Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,281)

Search Parameters:
Keywords = immortalized

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1774 KiB  
Article
Comparison of Adhesion of Immortalized Human Iris-Derived Cells and Fibronectin on Phakic Intraocular Lenses Made of Different Polymer Base Materials
by Kei Ichikawa, Yoshiki Tanaka, Rie Horai, Yu Kato, Kazuo Ichikawa and Naoki Yamamoto
Medicina 2025, 61(8), 1384; https://doi.org/10.3390/medicina61081384 - 30 Jul 2025
Abstract
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend [...] Read more.
Background and Objectives: Posterior chamber phakic implantable contact lenses (Phakic-ICL) are widely used for refractive correction due to their efficacy and safety, including minimal corneal endothelial cell loss. The Collamer-based EVO+ Visian implantable contact lens (ICL), manufactured from Collamer, which is a blend of collagen and hydroxyethyl methacrylate (HEMA), has demonstrated excellent long-term biocompatibility and optical clarity. Recently, hydrophilic acrylic Phakic-ICLs, such as the Implantable Phakic Contact Lens (IPCL), have been introduced. This study investigated the material differences among Phakic-ICLs and their interaction with fibronectin (FN), which has been reported to adhere to intraocular lens (IOL) surfaces following implantation. The aim was to compare Collamer, IPCL, and LENTIS lenses (used as control) in terms of FN distribution and cell adhesion using a small number of explanted Phakic-ICLs. Materials and Methods: Three lens types were analyzed: a Collamer Phakic-ICL (EVO+ Visian ICL), a hydrophilic acrylic IPCL, and a hydrophilic acrylic phakic-IOL (LENTIS). FN distribution and cell adhesion were evaluated across different regions of each lens. An in vitro FN-coating experiment was conducted to assess its effect on cell adhesion. Results: All lenses demonstrated minimal FN deposition and cellular adhesion in the central optical zone. A thin FN film was observed on the haptics of Collamer lenses, while FN adhesion was weaker or absent on IPCL and LENTIS surfaces. Following FN coating, Collamer lenses supported more uniform FN film formation; however, this did not significantly enhance cell adhesion. Conclusions: Collamer, which contains collagen, promotes FN film formation. Although FN film formation was enhanced, the low cell-adhesive properties of HEMA resulted in minimal cell adhesion even with FN presence. This characteristic may contribute to the long-term transparency and biocompatibility observed clinically. In contrast, hydrophilic acrylic materials used in IPCL and LENTIS demonstrated limited FN interaction. These material differences may influence extracellular matrix protein deposition and biocompatibility in clinical settings, warranting further investigation. Full article
(This article belongs to the Special Issue Ophthalmology: New Diagnostic and Treatment Approaches)
Show Figures

Figure 1

25 pages, 2098 KiB  
Review
Recent Advances in Experimental Functional Characterization of GWAS Candidate Genes in Osteoporosis
by Petra Malavašič, Jasna Lojk, Marija Nika Lovšin and Janja Marc
Int. J. Mol. Sci. 2025, 26(15), 7237; https://doi.org/10.3390/ijms26157237 - 26 Jul 2025
Viewed by 335
Abstract
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the [...] Read more.
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the biological mechanisms underlying osteoporosis. This review focuses on current methodologies and key examples of successful functional studies aimed at evaluating gene function in osteoporosis research. Functional evaluation typically follows a multi-step approach. In silico analyses using omics datasets expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and DNA methylation quantitative trait loci (mQTLs) help prioritize candidate genes and predict relevant biological pathways. In vitro models, including immortalized bone-derived cell lines and primary mesenchymal stem cells (MSCs), are used to explore gene function in osteogenesis. Advanced three-dimensional culture systems provide additional physiological relevance for studying bone-related cellular processes. In situ analyses of patient-derived bone and muscle tissues offer validation in a disease-relevant context, while in vivo studies using mouse and zebrafish models enable comprehensive assessment of gene function in skeletal development and maintenance. Integration of these complementary methodologies helps translate GWAS findings into biological insights and supports the identification of novel therapeutic targets for osteoporosis. Full article
Show Figures

