Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = immunosuppression gut microbiota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1914 KiB  
Article
Effects of Superground Pfaffia glomerata Leaves on Growth Performance and Immune Function in New Zealand Rabbits
by Yan-Jun Chen, Guang-Zhou Lv, Asim Muhammad, Xin-Yu Zheng, Jia-Hong Xie and Jin-Jun Chen
Animals 2025, 15(16), 2452; https://doi.org/10.3390/ani15162452 - 21 Aug 2025
Viewed by 99
Abstract
The rabbit industry urgently needs natural alternatives to maintain gut health. This need is growing due to the higher incidence of intestinal problems in antibiotic-free production systems. Pfaffia glomerata (Brazilian ginseng) is a medicinal plant rich in bioactive compounds. This study evaluated the [...] Read more.
The rabbit industry urgently needs natural alternatives to maintain gut health. This need is growing due to the higher incidence of intestinal problems in antibiotic-free production systems. Pfaffia glomerata (Brazilian ginseng) is a medicinal plant rich in bioactive compounds. This study evaluated the effects of dietary inclusion of P. glomerata leaf powder on growth performance, immune function, and gut microbiota in New Zealand rabbits. A total of 100 New Zealand rabbits (35 days old) were randomly assigned to five groups (n = 20 each). The groups comprised a blank control group (CON), an immunosuppressed group (CTX), and three treatment groups receiving low (L), medium (M), and high (H) doses of P. glomerata leaf powder at 0.5%, 1%, and 2% of the basal diet, respectively. Growth performance was assessed by average daily gain (ADG). Intestinal morphology was evaluated by measuring villus height and crypt depth in the duodenum, jejunum, and ileum. Immune parameters included thymus and spleen weight, serum immunoglobulin levels, and leukocyte counts. Cecal microbiota diversity and composition were analyzed. Compared to CON, Pfaffia supplementation improved growth performance: the L and H groups had significantly higher ADG and a lower feed conversion ratio (p < 0.05). In intestinal histology, groups L and M had reduced crypt depth in the duodenum (p < 0.05), and group L had an increased villus height to crypt depth ratio. In the jejunum and ileum, groups L and H exhibited increased villus height and villus height to crypt depth ratio (p < 0.05), indicating an enhanced absorptive surface. In the immunosuppressed model, rabbits in all Pfaffia groups showed significantly increased thymus and spleen weight compared to the CTX group (p < 0.05) and demonstrated elevated serum immunoglobulins and leukocyte counts (monocytes, lymphocytes, and neutrophils) (p < 0.05). Pfaffia supplementation also enhanced cecal microbiota diversity and increased the abundance of beneficial bacteria. In summary, dietary P. glomerata leaf powder enhanced growth performance, immune organ development, and healthy gut microbiota in growing rabbits. The 0.5% supplementation level (L group) yielded the most consistent benefits. These results suggest that P. glomerata is a promising natural feed additive to promote rabbit health and production in antibiotic-free systems. Full article
Show Figures

Graphical abstract

38 pages, 2700 KiB  
Review
From Microbial Switches to Metabolic Sensors: Rewiring the Gut–Brain Kynurenine Circuit
by Masaru Tanaka and László Vécsei
Biomedicines 2025, 13(8), 2020; https://doi.org/10.3390/biomedicines13082020 - 19 Aug 2025
Viewed by 208
Abstract
The kynurenine (KYN) metabolic pathway sits at the crossroads of immunity, metabolism, and neurobiology, yet its clinical translation remains fragmented. Emerging spatial omics, wearable chronobiology, and synthetic microbiota studies reveal that tryptophan (Trp) metabolism is regulated by distinct cellular “checkpoints” along the gut–brain [...] Read more.
The kynurenine (KYN) metabolic pathway sits at the crossroads of immunity, metabolism, and neurobiology, yet its clinical translation remains fragmented. Emerging spatial omics, wearable chronobiology, and synthetic microbiota studies reveal that tryptophan (Trp) metabolism is regulated by distinct cellular “checkpoints” along the gut–brain axis, finely modulated by sex differences, circadian rhythms, and microbiome composition. However, current interventions tackle single levers in isolation, leaving a key gap in the precision control of Trp’s fate. To address this, we drew upon an extensive body of the primary literature and databases, mapping enzyme expression across tissues at single-cell resolution and linking these profiles to clinical trials investigating dual indoleamine 2,3-dioxygenase 1 (IDO1)/tryptophan 2,3-dioxygenase (TDO) inhibitors, engineered probiotics, and chrono-modulated dosing strategies. We then developed decision-tree algorithms that rank therapeutic combinations against biomarker feedback loops derived from real-time saliva, plasma, and stool metabolomics. This synthesis pinpoints microglial and endothelial KYN hotspots, quantifies sex-specific chronotherapeutic windows, and identifies engineered Bifidobacterium consortia and dual inhibitors as synergistic nodes capable of reducing immunosuppressive KYN while preserving neuroprotective kynurenic acid. Here, we highlight a framework that couples lifestyle levers, bio-engineered microbes, and adaptive pharmaco-regimens into closed-loop “smart protocols.” By charting these intersections, this study offers a roadmap for biomarker-guided, multidisciplinary interventions that could recalibrate KYN metabolic activity across cancer, mood, neurodegeneration, and metabolic disorders, appealing to clinicians, bioengineers, and systems biologists alike. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

