Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = immuno-PET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5172 KiB  
Article
LAMP1 as a Target for PET Imaging in Adenocarcinoma Xenograft Models
by Bahar Ataeinia, Arvin Haj-Mirzaian, Lital Ben-Naim, Shadi A. Esfahani, Asier Marcos Vidal, Umar Mahmood and Pedram Heidari
Pharmaceuticals 2025, 18(8), 1122; https://doi.org/10.3390/ph18081122 - 27 Jul 2025
Viewed by 512
Abstract
Background: Lysosomal-associated membrane protein 1 (LAMP1), typically localized to the lysosomal membrane, is increasingly implicated as a marker of cancer aggressiveness and metastasis when expressed on the cell surface. This study aimed to develop a LAMP1-targeted antibody-based PET tracer and assess its efficacy [...] Read more.
Background: Lysosomal-associated membrane protein 1 (LAMP1), typically localized to the lysosomal membrane, is increasingly implicated as a marker of cancer aggressiveness and metastasis when expressed on the cell surface. This study aimed to develop a LAMP1-targeted antibody-based PET tracer and assess its efficacy in mouse models of human breast and colon adenocarcinoma. Methods: To determine the source of LAMP1 expression, we utilized human single-cell RNA sequencing and spatial transcriptomics, complemented by in-house flow cytometry on xenografted mouse models. Tissue microarrays of multiple epithelial cancers and normal tissue were stained for LAMP-1, and staining was quantified. An anti-LAMP1 monoclonal antibody was conjugated with desferrioxamine (DFO) and labeled with zirconium-89 (89Zr). Human triple-negative breast cancer (MDA-MB-231) and colon cancer (Caco-2) cell lines were implanted in nude mice. PET/CT imaging was conducted at 24, 72, and 168 h post-intravenous injection of 89Zr-DFO-anti-LAMP1 and 89Zr-DFO-IgG (negative control), followed by organ-specific biodistribution analyses at the final imaging time point. Results: Integrated single-cell and spatial RNA sequencing demonstrated that LAMP1 expression was localized to myeloid-derived suppressor cells (MDSCs) and cancer-associated fibroblasts (CAFs) in addition to the cancer cells. Tissue microarray showed significantly higher staining for LAMP-1 in tumor tissue compared to normal tissue (3986 ± 2635 vs. 1299 ± 1291, p < 0.001). Additionally, xenograft models showed a significantly higher contribution of cancer cells than the immune cells to cell surface LAMP1 expression. In vivo, PET imaging with 89Zr-DFO-anti-LAMP1 PET/CT revealed detectable tumor uptake as early as 24 h post-injection. The 89Zr-DFO-anti-LAMP1 tracer demonstrated significantly higher uptake than the control 89Zr-DFO-IgG in both models across all time points (MDA-MB-231 SUVmax at 168 h: 12.9 ± 5.7 vs. 4.4 ± 2.4, p = 0.003; Caco-2 SUVmax at 168 h: 8.53 ± 3.03 vs. 3.38 ± 1.25, p < 0.01). Conclusions: Imaging of cell surface LAMP-1 in breast and colon adenocarcinoma is feasible by immuno-PET. LAMP-1 imaging can be expanded to adenocarcinomas of other origins, such as prostate and pancreas. Full article
Show Figures