Figure 1

20 pages, 1716 KiB  
Article
Enhancing Antioxidants Performance of Ceria Nanoparticles in Biological Environment via Surface Engineering with o-Quinone Functionalities
by Pierluigi Lasala, Tiziana Latronico, Umberto Mattia, Rosa Maria Matteucci, Antonella Milella, Matteo Grattieri, Grazia Maria Liuzzi, Giuseppe Petrosillo, Annamaria Panniello, Nicoletta Depalo, Maria Lucia Curri and Elisabetta Fanizza
Antioxidants 2025, 14(8), 916; https://doi.org/10.3390/antiox14080916 - 25 Jul 2025
Viewed by 312
Abstract
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized [...] Read more.
The development of ceria (CeO2−x)-based nanoantioxidants requires fine-tuning of structural and surface properties for enhancing antioxidant behavior in biological environments. In this contest, here ultrasmall water-dispersible CeO2−x nanoparticles (NPs), characterized by a high Ce3+/Ce4+ ratio, were synthesized in a non-polar solvent and phase-transfer to an aqueous environment through ligand-exchange reactions using citric acid (CeO2−x@Cit) and post-treatment with dopamine hydrochloride (CeO2−x@Dopa). The concept behind this work is to enhance via surface engineering the intrinsic antioxidant properties of CeO2−x NPs. For this purpose, thanks to electron transfer reactions between dopamine and CeO2−x, the CeO2−x@Dopa was obtained, characterized by increased surface Ce3+ sites and surface functionalized with polydopamine bearing o-quinone structures as demonstrated by complementary spectroscopic (UV–vis, FT-IR, and XPS) characterizations. To test the antioxidant properties of CeO2−x NPs, the scavenging activity before and after dopamine treatment against artificial radical 1,1-diphenyl-2-picrylhydrazyl (DPPH·) and the ability to reduce the reactive oxygen species in Diencephalic Immortalized Type Neural Cell line 1 were evaluated. CeO2−x@Dopa demonstrated less efficiency in DPPH· scavenging (%radical scavenging activity 13% versus 42% for CeO2−x@Cit before dopamine treatment at 33 μM DPPH· and 0.13 mg/mL loading of NPs), while it markedly reduced intracellular ROS levels (ROS production 35% compared to 66% of CeO2−x@Cit before dopamine treatment with respect to control—p < 0.001 and p < 0.01, respectively). While steric hindrance from the dopamine-derived polymer layer limited direct electron transfer from CeO2−x NP surface to DPPH·, within cells the presence of o-quinone groups contributed with CeO2−x NPs to break the autoxidation chain of organic substrates, enhancing the antioxidant activity. The functionalization of NPs with o-quinone structures represents a valuable approach to increase the inherent antioxidant properties of CeO2−x NPs, enhancing their effectiveness in biological systems by promoting additional redox pathways. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

18 pages, 2540 KiB  
Article
Anti-Inflammatory, Antioxidant, and Reparative Effects of Casearia sylvestris Leaf Derivatives on Periodontium In Vitro
by Angélica L. R. Pavanelli, Maria Eduarda S. Lopes, André T. Reis, Flávio A. Carvalho, Sven Zalewski, André G. dos Santos, Joni A. Cirelli, James Deschner and Andressa V. B. Nogueira
Antioxidants 2025, 14(8), 901; https://doi.org/10.3390/antiox14080901 - 23 Jul 2025
Viewed by 295
Abstract
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed [...] Read more.
Gingival inflammation compromises the integrity of the gingival epithelium and the underlying tissues, highlighting the need for adjuvant therapies with immunomodulatory and healing properties. Casearia sylvestris, a medicinal plant known as guaçatonga, is traditionally used to treat inflammatory lesions. This study aimed to investigate the effects of C. sylvestris on the synthesis of pro- and anti-inflammatory, proteolytic, and antioxidant molecules and on wound healing in epithelial cells. A human telomerase-immortalized gingival keratinocyte cell line (TIGKs) was used, and cells were exposed to Escherichia coli lipopolysaccharide (LPS) in the presence and absence of C. sylvestris extract, its diterpene-concentrated fraction, and its clerodane diterpene casearin J for 24 h and 48 h. Gene expression and protein synthesis were analyzed by RT-qPCR and ELISA, respectively. Nitric oxide (NO) and NF-κB activation were analyzed by Griess reaction and immunofluorescence, respectively. Additionally, cell viability was evaluated by alamarBlue® assay, and an automated scratch assay was used for wound healing. LPS significantly increased the expression of cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-17), proteases (MMP-1 and MMP-13), iNOS as well as NO synthesis, and triggered NF-κB nuclear translocation. It also reduced IL-4 expression, cell viability, and cellular wound repopulation. Treatment with C. sylvestris derivatives significantly abrogated all aforementioned LPS-induced effects by 80–100%. Furthermore, even at higher concentrations, C. sylvestris did not affect cell viability, thus proving the safety of its derivatives. C. sylvestris exerts anti-inflammatory, antiproteolytic, and antioxidant effects on gingival keratinocytes, highlighting its potential as a valuable adjunct in the prevention and treatment of periodontal diseases. Full article
Show Figures

