a rigid skeleton structure. After drying, test specimens were prepared for acoustic measurements, undertaken using an impedance tube, to assess the material’s sound absorption performance. The results indicate optimal absorption around 600 Hz and 2000 Hz, reaching α = 0.95–1.0, which is significant. A brief description of the substrate layers is also provided. Full article
Show Figures

Figure 1

14 pages, 3882 KiB  
Article
Acoustic Losses in Cryogenic Hydrogen at Transitions Between Tubes of Different Diameters
by Kian Conroy and Konstantin I. Matveev
Hydrogen 2025, 6(2), 25; https://doi.org/10.3390/hydrogen6020025 - 14 Apr 2025
Viewed by 785
Abstract
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions [...] Read more.
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities. Full article
Show Figures

Figure 1

Back to TopTop