Figure 1

12 pages, 1213 KiB  
Article
Synthesis and In Vitro Evaluation of a Scandium-44 Radiolabeled Nanobody as a PD-L1 PET Imaging Probe
by Viktoria E. Krol, Aditya Bansal, Manasa Kethamreddy, Jason R. Ellinghuysen, Daniel J. Vail, Fabrice Lucien-Matteoni, Haidong Dong, Sean S. Park and Mukesh K. Pandey
Pharmaceutics 2025, 17(6), 796; https://doi.org/10.3390/pharmaceutics17060796 - 19 Jun 2025
Viewed by 510
Abstract
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an [...] Read more.
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an attractive alternative for imaging than their full-length IgG counterpart. This work investigated the radiosynthesis and in vitro cell uptake of anti-PD-L1-B11-nanobody radiolabeled with 44Sc (t1/2 = 4.04 h) as an alternative to anti-PD-L1-B11-IgG, better suited for longer half-life radioisotopes such as 89Zr (t1/2 = 78.41 h). Methods: The proteins were conjugated with p-SCN-Bn-DTPA and radiolabeled at room temperature with 44Sc, achieving a radiochemical yield of a RCY of 94.8 ± 3.1% (n = 3) for [44Sc]Sc-B11-IgG and 73.6 ± 12.1% (n = 3) for [44Sc]Sc-B11-nanobody, before purification. Results: Significantly higher uptake in the PD-L1+ cells than PD-L1KO cells was observed for both probes. However, high non-specific uptake, particularly of the radiolabeled B11-nanobody, was also observed which may negatively impact its potential as a molecular imaging probe. Conclusions: Due to the high non-specific uptake in vitro, the 44Sc radiolabeled nanobody was not progressed to further in vivo evaluation. These results should, however, not discourage future evaluations of other nanobody based probes radiolabeled with 44Sc, due to their well-matched biological and physical half-life. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

20 pages, 4435 KiB  
Article
89Zr-Radiolabelling of p-NCS-Bz-DFO-Anti-HER2 Affibody Immunoconjugate: Characterization and Assessment of In Vitro Potential in HER2-Positive Breast Cancer Imaging
by Maria-Roxana Tudoroiu-Cornoiu, Radu Marian Șerban, Diana Cocioabă, Dragoș Andrei Niculae, Doina Drăgănescu, Radu Leonte, Alina Catrinel Ion and Dana Niculae
Pharmaceutics 2025, 17(6), 739; https://doi.org/10.3390/pharmaceutics17060739 - 4 Jun 2025
Viewed by 671
Abstract
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the [...] Read more.
Background: The 89Zr radioisotope is increasingly vital in positron emission tomography (PET), especially immuno-PET, due to its long half-life of 78.4 h, allowing extended tracking of biological processes. This makes it particularly suitable for researching medicines with slow pharmacokinetics and enhances the precision of molecular imaging, especially in oncology. Despite zirconium’s potential for skeletal accumulation, effective chelation with agents like deferoxamine (DFO) enables high-resolution imaging of antigen-specific tumours, such as HER2-positive breast cancer, offering insights into tumour biology and treatment response. Methods: 89Zr was produced at the ACSI TR-19 cyclotron via 89Y(p,n)89Zr reaction. Natural yttrium foils (250 μm) were irradiated with 12.9 MeV protons on target, with 100 μA·h. An HER2-targeting affibody was synthesized and conjugated with p-NCS-Bz-DFO (1:4 mass ratio) at 37 °C for 60 min (pH 9.2 ± 0.2), then purified on a PD-10 column. Radiolabelling was performed with [89Zr]Zr-oxalate at pH ranging from 7.0 to 9.0, with concentrations from 110 to 460 MBq/mL. Results: Final activity reached 2.95 ± 0.31 GBq/batch (EOB corrected), with ≥ 99.9% radionuclide and ≥95% radiochemical purities. The anti-HER2 affibody was successfully radiolabelled with 89Zr, resulting in a radiochemical purity of over 85% with molar activity of 26.5 ± 4.4 and 11.45 MBq/nmol at pH 7.0–7.5. In vitro tests on BT-474 and MCF-7 cell lines confirmed high uptake in HER2-positive cells, validating specificity and stability. Conclusions: The successful synthesis and labelling of the [89Zr]Zr-p-NCS-Bz-DFO-anti-HER2 affibody are promising achievements for its further application in targeted immuno-PET imaging for HER2-positive malignancies. Further in vivo studies are needed to support its clinical translation. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