35 pages, 1649 KiB  
Review
Candidemia: An Update on Epidemiology, Risk Factors, Diagnosis, Susceptibility, and Treatment
by Juan Pablo Cabrera-Guerrero, Eduardo García-Salazar, Graciela Hernandez Silva, Alberto Chinney Herrera, Erick Martínez-Herrera, Rodolfo Pinto-Almazán, María Guadalupe Frías-De-León and Carlos Alberto Castro-Fuentes
Pathogens 2025, 14(8), 806; https://doi.org/10.3390/pathogens14080806 - 14 Aug 2025
Viewed by 671
Abstract
Candidemia is a highly prevalent invasive fungal infection caused primarily by C. albicans, C. parapsilosis, C. glabrata (currently Nakaseomyces glabratus), C. tropicalis, and C. krusei (currently Pichia kudriavzevii). Risk factors for the development of candidemia include steroid-induced immunosuppression [...] Read more.
Candidemia is a highly prevalent invasive fungal infection caused primarily by C. albicans, C. parapsilosis, C. glabrata (currently Nakaseomyces glabratus), C. tropicalis, and C. krusei (currently Pichia kudriavzevii). Risk factors for the development of candidemia include steroid-induced immunosuppression used in solid organ or hematopoietic transplantation, and neutropenia secondary to infectious or tumorous processes. Alterations in the gut microbiota in people living with HIV, caused by antiretroviral therapy, increase the possibility of colonization by C. albicans. Likewise, the presence of a central venous catheter, parenteral nutrition, and abdominal surgery stand out as the main risk factors for the development of candidemia. New diagnostic tools have been developed for the diagnosis of this mycosis that allow the identification of the main species, from improvements in conventional stains such as calcofluor white, which increases sensitivity, as well as technologies such as T2 Candida, MoiM assay, biomarker panel (1,3 β-D-glucan, C-reactive protein, presepsin, and procalcitonin), and, more recently, the development of biosensors for the identification of Candida spp. Regarding treatment, the use of micafungin and anidulafungin in patients with obesity defined by a BMI > 30 kg/m2 has shown higher survival rates and therapeutic success. Meanwhile, newer antifungals such as rezafungin and fosmanogepix have demonstrated excellent results in the treatment of these patients. Therefore, this review aims to update the epidemiology and risk factors of candidemia, as well as analyze the diagnostic tools and treatments currently available. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