Figure 1

27 pages, 1049 KiB  
Review
Hallmarks of Cancer Expression in Oral Leukoplakia: A Scoping Review of Systematic Reviews and Meta-Analyses
by Isabel González-Ruiz, Valerie Samayoa-Descamps, Karen Andrea Guagua-Cortez, Miguel Ángel González-Moles and Pablo Ramos-García
Cancers 2025, 17(15), 2427; https://doi.org/10.3390/cancers17152427 - 22 Jul 2025
Viewed by 195
Abstract
Background/Objectives: Oral leukoplakia (OL) is a prevalent oral potentially malignant disorder. Despite its clinical relevance, the molecular basis of its progression to malignancy is not yet fully elucidated. This scoping review of systematic reviews and meta-analyses aimed to synthesize current knowledge and evidence [...] Read more.
Background/Objectives: Oral leukoplakia (OL) is a prevalent oral potentially malignant disorder. Despite its clinical relevance, the molecular basis of its progression to malignancy is not yet fully elucidated. This scoping review of systematic reviews and meta-analyses aimed to synthesize current knowledge and evidence gaps regarding the implications of hallmarks of cancer expression in OL malignant transformation. Methods: A systematic search was conducted in MEDLINE, Embase, DARE, and the Cochrane Library to identify systematic reviews (with or without meta-analysis) published up to April-2025. Results: Twenty-two systematic reviews were included. The most frequently explored hallmark was activation of invasion and metastasis (n = 12; 32.40%), followed by tumor-promoting inflammation (n = 10; 27.03%), evasion of growth suppressors (n = 8; 21.60%), sustained proliferative signaling (n = 3; 8.10%), energy metabolism reprogramming (n = 2; 5.40%), replicative immortality (n = 1; 2.70%), and resistance to cell death (n = 1; 2.70%). No evidence was found for angiogenesis or immune evasion in OL. Conclusions: Available evidence indicates that OL may develop oncogenic mechanisms in early stages of oral oncogenesis, especially those related to sustained proliferation, evasion of growth suppressor signals, and cellular migration and invasion. Chronic inflammation also may facilitate the acquisition of other hallmarks throughout the multistep process of oral carcinogenesis. These findings also reveal evidence gaps in underexplored hallmarks of cancer, which highlights the need to expand future primary- and secondary-level investigations to better define the molecular mechanisms underlying OL malignant transformation. Full article
(This article belongs to the Special Issue Oral Potentially Malignant Disorders and Oral Cavity Cancer)
Show Figures