16 pages, 302 KiB  
Review
Nuclear Medicine and Molecular Imaging in Urothelial Cancer: Current Status and Future Directions
by Sam McDonald, Kevin G. Keane, Richard Gauci and Dickon Hayne
Cancers 2025, 17(2), 232; https://doi.org/10.3390/cancers17020232 - 13 Jan 2025
Cited by 2 | Viewed by 1940
Abstract
Background: The role of molecular imaging in urothelial cancer is less defined than other cancers, and its utility remains controversial due to limitations such as high urinary tracer excretion, complicating primary tumour assessment in the bladder and upper urinary tract. This review [...] Read more.
Background: The role of molecular imaging in urothelial cancer is less defined than other cancers, and its utility remains controversial due to limitations such as high urinary tracer excretion, complicating primary tumour assessment in the bladder and upper urinary tract. This review explores the current landscape of PET imaging in the clinical management of urothelial cancer, with a special emphasis on potential future advancements including emerging novel non-18F FDG PET agents, PET radiopharmaceuticals, and PET-MRI applications. Methods: We conducted a comprehensive literature search in the PubMed database, using keywords such as “PET”, “PET-CT”, “PET-MRI”, “FDG PET”, “Urothelial Cancer”, and “Theranostics”. Studies were screened for relevance, focusing on imaging modalities and advances in PET tracers for urothelial carcinoma. Non-English language, off-topic papers, and case reports were excluded, resulting in 80 articles being selected for discussion. Results: 18F FDG PET-CT has demonstrated superior sensitivity over conventional imaging, such as contrast-enhanced CT and MRI, for detecting lymph node metastasis and distant disease. Despite these advantages, FDG PET-CT is limited for T-staging of primary urothelial tumours due to high urinary excretion of the tracer. Emerging evidence supports the role of PETC-CT in assessing response to neoadjuvant chemotherapy and in identifying recurrence, with a high diagnostic accuracy reported in several studies. Novel PET tracers, such as 68Ga-labelled FAPI, have shown promising results in targeting cancer-associated fibroblasts, providing higher tumour-to-background ratios and detecting lesions missed by traditional imaging. Antibody-based PET tracers, like those targeting Nectin-4, CAIX, and uPAR, are under investigation for their diagnostic and theranostic potential, and initial studies indicate that these agents may offer advantages over conventional imaging and FDG PET. Conclusions: Molecular imaging is a rapidly evolving field in urothelial cancer, offering improved diagnostic and prognostic capabilities. While 18F FDG PET-CT has shown utility in staging, further prospective research is needed to establish and refine standardised protocols and validate new tracers. Advances in theranostics and precision imaging may revolutionise urothelial cancer management, enhancing the ability to tailor treatments and improve patient outcomes. Full article
(This article belongs to the Special Issue Advances in Management of Urothelial Cancer)
15 pages, 2431 KiB  
Review
Non-[18F]FDG PET-Radiopharmaceuticals in Oncology
by Antonia Dimitrakopoulou-Strauss, Leyun Pan and Christos Sachpekidis
Pharmaceuticals 2024, 17(12), 1641; https://doi.org/10.3390/ph17121641 - 6 Dec 2024
Cited by 1 | Viewed by 1669
Abstract
Molecular imaging is a growing field, driven by technological advances, such as the improvement of PET-CT scanners through the introduction of digital detectors and scanners with an extended field of view, resulting in much higher sensitivity and a variety of new specific radiopharmaceuticals [...] Read more.
Molecular imaging is a growing field, driven by technological advances, such as the improvement of PET-CT scanners through the introduction of digital detectors and scanners with an extended field of view, resulting in much higher sensitivity and a variety of new specific radiopharmaceuticals that allow the visualization of specific molecular pathways and even theragnostic approaches. In oncology, the development of dedicated tracers is crucial for personalized therapeutic approaches. Novel peptides allow the visualization of many different targets, such as PD-1 and PD-L1 expression, chemokine expression, HER expression, T-cell imaging, microenvironmental imaging, such as FAP imaging, and many more. In this article, we review recent advances in the development of non-[18F]FDG PET radiopharmaceuticals and their current clinical applications in oncology, as well as some future aspects. Full article
Show Figures