22 pages, 11011 KiB  
Article
Flavonoid Extract of Senecio scandens Buch.-Ham. Ameliorates CTX-Induced Immunosuppression and Intestinal Damage via Activating the MyD88-Mediated Nuclear Factor-κB Signaling Pathway
by Xiaolin Zhu, Lulu Zhang, Xuan Ni, Jian Guo, Yizhuo Fang, Jianghan Xu, Zhuo Chen and Zhihui Hao
Nutrients 2025, 17(15), 2540; https://doi.org/10.3390/nu17152540 - 1 Aug 2025
Viewed by 298
Abstract
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated [...] Read more.
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated its efficacy against cyclophosphamide (CTX)-induced immunosuppression and intestinal injury. Methods: The constituents of SSF were identified using UHPLC/Q-Orbitrap/HRMS. Mice with CTX-induced immunosuppression were treated with SSF (80, 160, 320 mg/kg) for seven days. Immune parameters (organ indices, lymphocyte proliferation, cytokine, and immunoglobulin levels) and gut barrier integrity markers (ZO-1, Occludin, Claudin-1 protein expression; sIgA secretion; microbiota composition) were assessed. Network pharmacology combined with functional assays elucidated the underlying regulatory mechanisms. Results: Twenty flavonoids were identified in SSF, with six prototype compounds detectable in the blood. The SSF treatment significantly ameliorated CTX-induced weight loss and atrophy of the thymus and spleen. It enhanced splenic T- and B-lymphocyte proliferation by 43.6% and 29.7%, respectively; normalized the CD4+/CD8+ ratio (1.57-fold increase); and elevated levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ, IgM, and IgG. Moreover, SSF reinforced the intestinal barrier by upregulating tight junction protein expression and sIgA levels while modulating the gut microbiota, enriching beneficial taxa (e.g., the Lachnospiraceae_NK4A136_group, Akkermansia) and suppressing pathogenic Alistipes. Mechanistically, SSF activated the TLR/MyD88/NF-κB pathway, with isoquercitrin identified as a pivotal bioactive constituent. Conclusions: SSF effectively mitigates CTX-induced immunosuppression and intestinal damage. These findings highlight SSF’s potential as a dual-functional natural agent for immunomodulation and intestinal protection. Subsequent research should validate isoquercitrin’s molecular targets and assess SSF’s clinical efficacy. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

22 pages, 4967 KiB  
Article
Therapeutic Potential of Kelp Fucoidan in Rebiosis of Gut Microflora and Immune Homeostasis in Cyclophosphamide-Induced Immunosuppressed Mice
by Yaqing Liu, Ruining Kang, Yanfei Zhao, Heng Zhang, Qingfeng Rong, Shaoxuan Yu, Yaoguang Chang, Zhengpeng Wei and Lanlan Zhu
Foods 2025, 14(15), 2662; https://doi.org/10.3390/foods14152662 - 29 Jul 2025
Viewed by 385
Abstract
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse [...] Read more.
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse model was established using cyclophosphamide, followed by administration of various kelp fucoidan doses (low-dose fucoidan: 50 mg/(kg·bw)/d, medium-dose fucoidan: 100 mg/(kg·bw)/d, and high-dose fucoidan: 150 mg/(kg·bw)/d) to the experimental groups. Changes in the gut microbiota structure were analyzed using 16S rRNA high-throughput sequencing, alongside simultaneous measurement of serum immune indicators and levels of short-chain fatty acids (SCFAs). Results indicate that kelp fucoidan significantly improved the thymus and spleen indices in immunosuppressed mice (p < 0.05) and elevated serum levels of IgM, IgG and IL-4. Post-kelp fucoidan intervention, there was significant alteration in microbiota ecosystem restructuring, such as proliferation in probiotics, including Lactobacillus and Bifidobacterium, while opportunistic pathogens, such as Enterococcus and Escherichia coli, decreased. Furthermore, the levels of acetic, propionic, and butyric acids in the colonic contents of the kelp fucoidan group significantly improved (p < 0.01). This research demonstrates that kelp fucoidan enhances immune function in immunosuppressed mice by modulating gut microbiota balance and promoting short-chain fatty acid production. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