Figure 1

16 pages, 2340 KiB  
Article
Single-Cell Transcriptomic Changes in Patient-Derived Glioma and U87 Glioblastoma Cell Cultures Infected with the Oncolytic Virus VV-GMCSF-Lact
by Dmitriy V. Semenov, Natalia S. Vasileva, Maxim E. Menyailo, Sergey V. Mishinov, Yulya I. Savinovskaya, Alisa B. Ageenko, Anna S. Chesnokova, Maya A. Dymova, Grigory A. Stepanov, Galina V. Kochneva, Vladimir A. Richter and Elena V. Kuligina
Int. J. Mol. Sci. 2025, 26(14), 6983; https://doi.org/10.3390/ijms26146983 - 20 Jul 2025
Viewed by 333
Abstract
Oncolytic virotherapy is a rapidly evolving approach to cancer treatment. Our group previously designed VV-GMCSF-Lact, a recombinant oncolytic vaccinia virus targeting solid tumors including gliomas. In this study, we used single-cell RNA sequencing to compare transcriptional responses in human glioma cells, non-malignant brain [...] Read more.
Oncolytic virotherapy is a rapidly evolving approach to cancer treatment. Our group previously designed VV-GMCSF-Lact, a recombinant oncolytic vaccinia virus targeting solid tumors including gliomas. In this study, we used single-cell RNA sequencing to compare transcriptional responses in human glioma cells, non-malignant brain cells, and immortalized glioblastoma U87 MG cells following infection with this oncolytic virus. We found that proneural glioblastoma cells and microglia-like cells from patient-derived glioma cultures were the most susceptible to VV-GMCSF-Lact. Increased expressions of histones, translational regulators, and ribosomal proteins positively correlated with viral load at the transcript level. Furthermore, higher viral loads were accompanied by a large-scale downregulation of genes involved in mitochondrial translation, metabolism, and oxidative phosphorylation. Levels of early vaccinia virus transcripts are also positively correlated with infection intensity, suggesting that the fate of cells is determined at the early stage of infection. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 6653 KiB  
Article
Targeting Triple-Negative Breast Cancer with Momordicine-I for Therapeutic Gain in Preclinical Models
by Kousik Kesh, Ellen T. Tran, Ruchi A. Patel, Cynthia X. Ma and Ratna B. Ray
Cancers 2025, 17(14), 2342; https://doi.org/10.3390/cancers17142342 - 15 Jul 2025
Viewed by 326
Abstract
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect [...] Read more.
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect of M-I on TNBC cells (human MDA-MB-231 and mouse 4T1). We used orthotopic mouse models to examine the anti-tumor efficacy of M-I. Tumor volume and the status of tumor-associated macrophages (TAMs) were assessed by qRT-PCR or FACS analysis. Results: We found a significant dose- and time-dependent inhibition of TNBC cell proliferation following treatment with M-I. Cell cycle analysis revealed a shortened S phase in M-I-treated cells and downregulation of AURKA, PLK1, CDC25c, CDK1, and cyclinB1. Furthermore, M-I treatment reduced the expression of pSTAT3, cyclinD1, and c-Myc in TNBC cells. To evaluate the anti-tumor efficacy of M-I, we employed orthotopic TNBC mouse models and observed a significant reduction in tumor growth without measurable toxicity. Next, we analyzed RNA from control and M-I-treated tumors to further assess the status of TAMs and observed a significant decrease in M2-like macrophages in the M-I-treated group. Immortalized bone marrow-derived mouse macrophages (iMacs) exposed to conditioned media (CM) of TNBC cells with or without M-I treatment indicated that the M-I treated CM of TNBC cells significantly reduce the M2phenotype in iMacs. Mechanistically, we found that M-I specifically targets the IL-4/MAPK signaling axis to reduce immunosuppressive M2 macrophage polarization. Conclusions: Our study reveals a novel mechanism by which M-I inhibits TNBC cell proliferation by regulating intracellular signaling and altering TAMs in the tumor microenvironment and highlights its potential as a promising candidate for TNBC therapy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