Figure 1

25 pages, 987 KiB  
Review
Recent Updates of PET in Lymphoma: FDG and Beyond
by Sung-Yong Kim, Hyun Woo Chung, Young So, Mark Hong Lee and Eun Jeong Lee
Biomedicines 2024, 12(11), 2485; https://doi.org/10.3390/biomedicines12112485 - 29 Oct 2024
Cited by 1 | Viewed by 3248
Abstract
Lymphoma is one of the most common cancers worldwide, categorized into Hodgkin lymphoma and non-Hodgkin lymphoma. 18F-fluorodeoxyglucose positron emission tomography (FDG PET) has become an essential imaging tool for evaluating patients with lymphoma in terms of initial diagnosis, staging, prognosis, and treatment [...] Read more.
Lymphoma is one of the most common cancers worldwide, categorized into Hodgkin lymphoma and non-Hodgkin lymphoma. 18F-fluorodeoxyglucose positron emission tomography (FDG PET) has become an essential imaging tool for evaluating patients with lymphoma in terms of initial diagnosis, staging, prognosis, and treatment response assessment. Recent advancements in imaging technology and methodologies, along with the development of artificial intelligence, have revolutionized the evaluation of complex imaging data, enhancing the diagnostic and predictive power of PET in lymphoma. However, FDG is not cancer-specific, but it primarily reflects glucose metabolism, which has prompted the investigation of alternative PET tracers to address this limitation. Novel PET radiotracers, such as fibroblast activation protein inhibitors targeting the tumor microenvironment, have recently shown promising results in evaluating various malignancies compared to FDG PET. Furthermore, with the rapid advancements in immunotherapy and the favorable imaging properties of 89Zr, immunoPET has emerged as a promising modality, offering insights into the functional and molecular status of the immune system. ImmunoPET can also facilitate the development of new antibody therapeutics and radioimmunotherapy by providing pharmacokinetic and pharmacodynamic data. This review provides comprehensive insights into the current clinical applications of FDG PET in lymphoma, while also exploring novel PET imaging radiotracers beyond FDG, discussing their mechanisms of action and potential impact on patient management. Full article
(This article belongs to the Special Issue Recent Advances in Lymphoma)
Show Figures

Figure 1

20 pages, 2118 KiB  
Review
Radioimmunotheragnosis in Cancer Research
by Guillermo Garaulet, Bárbara Beatriz Báez, Guillermo Medrano, María Rivas-Sánchez, David Sánchez-Alonso, Jorge L. Martinez-Torrecuadrada and Francisca Mulero
Cancers 2024, 16(16), 2896; https://doi.org/10.3390/cancers16162896 - 20 Aug 2024
Cited by 2 | Viewed by 1660
Abstract
The combination of immunoPET—where an antibody (Ab) is labeled with an isotope for PET imaging—and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection [...] Read more.
The combination of immunoPET—where an antibody (Ab) is labeled with an isotope for PET imaging—and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use. Full article
(This article belongs to the Special Issue Theranostic Imaging and Dosimetry for Cancer)
Show Figures