22 pages, 1009 KiB  
Review
Mycotoxin-Caused Intestinal Toxicity: Underlying Molecular Mechanisms and Further Directions
by Tian Li, Weidong Qiao, Jiehong Zhou, Zhihui Hao, Gea Oliveri Conti, Tony Velkov, Shusheng Tang, Jianzhong Shen and Chongshan Dai
Toxics 2025, 13(8), 625; https://doi.org/10.3390/toxics13080625 - 26 Jul 2025
Viewed by 611
Abstract
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins [...] Read more.
Mycotoxins represent a group of highly toxic secondary metabolites produced by diverse fungal pathogens. Mycotoxin contaminations frequently occur in foods and feed and pose significant risks to human and animal health due to their carcinogenic, mutagenic, and immunosuppressive properties. Notably, deoxynivalenol, zearalenone, fumonisins (mainly including fumonisins B1, B2, and FB3), aflatoxin B1 (AFB1), and T-2/HT-2 toxins are the major mycotoxin contaminants in foods and feed. Undoubtedly, exposure to these mycotoxins can disrupt gut health, particularly damaging the intestinal epithelium in humans and animals. In this review, we summarized the detrimental effects caused by these mycotoxins on the intestinal health of humans and animals. The fundamental molecular mechanisms, which cover the induction of inflammatory reaction and immune dysfunction, the breakdown of the intestinal barrier, the triggering of oxidative stress, and the intestinal microbiota imbalance, were explored. These signaling pathways, such as MAPK, Akt/mTOR, TNF, TGF-β, Wnt/β-catenin, PKA, NF-kB, NLRP3, AHR, TLR2, TLR4, IRE1/XBP1, Nrf2, and MLCK pathways, are implicated. The abnormal expression of micro-RNA also plays a critical role. Finally, we anticipate that this review can offer new perspectives and theoretical foundations for controlling intestinal health issues caused by mycotoxin contamination and promote the development of prevention and control products. Full article
(This article belongs to the Topic Recent Advances in Veterinary Pharmacology and Toxicology)
Show Figures

Figure 1

20 pages, 1837 KiB  
Review
Vitamin D, Gut Microbiota, and Cancer Immunotherapy—A Potentially Effective Crosstalk
by Yizhen Yan, Yi Guo, Yiting Li, Qingrui Jiang, Chenhang Yuan, Li Zhao and Shanshan Mao
Int. J. Mol. Sci. 2025, 26(15), 7052; https://doi.org/10.3390/ijms26157052 - 22 Jul 2025
Viewed by 386
Abstract
Recent breakthroughs in cancer immunotherapy have shown remarkable success, yet treatment efficacy varies significantly among individuals. Emerging evidence highlights the gut microbiota as a key modulator of immunotherapy response, while vitamin D (VD), an immunomodulatory hormone, has garnered increasing attention for its potential [...] Read more.
Recent breakthroughs in cancer immunotherapy have shown remarkable success, yet treatment efficacy varies significantly among individuals. Emerging evidence highlights the gut microbiota as a key modulator of immunotherapy response, while vitamin D (VD), an immunomodulatory hormone, has garnered increasing attention for its potential interactions with gut microbiota and immunotherapy outcomes. However, the precise mechanisms and clinical applications of VD in this context remain controversial. This study systematically analyzed peer-reviewed evidence from PubMed, Scopus, Web of Science, PsycINFO, and MEDLINE (January 2000–May 2025) to investigate the complex interplay among VD, gut microbiota, and cancer immunotherapy. This review demonstrates that VD exerts dual immunomodulatory effects by directly activating immune cells through vitamin D receptor (VDR) signaling while simultaneously reshaping gut microbial composition to enhance antitumor immunity. Clinical data reveal paradoxical outcomes: optimal VD levels correlate with improved immunotherapy responses and reduced toxicity in some studies yet are associated with immunosuppression and poorer survival in others. The bidirectional VD–microbiota interaction further complicates this relationship: VD supplementation enriches beneficial bacteria, which reciprocally regulate VD metabolism and amplify immune responses, whereas excessive VD intake may disrupt this balance, leading to dysbiosis and compromised therapeutic efficacy. These findings underscore the need to elucidate VD’s dose-dependent and microbiota-mediated mechanisms to optimize its clinical application in immunotherapy regimens. Future research should prioritize mechanistic studies of VD’s immunoregulatory pathways, personalized strategies accounting for host–microbiota variability, and large-scale clinical trials to validate VD’s role as an adjuvant in precision immunotherapy. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