19 pages, 3181 KiB  
Article
Overexpression of BDNF and uPA Combined with the Suppression of Von Hippel–Lindau Tumor Suppressor Enhances the Neuroprotective Activity of the Secretome of Human Mesenchymal Stromal Cells in the Model of Intracerebral Hemorrhage
by Stalik S. Dzhauari, Alexandra L. Primak, Nataliya A. Basalova, Natalia I. Kalinina, Anna O. Monakova, Kirill D. Bozov, Arkadiy Ya. Velichko, Maria E. Illarionova, Olga A. Grigorieva, Zhanna A. Akopyan, Vladimir S. Popov, Pavel G. Malkov, Anastasia Yu. Efimenko, Vsevolod A. Tkachuk and Maxim N. Karagyaur
Int. J. Mol. Sci. 2025, 26(14), 6697; https://doi.org/10.3390/ijms26146697 - 12 Jul 2025
Viewed by 323
Abstract
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat [...] Read more.
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat survival, reduces the severity of neurological deficits, and decreases the volume of brain damage in a hemorrhagic stroke model. A significant disadvantage of using the MSC secretome is the need to concentrate it (at least 5–10 fold) to achieve appreciable pharmacological activity. This increases the cost of obtaining clinically applicable amounts of secretome and slows down the clinical translation of this technology. Here, we created a number of genetically modified human MSC cultures, including immortalized MSCs and those with hyperexpression of brain-derived neurotrophic factor (BDNF) and urokinase-type plasminogen activator (uPA) and with suppressed expression of Von Hippel–Lindau tumor suppressor (VHL), and we evaluated the pharmacological activity of their secretomes in a model of intracerebral hemorrhage (ICH) in rats. The secretome of MSCs immortalized by hyperexpression of the catalytic subunit of human telomerase (hTERT) revealed neuroprotective activity indistinguishable from that of primary MSC cultures, yet it still required 10-fold concentration to achieve neuroprotective efficacy. The secretome of MSC culture with combined hyperexpression of BDNF and uPA and suppressed expression of Von Hippel–Lindau tumor suppressor even without additional concentration reduced the severity of neurological disorders and decreased brain lesion volume in the ICH model. The secretomes of MSCs with separate overexpression of BDNF and uPA or suppression of VHL had no such effect or, on the contrary, revealed a toxic effect in the ICH model. Presumably, this may be due to an imbalance in the representation of individual growth factors in the secretome of genetically modified MSCs, which individually may lead to undesirable effects in damaged nervous tissue, such as increased permeability of the blood–brain barrier (under the influence of pro-angiogenic factors) or neural cell apoptosis (due to an excess of neurotrophic factors). The obtained data show that genetic modification of MSC cultures can enhance or alter the therapeutic activity of their secretomes, which can be used in the creation of promising sources of biopharmaceutical substances. Full article
Show Figures

Figure 1

26 pages, 4733 KiB  
Article
Structural Characterization and Anti-Ultraviolet Radiation Damage Activity of Polysaccharides from Helianthus annuus (Sunflower) Receptacles
by Xiaochun Chen, Zhiying Wei, Xiaoying Mo, Yantong Lu, Guangjuan Pan, Zhenzhen Pan, Yaohua Li, Hui Tian and Xiaojiao Pan
Molecules 2025, 30(14), 2943; https://doi.org/10.3390/molecules30142943 - 11 Jul 2025
Viewed by 309
Abstract
Helianthus annuus L. (H. annuus) receptacles, a major agricultural by-product generated during seed processing, are currently underutilized. This study aimed to explore the valorization potential of this by-product by extracting H. annuus receptacles total polysaccharides (HRTP) and characterizing their potential [...] Read more.
Helianthus annuus L. (H. annuus) receptacles, a major agricultural by-product generated during seed processing, are currently underutilized. This study aimed to explore the valorization potential of this by-product by extracting H. annuus receptacles total polysaccharides (HRTP) and characterizing their potential as natural ingredients in ultraviolet (UV)-protective cosmetics. A new purified polysaccharide named H. annuus receptacles polysaccharide-1 (HRP-1) was isolated, likely exhibiting a backbone of alternating →4)-α-D-GalA-(1→ and →4)-α-D-GalA(6-OCH3)-(1→ units, with a weight-average molecular weight (Mw) of 163 kDa. HRTP demonstrated significant protective effects against UV-induced damage in human immortalized keratinocyte (HaCaT) cells by suppressing intracellular reactive oxygen species (ROS) levels and downregulating MAPK-p38/ERK/JNK pathways, thereby inhibiting inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) and matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Additionally, HRTP exhibited moisturizing properties. These findings highlight H. annuus receptacle polysaccharides as sustainable, bioactive ingredients for eco-friendly sunscreen formulations, providing a practical approach to converting agricultural by-products into high-value industrial biomaterials. Full article
Show Figures