Graphical abstract

8 pages, 4005 KiB  
Case Report
Long-Term Remission with Novel Combined Immune-Targeted Treatment for Histiocytic Sarcoma Accompanied by Follicular Lymphoma: Case Report and Literature Review
by Minyue Zhang, Fei Xiao, Jianchen Fang, Zebing Liu, Yanying Shen, Di Zhu, Yiwei Zhang, Jian Hou and Honghui Huang
Int. J. Mol. Sci. 2024, 25(13), 7293; https://doi.org/10.3390/ijms25137293 - 2 Jul 2024
Cited by 2 | Viewed by 2791
Abstract
Histiocytic sarcoma (HS) is an extremely rare but aggressive hematopoietic malignancy, and the prognosis has been reported to be rather unfavorable with a median overall survival of merely 6 months. We presented a 58-year-old female patient complaining of abdominal pain and fever, who [...] Read more.
Histiocytic sarcoma (HS) is an extremely rare but aggressive hematopoietic malignancy, and the prognosis has been reported to be rather unfavorable with a median overall survival of merely 6 months. We presented a 58-year-old female patient complaining of abdominal pain and fever, who was admitted to our institution in September 2021. Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography–computed tomography (PET/CT) scan showed enlargement of generalized multiple lymph nodes. Subsequently, laparoscopic retroperitoneal lesion biopsy and bone marrow aspiration were performed. The pathological findings indicated the diagnosis of HS concurrent with follicular lymphoma. The immunohistochemistry (IHC) staining of the tumor lesion revealed a high expression of CD38 and PD-L1 proteins. Furthermore, KRAS gene mutation was identified by means of next-generation sequencing. The patient exhibited poor treatment response to both first- and second-line cytotoxic chemotherapies. Therefore, she underwent six cycles of Daratumumab (anti-CD38 monoclonal antibody), Pazopanib (multi-target receptor tyrosine kinases inhibitor) combined with third-line chemotherapy, followed by involved-site radiotherapy and maintenance therapy with the PD-1 inhibitor Tislelizumab. Long-term partial remission was finally achieved after multi-modality treatment. Duration of remission and overall survival reached 22 and 32 months, respectively. Our case indicated that immuno-targeted treatment coupled with chemotherapy and radiotherapy might constitute a potential therapeutic option for HS. Full article
(This article belongs to the Special Issue New Advances in B-cell Lymphoma Biology)
Show Figures

Figure 1

29 pages, 3024 KiB  
Review
Zirconium 89 and Copper 64 for ImmunoPET: From Antibody Bioconjugation and Radiolabeling to Molecular Imaging
by Laure Badier and Isabelle Quelven
Pharmaceutics 2024, 16(7), 882; https://doi.org/10.3390/pharmaceutics16070882 - 30 Jun 2024
Cited by 6 | Viewed by 2654
Abstract
Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this [...] Read more.
Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a number of BFCA available and much research is focused on antibody functionalization techniques or on developing the optimum chelating agent depending the selected radiometal. In this manuscript, we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their applications in preclinical and clinical immuno-PET imaging. Full article
(This article belongs to the Special Issue Promising Radiopharmaceuticals in Oncological Therapy)
Show Figures

Figure 1

15 pages, 4928 KiB  
Article
The Identification of a Cell Cycle Regulation Gene Cyclin E from Hong Kong Oysters (Crassostrea hongkongensis) and Its Protein Expression in Response to Salinity Stress
by Hengtong Qiu, Huan Wang, Xiaomin Yan, Lin Hu, Yonglin Huang and Yanni Ye
Fishes 2024, 9(3), 102; https://doi.org/10.3390/fishes9030102 - 6 Mar 2024
Cited by 1 | Viewed by 2374
Abstract
Hong Kong oysters (Crassostrea hongkongensis) are an important marine bivalve with nutritional and commercial value. The expanded off-bottom farming scale in recent years makes the oysters more susceptible to exposure to abiotic stresses, such as salinity stress, an important environmental factor [...] Read more.
Hong Kong oysters (Crassostrea hongkongensis) are an important marine bivalve with nutritional and commercial value. The expanded off-bottom farming scale in recent years makes the oysters more susceptible to exposure to abiotic stresses, such as salinity stress, an important environmental factor that has been proven to have significant effects on oyster growth and development. However, the molecular mechanism is still unclear. Cyclin E is an important protein in the process of cell cycle regulation that is indispensable for propelling G1/S phase transition in a dose-dependent manner. In order to investigate whether the salinity stress affects cyclin E expression in oysters, the cDNA sequence of C. hongkongensis cyclin E (Ch-CCNE) was isolated from a gill cDNA library, and the 2.8 kbp length cDNA fragment contained a complete open reading frame (ORF) encoding 440 amino acid residues. Ch-CCNE mRNA was highly expressed in the gonad and low in the adductor mussel, mantle, gill, labial palp, and digestive gland. The recombinant CCNE protein was expressed and purified in a pET32a(+)-CCNE/Escherichia coli BL21(DE3) system via IPTG induction and was used for generating mice anti-Ch-CCNE antiserums. Western blot analysis showed that the CCNE protein in the gill was maintained at low expression levels under either hypo- (5 ppt) or hyper- (35 ppt) salinity, and could be produced at high levels under appropriate salinity during a 10-day exposure period. The immuno-localization indicated that the Ch-CCNE protein was distributed in the nucleus. These results suggested that either hypo- or hyper-salinity stress could inhibit the CCNE expression of Hong Kong oysters and their negative impact on cell division and proliferation. Full article
(This article belongs to the Special Issue Genetic Breeding and Developmental Biology of Aquaculture Animals)
Show Figures