28 pages, 1776 KiB  
Review
Nutrition and Diet Patterns as Key Modulators of Metabolic Reprogramming in Melanoma Immunotherapy
by Katerina Grafanaki, Alexandros Maniatis, Alexandra Anastogianni, Angelina Bania, Efstathia Pasmatzi and Constantinos Stathopoulos
J. Clin. Med. 2025, 14(12), 4193; https://doi.org/10.3390/jcm14124193 - 12 Jun 2025
Viewed by 2908
Abstract
Background: Melanoma, one of the most aggressive forms of skin cancer, has seen significant therapeutic advances with immune checkpoint inhibitors (ICIs). However, many patients fail to respond or develop resistance, creating the need for adjunct strategies. Objective: The objective of this [...] Read more.
Background: Melanoma, one of the most aggressive forms of skin cancer, has seen significant therapeutic advances with immune checkpoint inhibitors (ICIs). However, many patients fail to respond or develop resistance, creating the need for adjunct strategies. Objective: The objective of this study is to critically evaluate how specific dietary patterns and nutrient-derived metabolites modulate melanoma metabolism and immunotherapy outcomes, emphasizing translational implications. Methods: We performed an integrative review of preclinical and clinical studies investigating dietary interventions in melanoma models and ICI-treated patients. Mechanistic insights were extracted from studies on nutrient transport, immunometabolism, and microbiome–immune interactions, including data from ongoing nutritional clinical trials. Results: Diets rich in fermentable fibers, plant polyphenols, and unsaturated lipids, such as Mediterranean and ketogenic diets, seem to contribute to the reprogramming of tumor metabolism and enhance CD8+ T-cell activity. Fasting-mimicking and methionine-restricted diets modulate T-cell fitness and tumor vulnerability via nutrient stress sensors (e.g., UPR, mTOR). High fiber intake correlates with favorable gut microbiota and improved ICI efficacy, while excess protein, methionine, or refined carbohydrates impair immune surveillance via lactate accumulation and immunosuppressive myeloid recruitment. Several dietary molecules act as network-level modulators of host and microbial proteins, with parallels to known drug scaffolds. Conclusions: Integrating dietary interventions into melanoma immunotherapy can significantly influence metabolic reprogramming by targeting metabolic vulnerabilities and reshaping the tumor–immune–microbiome axis. When combined with AI-driven nutrient–protein interaction mapping, this approach offers a precision nutrition paradigm that supports both physicians and patients, emerging as a novel layer to enhance and consolidate existing therapeutic strategies. Full article
(This article belongs to the Section Clinical Nutrition & Dietetics)
Show Figures

Graphical abstract

19 pages, 6825 KiB  
Article
Lactobacillus murinus ZNL-13 Modulates Intestinal Barrier Damage and Gut Microbiota in Cyclophosphamide-Induced Immunosuppressed Mice
by Yihan Dong, Luyao Zhang, Di Qiu, Renxin Yao, Haitao Jia, Haiyang Wang, Luyao Zhou, Jiantao Zhang and Na Zhang
Foods 2025, 14(8), 1416; https://doi.org/10.3390/foods14081416 - 19 Apr 2025
Cited by 1 | Viewed by 901
Abstract
Cyclophosphamide (CTX) is a widely used anticancer drug in clinical practice; however, its administration can lead to gastrointestinal damage and immune suppression. Lactobacillus murinus (L. murinus) has been shown to regulate immune cell activity and protect the gastrointestinal system, showing potential [...] Read more.
Cyclophosphamide (CTX) is a widely used anticancer drug in clinical practice; however, its administration can lead to gastrointestinal damage and immune suppression. Lactobacillus murinus (L. murinus) has been shown to regulate immune cell activity and protect the gastrointestinal system, showing potential application as a functional food. The objective of this study was to investigate the effects of L. murinus ZNL-13 on CTX-induced intestinal mucosal injury and gut microbiota in mice. The results demonstrated that L. murinus ZNL-13 significantly alleviated weight loss and intestinal pathological damage. Moreover, in CTX-induced intestinal injury mice, L. murinus ZNL-13 enhanced the release of immune factors, suppressed cell apoptosis, and protected the intestinal mucosal barrier. Additionally, it activated the TLR4/NF-κB pathway, thereby promoting immune cell activity. Furthermore, L. murinus ZNL-13 contributed to the restoration of gut microbial homeostasis by increasing the relative abundance of short-chain fatty acid-producing bacteria. Taken together, this investigation highlights the potential of L. murinus ZNL-13 in protecting the intestinal barrier and enhancing immune function while laying the groundwork for its development as a novel probiotic and functional food. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