Graphical abstract

11 pages, 2796 KiB  
Article
In Vitro and Ex Vivo Evaluation of Rifampicin Cytotoxicity in Human Skin Models
by Marcel Nani Leite, Natália Aparecida de Paula, Leandra Náira Zambelli Ramalho and Marco Andrey Cipriani Frade
Antibiotics 2025, 14(7), 691; https://doi.org/10.3390/antibiotics14070691 - 8 Jul 2025
Viewed by 332
Abstract
Background/Objectives: Drugs for human use require several studies for the assessment of their efficacy and safety. An important property is cytotoxicity, which should be tested in different environments and models in closer proximity to the final use of the drug, with greater [...] Read more.
Background/Objectives: Drugs for human use require several studies for the assessment of their efficacy and safety. An important property is cytotoxicity, which should be tested in different environments and models in closer proximity to the final use of the drug, with greater reliability. Thus, we proposed to evaluate the toxicity of rifampicin, the only bactericidal drug in the anti-leprosy multidrug therapy, using skin cells and skin explant cultures. Methods: Cell viability was tested by the MTT method using primary keratinocytes and fibroblasts and immortalized skin cells (HaCaT and 3T3) at 24, 48, and 72 h of treatment. For the skin explant, we used the TTC assay to determine viability (24, 48, 72, and 96 h), hematoxylin and eosin staining to analyze the structure and architecture of the tissue, and TUNEL to assess apoptotic cells at 3, 6, 12, 24, 48, 72, and 96 h. Results: Regarding the toxicity of primary and immortalized cells, viability was above 70% up to a concentration of 50 μg/mL at 24, 48, and 72 h, and at the concentration of 200 μg/mL, all cells showed greater sensitivity, especially at 72 h. Tissue viability analysis revealed a high percentage (above 96%) of viable tissue at the concentrations of 100, 150, and 200 μg/mL at the time points studied. Histological analysis showed that tissue architecture was maintained, with no apoptotic cells being observed. Conclusions: Thus, our results showed the importance of evaluating drug toxicity using different cell types, with the ex vivo skin model proving to be an alternative to animal use. Full article
Show Figures

Figure 1

15 pages, 3156 KiB  
Article
Formation and Characterization of Two Magnetic Three-Dimensional Spheroid Models of Murine Pancreatic Adenocarcinoma
by Magali Perier, Litan Wang, Marine Simonneau, Jacqueline Ngo-Reymond, Julie Guillermet-Guibert, Maxime Lafond and Cyril Lafon
Methods Protoc. 2025, 8(4), 75; https://doi.org/10.3390/mps8040075 - 7 Jul 2025
Viewed by 373
Abstract
Pancreatic adenocarcinoma remains one of the deadliest cancers, with limited treatment options and high chemoresistance. Traditional 2D cell cultures fail to accurately replicate the tumor architecture. Our study introduces three-dimensional (3D) pancreatic adenocarcinoma spheroid models using magnetic aggregation of pancreatic cancer cells and [...] Read more.
Pancreatic adenocarcinoma remains one of the deadliest cancers, with limited treatment options and high chemoresistance. Traditional 2D cell cultures fail to accurately replicate the tumor architecture. Our study introduces three-dimensional (3D) pancreatic adenocarcinoma spheroid models using magnetic aggregation of pancreatic cancer cells and immortalized fibroblasts in either liquid culture medium or embedded in hydrogels. The spheroids’ growth was characterized using optical imaging, while viability was assessed using ATP quantification and flow cytometry. Results demonstrated successful spheroid formation and growth. Further analysis suggested that on one hand, culture in liquid medium and ATP-based viability assessment are practical for initial experiments. On the other hand, hydrogel culture and flow cytometry, although being more resource- and labor-intensive, provided both a more reproducible and detailed viability analysis. Full article
(This article belongs to the Section Tissue Engineering and Organoids)
Show Figures