Figure 1

16 pages, 495 KiB  
Review
Immuno-PET for Glioma Imaging: An Update
by Maria Silvia De Feo, Giorgia Maria Granese, Miriam Conte, Barbara Palumbo, Stefano Panareo, Viviana Frantellizzi, Giuseppe De Vincentis and Luca Filippi
Appl. Sci. 2024, 14(4), 1391; https://doi.org/10.3390/app14041391 - 8 Feb 2024
Cited by 3 | Viewed by 2522
Abstract
Despite significant advances in glioma diagnosis and treatment, overall outcomes remain suboptimal. Exploring novel therapeutic avenues show promise in advancing the field. Theranostics, an evolving discipline integrating diagnosis and therapy, emerges as a particularly auspicious approach. However, an unmet need exists for glioma-associated [...] Read more.
Despite significant advances in glioma diagnosis and treatment, overall outcomes remain suboptimal. Exploring novel therapeutic avenues show promise in advancing the field. Theranostics, an evolving discipline integrating diagnosis and therapy, emerges as a particularly auspicious approach. However, an unmet need exists for glioma-associated biomarkers as theranostic targets. Immuno-positron emission tomography (Immuno-PET), a pioneering method uniting PET diagnostic precision with antibody specificity, holds potential for identifying cancer-associated biomarkers. This review aims to provide an updated overview of immuno-PET applications in gliomas. Notably, [44Sc]-CHX-A″-DTPA-Cetuximab-Fab targeting Epidermal Growth Factor Receptor (EGFR) has displayed promise in glioma xenografts, enabling potential imaging at 4 h post-injection. Similarly, [89Zr]-bevacizumab targeting vascular endothelial growth factor (VEGF) yielded encouraging results in preclinical models and a pioneering clinical trial for pediatric patients with diffuse intrinsic pontine glioma (DIPG). Several cell differentiation markers, including CD146, indicative of tumor aggressiveness, and CD11b, reflecting tumor-associated myeloid cells (TAMCs), proved effective targets for immuno-PET. Additionally, immuno-PET directed at prostate-specific antigen (PSMA) demonstrated efficacy in imaging glioma-associated neovasculature. While holding promise for precise diagnosis and treatment guidance, challenges persist in achieving target specificity and selecting suitable radionuclides. Further studies are imperative to advance the field and bridge a translational gap from bench to bedside. Full article
(This article belongs to the Special Issue Targeting Cellular Key Points in Drug Discovery)
Show Figures