14 pages, 1906 KiB  
Article
Microbial and Immune Landscape of Malignant Ascites: Insights from Gut, Bladder, and Ascitic Fluid Analyses
by Jina Yun, Ju-Sun Song, Jeong-Ju Yoo, Solbi Kweon, Yoon-Young Choi, Daero Lim, Jung-Cheol Kuk, Hyun-Jung Kim and Seong-Kyu Park
Cancers 2025, 17(8), 1280; https://doi.org/10.3390/cancers17081280 - 10 Apr 2025
Viewed by 836
Abstract
Background/Objectives: Malignant ascites frequently arises in advanced cancers with peritoneal metastasis and is associated with poor outcomes. Known mechanisms include lymphatic obstruction by tumor cells, increased vascular permeability, and sodium retention via the renin–angiotensin–aldosterone system; however, the pathogenesis remains not fully understood. We [...] Read more.
Background/Objectives: Malignant ascites frequently arises in advanced cancers with peritoneal metastasis and is associated with poor outcomes. Known mechanisms include lymphatic obstruction by tumor cells, increased vascular permeability, and sodium retention via the renin–angiotensin–aldosterone system; however, the pathogenesis remains not fully understood. We investigated whether gut and bladder microbiomes correlate with malignant ascites development or progression and whether the immune microenvironment in ascitic fluid is altered. Methods: We enrolled 66 histologically confirmed cancer patients, dividing them into malignant ascites (n = 20) and non-ascites (n = 46) groups. Stool, urine, and ascitic fluid samples were analyzed using 16S rRNA next-generation sequencing. Immune cell subsets in ascitic fluid were characterized using flow cytometry. Results: In 19 of the 20 malignant ascites samples, the bacterial load was too low for reliable 16S rRNA sequencing, suggesting that malignant ascites is largely sterile. The overall gut microbiome diversity did not differ significantly by ascites status, although a trend emerged in patients with peritoneal metastasis, including the enrichment of class Clostridia and Gammaproteobacteria. Bladder microbiome analysis also showed no significant differences in ascites or metastasis status. Flow cytometry revealed reduced T-cell (CD3+, CD4+, CD8+) and NK cell (CD56+) populations compared to data from cirrhotic ascites. Conclusions: Malignant ascites exhibit minimal bacterial biomass, making comprehensive microbiome analysis challenging. Although no major global changes were noted in gut and bladder microbiomes, specific taxa were linked to peritoneal metastasis. These findings highlight an immunosuppressive ascitic environment and suggest that larger-scale or multi-omics approaches may help elucidate the role of microbiota in malignant ascites. Full article
(This article belongs to the Special Issue Advances in Bacteria and Cancer)
Show Figures

Figure 1

42 pages, 1309 KiB  
Review
An Integrated Pathogenetic Model of Primary Biliary Cholangitis
by Elias Kouroumalis, Ioannis Tsomidis and Argyro Voumvouraki
Livers 2025, 5(2), 15; https://doi.org/10.3390/livers5020015 - 28 Mar 2025
Viewed by 4219
Abstract
The pathogenesis of primary biliary cholangitis (PBC) is not fully understood. Despite recent progress, many aspects require further clarification. Thus, PBC is regarded as an autoimmune disease, but immunosuppressive treatment, which is effective in other autoimmune diseases, is not working in the case [...] Read more.
The pathogenesis of primary biliary cholangitis (PBC) is not fully understood. Despite recent progress, many aspects require further clarification. Thus, PBC is regarded as an autoimmune disease, but immunosuppressive treatment, which is effective in other autoimmune diseases, is not working in the case of PBC. Moreover, there are controversies over the pathogenetic role of anti-mitochondrial antibodies as mitochondria are present in all cells but only cholangiocytes are damaged. In this review, all the proposed models and factors that have been involved in the pathogenesis of PBC are presented. They include mechanisms such as dysregulated autophagy, senescence, apoptosis, impairment of the protective bicarbonate umbrella, immunological abnormalities, the dysbiosis of gut microbiota, and the role of bile acids. Genetics of PBC and epigenetic transcriptional modifications are also presented. Data supporting molecular mimicry and the viral etiology of PBC are analyzed. Finally, an integrated model is proposed based on interactions of the factors that may participate in PBC pathogenesis. Therefore, the purpose of this review is to provide a unifying presentation of the various aspects of PBC pathophysiology, which will allow for a better understanding of this multifaceted disease. New treatment targets may also be identified in such a holistic model. Full article
Show Figures