Figure 1

22 pages, 3822 KiB  
Article
Human Extravillous Trophoblasts Require SRC-2 for Sustained Viability, Migration, and Invasion
by Vineet K. Maurya, Pooja Popli, Bryan C. Nikolai, David M. Lonard, Ramakrishna Kommagani, Bert W. O’Malley and John P. Lydon
Cells 2025, 14(13), 1024; https://doi.org/10.3390/cells14131024 - 4 Jul 2025
Viewed by 458
Abstract
Defective placentation is a recognized etiology for several gestational complications that include early pregnancy loss, preeclampsia, and intrauterine growth restriction. Sustained viability, migration, and invasion are essential cellular properties for embryonic extravillous trophoblasts to execute their roles in placental development and function, while [...] Read more.
Defective placentation is a recognized etiology for several gestational complications that include early pregnancy loss, preeclampsia, and intrauterine growth restriction. Sustained viability, migration, and invasion are essential cellular properties for embryonic extravillous trophoblasts to execute their roles in placental development and function, while derailment of these cellular processes is linked to placental disorders. Although the cellular functions of extravillous trophoblasts are well recognized, our understanding of the pivotal molecular determinants of these functions is incomplete. Using the HTR-8/SVneo immortalized human extravillous trophoblast cell line, we report that steroid receptor coactivator-2 (SRC-2), a coregulator of transcription factor-mediated gene expression, is essential for extravillous trophoblast cell viability, motility, and invasion. Genome-scale transcriptomics identified an SRC-2-dependent transcriptome in HTR-8/SVneo cells that encodes a diverse spectrum of proteins involved in placental tissue development and function. Underscoring the utility of this transcriptomic dataset, we demonstrate that WNT family member 9A (WNT 9A) is not only regulated by SRC-2 but is also crucial for maintaining many of the above SRC-2-dependent cellular functions of human extravillous trophoblasts. Full article
Show Figures

Figure 1

15 pages, 2550 KiB  
Article
Anti-Inflammatory Secondary Metabolites from Penicillium sp. NX-S-6
by Hanyang Peng, Jiawen Sun, Rui Zhang, Yuxuan Qiu, Yu Hong, Fengjuan Zhou, Chang Wang, Yang Hu and Xiachang Wang
Mar. Drugs 2025, 23(7), 280; https://doi.org/10.3390/md23070280 - 4 Jul 2025
Viewed by 499
Abstract
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known [...] Read more.
Five new natural products, including two sorbicillinoids (12), one indolinone alkaloid (10), one tetracyclic steroid (11), and one α-pyrone derivative (14), were identified from the endophytic Penicillium sp. NX-S-6, together with thirteen known natural products. The structures of new compounds were unambiguously elucidated by comprehensive spectroscopic analyses (NMR, MS), as well as electronic circular dichroism (ECD) calculation. Notably, quinosorbicillinol (1) was identified as a rare hybrid sorbicillinoid incorporating a quinolone moiety, representing a unique structural scaffold in this natural product class. Biological evaluation revealed that Compounds 1, 4 and 8 potently inhibited the production of nitric oxide and interleukin 6 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Mechanistic studies furthermore demonstrated that Compounds 4 and 8 effectively suppressed interleukin-1β secretion in LPS-induced immortalized mouse bone marrow-derived macrophages (iBMDMs) by blocking NLRP3 inflammasome activation. This inhibition was attributed to their ability to disrupt the assembly of the NLRP3-caspase-1 complex, a key event in the pathogenesis of inflammatory disorders. These findings not only expand the structural diversity of endophyte-derived natural products but also highlight their potential as lead compounds for developing anti-inflammatory therapeutics targeting the NLRP3 pathway. Full article
(This article belongs to the Special Issue Structural Diversity in Marine Natural Products)
Show Figures