Figure 1

23 pages, 3424 KiB  
Review
ImmunoPET Targeting Receptor Tyrosine Kinase: Clinical Applications
by Flavia Linguanti, Elisabetta Maria Abenavoli, Raffaella Calabretta, Valentina Berti and Egesta Lopci
Cancers 2023, 15(24), 5886; https://doi.org/10.3390/cancers15245886 - 18 Dec 2023
Cited by 2 | Viewed by 1969
Abstract
Receptor tyrosine kinases, or RTKs, are one large family of cell surface receptors involved in signal transduction, which represent an integral part of the signaling pathways. They play a crucial role in most important cellular processes, starting with the cell cycle, proliferation and [...] Read more.
Receptor tyrosine kinases, or RTKs, are one large family of cell surface receptors involved in signal transduction, which represent an integral part of the signaling pathways. They play a crucial role in most important cellular processes, starting with the cell cycle, proliferation and differentiation, as well as cell migration, metabolism and survival. The introduction of ImmunoPET evaluating the expression of RTKs by specific monoclonal antibodies (mAbs) or antibody fragments is regarded as a promising tool for imaging treatment efficacy and developing anticancer therapeutics. Our review focuses mainly on the current clinical research regarding ImmunoPET targeting RTKs, with particular interest in the epidermal growth factor family, or HER family, and vascular endothelial-derived growth factor/receptor. Full article
(This article belongs to the Special Issue Molecular Imaging in Oncology: Recent Advances)
Show Figures

Figure 1

15 pages, 4209 KiB  
Review
Clinical Application of ImmunoPET Targeting Checkpoint Inhibitors
by Elisabetta Maria Abenavoli, Flavia Linguanti, Raffaella Calabretta, Roberto C. Delgado Bolton, Valentina Berti and Egesta Lopci
Cancers 2023, 15(23), 5675; https://doi.org/10.3390/cancers15235675 - 30 Nov 2023
Cited by 8 | Viewed by 2426
Abstract
In the last decade, monoclonal antibodies (mAbs) targeting CTLA-4, PD-1, or PD-L1 have been developed and immune checkpoint inhibitors (ICIs) have become the main approach in cancer immunotherapy. However, not all patients benefit from ICI therapy and some are at risk of developing [...] Read more.
In the last decade, monoclonal antibodies (mAbs) targeting CTLA-4, PD-1, or PD-L1 have been developed and immune checkpoint inhibitors (ICIs) have become the main approach in cancer immunotherapy. However, not all patients benefit from ICI therapy and some are at risk of developing treatment-induced side-effects. These aspects, in parallel with the imaging challenges related to response assessments during immunotherapy, have driven scientific research to the discovery of new predictive biomarkers to individualize patients who could benefit from ICIs. In this context, molecular imaging using PET (positron emission tomography), which allows for whole-body tumor visualization, may be a promising non-invasive method for the determination of patients’ sensitivity to antibody drugs. Several PET tracers, diverse from 2-[18F]FDG (or 2-Deoxy-2-[18F]fluoroglucose), have been developed to image immune checkpoints (ICs) or key elements of the immune system, although most of them are still in preclinical phases. Herein, we present the current state of the ImmunoPET-targeting of IC proteins with mAbs and antibody fragments, with a main focus on the latest developments in clinical molecular imaging studies of solid tumors. Moreover, given the relevance of the immune system and of tumor-infiltrating lymphocytes in particular in the prediction of the benefit of ICIs, we dedicate a portion of this review to ImmunoPET-targeting T cells. Full article
(This article belongs to the Special Issue PET/CT in Tumor Immunotherapy Assessment)
Show Figures

Figure 1

23 pages, 1891 KiB  
Review
Small Antibodies with Big Applications: Nanobody-Based Cancer Diagnostics and Therapeutics
by Qian Zhang, Nan Zhang, Han Xiao, Chen Wang and Lian He
Cancers 2023, 15(23), 5639; https://doi.org/10.3390/cancers15235639 - 29 Nov 2023
Cited by 10 | Viewed by 6397
Abstract
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as [...] Read more.
Monoclonal antibodies (mAbs) have exhibited substantial potential as targeted therapeutics in cancer treatment due to their precise antigen-binding specificity. Despite their success in tumor-targeted therapies, their effectiveness is hindered by their large size and limited tissue permeability. Camelid-derived single-domain antibodies, also known as nanobodies, represent the smallest naturally occurring antibody fragments. Nanobodies offer distinct advantages over traditional mAbs, including their smaller size, high stability, lower manufacturing costs, and deeper tissue penetration capabilities. They have demonstrated significant roles as both diagnostic and therapeutic tools in cancer research and are also considered as the next generation of antibody drugs. In this review, our objective is to provide readers with insights into the development and various applications of nanobodies in the field of cancer treatment, along with an exploration of the challenges and strategies for their prospective clinical trials. Full article
(This article belongs to the Special Issue Advances in Cancer Therapeutics)
Show Figures