Figure 1

23 pages, 5220 KiB  
Article
Probiotic Fermentation of Astragalus membranaceus and Raphani Semen Ameliorates Cyclophosphamide-Induced Immunosuppression Through Intestinal Short-Chain Fatty Acid-Dependent or -Independent Regulation of B Cell Function
by Yang Chen, Xiaoqing Wei, Binqi Rui, Yutong Du, Zengjie Lei, Xiujie Guo, Chaoran Wang, Donglin Yuan, Xiuli Wang, Ming Li, Binbin Hou and Yinhui Liu
Biology 2025, 14(3), 312; https://doi.org/10.3390/biology14030312 - 19 Mar 2025
Cited by 1 | Viewed by 928
Abstract
Probiotic fermentation can promote the release of more effective components from traditional Chinese medicines (TCMs). Astragalus membranaceus (Fisch.) Bunge (A. membranaceus) and Raphani Semen are TCMs that have gained attention for their immunoenhancing activities. This study aimed to investigate the effects [...] Read more.
Probiotic fermentation can promote the release of more effective components from traditional Chinese medicines (TCMs). Astragalus membranaceus (Fisch.) Bunge (A. membranaceus) and Raphani Semen are TCMs that have gained attention for their immunoenhancing activities. This study aimed to investigate the effects and underlying mechanisms of probiotic-fermented A. membranaceus and Raphani Semen (PROAS) in cyclophosphamide (CTX)-induced immunocompromised mice. Changes in the composition of A. membranaceus and Raphani Semen after fermentation by probiotic strains, including Bifidobacterium longum SD5219, Lactobacillus fermentum NCIMB5221, and Lactobacillus paracasei SD5219, were identified using high-performance liquid chromatography. The immunostimulatory effects and mechanisms of PROAS were evaluated in immunosuppressed mice 3 and 7 days after CTX treatment. Probiotic fermentation of TCMs resulted in changes in major bioactive components. PROAS supplementation effectively restored intestinal integrity in CTX-treated mice by upregulating the mRNA expression of the tight junction proteins. PROAS significantly ameliorated the reduction in the spleen index and number of B lymphocytes caused by CTX treatment and regulated the secretion of cytokines in serum and colon tissues. PROAS administration modulated gut microbial dysbiosis and short-chain fatty acid (SCFA) content in CTX-treated mice. These results suggest that PROAS enhances B lymphocyte function by increasing the regulation of intestinal microbiota to produce high levels of SCFA, repairs the intestinal barrier damage induced by CTX, and promotes intestinal mucosal immunity. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Graphical abstract

27 pages, 2074 KiB  
Review
The Microbiome, Inflammation, and GVHD Axis: The Balance Between the “Gut” and the Bad
by Paula Pinzon-Leal, Hernando Gutierrez-Barbosa, Sandra Medina-Moreno and Juan C. Zapata
Immuno 2025, 5(1), 10; https://doi.org/10.3390/immuno5010010 - 7 Mar 2025
Cited by 2 | Viewed by 3222
Abstract
Hematopoietic stem cell transplantation is one of the most intricate immune therapies used for patients with hematological diseases or immune disorders. In addition to the inherent immunosuppression from their primary condition, many of these patients usually receive cytotoxic chemotherapy, radiation therapy, broad-spectrum antibiotics, [...] Read more.
Hematopoietic stem cell transplantation is one of the most intricate immune therapies used for patients with hematological diseases or immune disorders. In addition to the inherent immunosuppression from their primary condition, many of these patients usually receive cytotoxic chemotherapy, radiation therapy, broad-spectrum antibiotics, or experience extended nutritional perturbations. These factors collectively lead to inflammation and the disruption of gut microbiota. Additionally, about 40–60% of patients undergoing fully HLA-matched allogeneic transplantation are expected to develop acute graft-versus-host disease (aGVHD), even with prophylactic measures such as calcineurin inhibitors, methotrexate/mycophenolate, or post-transplant cyclophosphamide treatment. Recent research has elucidated the complex interplay between immune effectors in the gastrointestinal tract and microbial populations within a proinflammatory peri-transplant environment, revealing its significant effect on survival and post-transplant complications such as aGVHD. This review will explore the relationship between dysbiosis during allogeneic transplantation and mechanisms that can help clarify the link between gut microbiota and the risk of GVHD, along with emerging therapeutic strategies aimed at addressing dysbiosis during hematopoietic stem cell transplantation. Full article
(This article belongs to the Section Transplantation Immunology)
Show Figures