Figure 1

14 pages, 2345 KiB  
Article
Transcript PHF19-207 May Be a Long Non-Coding RNA with Tumor-Promoting Role in Colon Cancer
by Dunja Pavlovic, Tamara Babic, Sofija Ignjatovic, Katarina Pavlovic, Sandra Dragicevic and Aleksandra Nikolic
Biomolecules 2025, 15(7), 957; https://doi.org/10.3390/biom15070957 - 2 Jul 2025
Viewed by 313
Abstract
Recent pan-cancer transcriptome analysis has revealed differential activity of two alternative PHF19 gene promoters in malignant versus non-malignant gut mucosa. One of these promoters upregulated in colon cancer leads to the expression of the PHF19-207 transcript, suggesting its potential role in tumor promotion. [...] Read more.
Recent pan-cancer transcriptome analysis has revealed differential activity of two alternative PHF19 gene promoters in malignant versus non-malignant gut mucosa. One of these promoters upregulated in colon cancer leads to the expression of the PHF19-207 transcript, suggesting its potential role in tumor promotion. The objective of this study was to investigate the function of PHF19-207 using in silico tools and publicly available data, as well as to assess its expression in colon cancer. Expression analyses were conducted via qPCR and RNA sequencing on RNA extracted from the immortalized colonic epithelial cell line HCEC-1CT, as well as a series of colon cancer cell lines cultured in both 2D and 3D environments. The expression of PHF19-207 was found to be elevated in all malignant cell lines compared to the non-malignant HCEC-1CT cell line in both culture conditions, with the most prominent increase observed in cell lines derived from advanced stages of the disease and in the HCEC-1CT cell line overexpressing KRAS. Furthermore, the PHF19-207 transcript was detected in exosomes derived from malignant cells. These findings suggest that PHF19-207 holds potential as a diagnostic biomarker. In addition, in silico analyses indicate that this transcript may function as a long non-coding RNA involved in the regulation of gene expression. Further functional investigations are required to elucidate its precise role in colon carcinogenesis. Full article
Show Figures

Graphical abstract

14 pages, 1948 KiB  
Article
Establishing a 3D Spheroid Model of Cholinergic Neurons from SH-SY5Y Cells for Neurotoxicity Assessment
by Felipe Franco-Campos, Mónica Fernández-Franzón, Yelko Rodríguez-Carrasco and María-José Ruiz
Toxins 2025, 17(7), 336; https://doi.org/10.3390/toxins17070336 - 2 Jul 2025
Viewed by 525
Abstract
The nervous system maintains homeostasis and coordinated behavior through complex neuronal and glial cells. Traditional models, such as primary rodent neurons and human-induced pluripotent stem cell (hIPSC)-derived neurons, have advanced our understanding of neuronal function and neurotoxic damage; however, they are costly and [...] Read more.
The nervous system maintains homeostasis and coordinated behavior through complex neuronal and glial cells. Traditional models, such as primary rodent neurons and human-induced pluripotent stem cell (hIPSC)-derived neurons, have advanced our understanding of neuronal function and neurotoxic damage; however, they are costly and labor-intensive. SH-SY5Y cells, an immortalized human neuroblastoma cell line, provide a more accessible alternative for studying neuronal processes and neurotoxicity. However, their limited capacity to differentiate into specific neuronal phenotypes remains a challenge. To address this limitation, differentiation protocols using neuronal factors and vitamins have been developed, primarily in two-dimensional (2D) cultures, which reduces physiological relevance. Here, we present a novel three-dimensional (3D) SH-SY5Y model incorporating 2D differentiation protocols to generate cholinergic neurons (ChAT+). This model enhances neurotoxicity studies related to pesticides and mycotoxins. Our protocol produces homogeneous spheroids differentiated into cholinergic neurons using serum restriction and specific factors, maintaining viability and circularity for up to 22 days. Differentiation was validated by immunofluorescence and Western blot by Choline acetyltransferase (ChAT) expression. This scalable and reproducible 3D model provides a valuable in vitro tool for neurotoxicological research, improving physiological relevance and enabling the study of cholinergic neuron differentiation and function. Full article
Show Figures

Figure 1

Back to TopTop