Figure 1

12 pages, 3038 KiB  
Article
89Zr-Immuno-PET with Immune Checkpoint Inhibitors: Measuring Target Engagement in Healthy Organs
by Iris H. C. Miedema, Jessica E. Wijngaarden, Johanna E. E. Pouw, Gerben J. C. Zwezerijnen, Hylke J. Sebus, Egbert Smit, Adrianus J. de Langen, Idris Bahce, Andrea Thiele, Daniëlle J. Vugts, Ronald Boellaard, Marc C. Huisman and C. Willemien Menke-van der Houven van Oordt
Cancers 2023, 15(23), 5546; https://doi.org/10.3390/cancers15235546 - 23 Nov 2023
Cited by 4 | Viewed by 2149
Abstract
Introduction: 89Zr-immuno-PET (positron emission tomography with zirconium-89-labeled monoclonal antibodies ([89Zr]Zr-mAbs)) can be used to study the biodistribution of mAbs targeting the immune system. The measured uptake consists of target-specific and non-specific components, and it can be influenced by plasma availability [...] Read more.
Introduction: 89Zr-immuno-PET (positron emission tomography with zirconium-89-labeled monoclonal antibodies ([89Zr]Zr-mAbs)) can be used to study the biodistribution of mAbs targeting the immune system. The measured uptake consists of target-specific and non-specific components, and it can be influenced by plasma availability of the tracer. To find evidence for target-specific uptake, i.e., target engagement, we studied five immune-checkpoint-targeting [89Zr]Zr-mAbs to (1) compare the uptake with previously reported baseline values for non-specific organ uptake (ns-baseline) and (2) look for saturation effects of increasing mass doses. Method: 89Zr-immuno-PET data from five [89Zr]Zr-mAbs, i.e., nivolumab and pembrolizumab (anti-PD-1), durvalumab (anti-PD-L1), BI 754,111 (anti-LAG-3), and ipilimumab (anti-CTLA-4), were analysed. For each mAb, 2–3 different mass doses were evaluated. PET scans and blood samples from at least two time points 24 h post injection were available. In 35 patients, brain, kidneys, liver, spleen, lungs, and bone marrow were delineated. Patlak analysis was used to account for differences in plasma activity concentration and to quantify irreversible uptake (Ki). To identify target engagement, Ki values were compared to ns-baseline Ki values previously reported, and the effect of increasing mass doses on Ki was investigated. Results: All mAbs, except ipilimumab, showed Ki values in spleen above the ns-baseline for the lowest administered mass dose, in addition to decreasing Ki values with higher mass doses, both indicative of target engagement. For bone marrow, no ns-baseline was established previously, but a similar pattern was observed. For kidneys, most mAbs showed Ki values within the ns-baseline for both low and high mass doses. However, with high mass doses, some saturation effects were seen, suggestive of a lower ns-baseline value. Ki values were near zero in brain tissue for all mass doses of all mAbs. Conclusion: Using Patlak analysis and the established ns-baseline values, evidence for target engagement in (lymphoid) organs for several immune checkpoint inhibitors could be demonstrated. A decrease in the Ki values with increasing mass doses supports the applicability of Patlak analysis for the assessment of target engagement for PET ligands with irreversible uptake behavior. Full article
(This article belongs to the Special Issue Molecular Imaging in Oncology: Recent Advances)
Show Figures

Graphical abstract

Back to TopTop