Figure 1

20 pages, 6028 KiB  
Article
Immunosuppressant-Induced Alteration of Gut Microbiota Causes Loss of Skeletal Muscle Mass: Evidence from Animal Experiments Using Mice and Observational Study on Humans
by Mitsuru Tomizawa, Shunta Hori, Tatsuo Yoneda, Fumisato Maesaka, Sayuri Onishi, Takuto Shimizu, Kenta Onishi, Yosuke Morizawa, Daisuke Gotoh, Yasushi Nakai, Makito Miyake, Kazumasa Torimoto, Nobumichi Tanaka and Kiyohide Fujimoto
J. Clin. Med. 2025, 14(5), 1628; https://doi.org/10.3390/jcm14051628 - 27 Feb 2025
Viewed by 733
Abstract
Background/Objectives: The number of older adults requiring a kidney transplant (KT) is increasing; hence, postoperative sarcopenia prevention is necessary. KT recipients require permanent oral immunosuppressants (ISs), and the gut microbiota (GM) plays a role in various systemic diseases. However, few studies have [...] Read more.
Background/Objectives: The number of older adults requiring a kidney transplant (KT) is increasing; hence, postoperative sarcopenia prevention is necessary. KT recipients require permanent oral immunosuppressants (ISs), and the gut microbiota (GM) plays a role in various systemic diseases. However, few studies have evaluated post-kidney transplantation frailty and the associations among ISs, GM, and muscle mass alterations. Therefore, we investigated the effects of ISs on GM and skeletal muscle mass in mice and human KT recipients. Methods: Mice were treated with six different ISs, and their skeletal muscle mass, GM diversity, and colonic mucosal function were assessed. Human KT recipients and donors were monitored before and after surgery for 1 year, and GM diversity was evaluated before and 1 month after surgery. Results: The abundance of Akkermansia, crypt depth, and mucin 2 expression were lower in tacrolimus- and prednisolone-treated mice. The psoas muscle volume changes at 1 month and 1 year after surgery were lower in KT recipients than in donors. Furthermore, the beta diversity was significantly different between the operative groups (p = 0.001), and the KT group showed the lowest Shannon index. Conclusions: The findings of this study indicate potential links among ISs, GM, and muscle mass decline. Further investigation is required to improve therapeutic strategies and patient outcomes. Full article
(This article belongs to the Special Issue Sustaining Success Through Innovation in Kidney Transplantation)
Show Figures

Graphical abstract

20 pages, 4938 KiB  
Review
Synergistic Potential of Antibiotics with Cancer Treatments
by Giuseppe Nardo, Pan Pantziarka and Matteo Conti
Cancers 2025, 17(1), 59; https://doi.org/10.3390/cancers17010059 - 28 Dec 2024
Cited by 4 | Viewed by 1978
Abstract
Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent [...] Read more.
Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results. Antibiotics can alter intratumoral microbiota’s composition, which may have a major role in promoting cancer progression and immune evasion. Certain bacteria within tumors can promote immunosuppression and resistance to therapies. By targeting these bacteria, antibiotics can help create a more favorable environment for chemotherapy, targeted therapy, and immunotherapy to act effectively. Some bacteria within the tumor microenvironment produce immunosuppressive molecules that inhibit the activity of immune cells. The combination of antibiotics and other cancer therapies holds significant promise for creating a synergistic effect and enhancing the immune response against cancer. In this review, we analyze several preclinical studies that have been conducted to demonstrate the synergy between antibiotics and other cancer therapies and discuss possible clinical implications. Full article
(This article belongs to the Special Issue Cancer Immunotherapy in Clinical and Translational Research)
Show Figures

Figure 1

Back to TopTop