Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = image transceiver

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3879 KB  
Article
Bluetooth Low Energy-Based Docking Solution for Mobile Robots
by Kyuman Lee
Electronics 2026, 15(2), 483; https://doi.org/10.3390/electronics15020483 - 22 Jan 2026
Viewed by 84
Abstract
Existing docking methods for mobile robots rely on a LiDAR sensor or image processing using a camera. Although both demonstrate excellent performance in terms of sensing distance and spatial resolution, they are sensitive to environmental effects, such as illumination and occlusion, and are [...] Read more.
Existing docking methods for mobile robots rely on a LiDAR sensor or image processing using a camera. Although both demonstrate excellent performance in terms of sensing distance and spatial resolution, they are sensitive to environmental effects, such as illumination and occlusion, and are expensive. Some environments or conditions require low-power, low-cost novel docking solutions that are less sensitive to the environment. In this study, we propose a guidance and navigation solution for a mobile robot to dock into a docking station using the values of the angle of arrival and received signal strength indicator between the mobile robot and the docking station, measured via wireless communication based on Bluetooth low energy (BLE). This proposed algorithm is a LiDAR- and camera-free docking solution. The proposed algorithm is used to run an actual mobile robot and BLE transceiver hardware, and the obtained result is significantly close to the ground truth for docking. Full article
Show Figures

Figure 1

18 pages, 842 KB  
Article
Model-Embedded Lightweight Network for Joint I/Q Imbalance and CFO Estimation in NB-IoT
by Yijun Ling and Yue Meng
Symmetry 2025, 17(12), 2157; https://doi.org/10.3390/sym17122157 - 15 Dec 2025
Viewed by 292
Abstract
Narrowband Internet of Things (NB-IoT) was designed as a key Low-Power Wide-Area Network technology when 5G networks were established. The ideal quadrature demodulation in NB-IoT relies on the fundamental symmetry between the in-phase (I) and quadrature (Q) branches, characterized by a perfect 90-degree [...] Read more.
Narrowband Internet of Things (NB-IoT) was designed as a key Low-Power Wide-Area Network technology when 5G networks were established. The ideal quadrature demodulation in NB-IoT relies on the fundamental symmetry between the in-phase (I) and quadrature (Q) branches, characterized by a perfect 90-degree phase shift and matched amplitude. However, practical hardware imperfections in mixers, filters, and ADCs break this symmetry, leading to I/Q imbalances. Moreover, I/Q imbalance is coupled with carrier frequency offset (CFO), which arises from asymmetry in the frequency of the transceiver oscillator. In this paper, we propose a model-embedded lightweight network for joint CFO and I/Q imbalance estimation for NB-IoT systems. An I/Q imbalance compensation model is embedded as a layer to connect two subnetworks, I/Q estimation network (IQENET) and CFO estimation network (CFOENET). By embedding the physical model, the network gains the capability to learn the features of coupling effects during the training process, as the image signals caused by I/Q imbalance are removed before CFO estimation. A phased training strategy is also proposed. In the first phase, the two subnetworks are pre-trained independently. In the second phase, they are fine-tuned jointly to deal with the coupling effects. Simulation results show that the proposed network achieves high estimation accuracy while maintaining low complexity. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Wireless Sensor Networks)
Show Figures

Figure 1

12 pages, 2730 KB  
Article
A Ka-Band CMOS Transmit/Receive Amplifier with Embedded Switch for Time-Division Duplex Applications
by Peng Gu, Jiajun Zhang and Dixian Zhao
Micromachines 2025, 16(12), 1309; https://doi.org/10.3390/mi16121309 - 22 Nov 2025
Viewed by 449
Abstract
Time-division duplex (TDD) transceivers have found broad utility in millimeter-wave 5G communication, radar and imaging applications. The co-design of the switch and transmit/receive (T/R) amplifiers becomes essential in optimizing the passive loss and chip size. This work presents a Ka-band T/R amplifier with [...] Read more.
Time-division duplex (TDD) transceivers have found broad utility in millimeter-wave 5G communication, radar and imaging applications. The co-design of the switch and transmit/receive (T/R) amplifiers becomes essential in optimizing the passive loss and chip size. This work presents a Ka-band T/R amplifier with an embedded switch topology. The amplification cores from the TX and RX channels reuse the matching network to the T/R common port, and the full combination of switching and matching structures is enabled within a compact two-winding transformer. Implemented in 40 nm CMOS technology, the proof-of-concept Ka-band T/R amplifier occupies a core chip area of 0.163 mm2. Experimental results show that it achieves a peak gain of 17.2 dB with a −3 dB bandwidth of 22.6–30.2 GHz in TX mode and a peak of 17.1 dB with a −3 dB bandwidth of 23.4–31.0 GHz in RX mode. The compact size and wideband gain response make the proposed T/R amplifier suitable for Ka-band TDD applications. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

38 pages, 9535 KB  
Article
Novel Design and Experimental Validation of a Technique for Suppressing Distortion Originating from Various Sources in Multiantenna Full-Duplex Systems
by Keng-Hwa Liu, Juinn-Horng Deng and Min-Siou Yang
Electronics 2025, 14(21), 4300; https://doi.org/10.3390/electronics14214300 - 31 Oct 2025
Viewed by 424
Abstract
Complex distortion cancellation methods are often used at the radio frequency (RF) front end of multiantenna full-duplex transceivers to mitigate signal distortion; however, these methods have high computational complexity and limited practicality. To address these problems, the present study explored the complexities associated [...] Read more.
Complex distortion cancellation methods are often used at the radio frequency (RF) front end of multiantenna full-duplex transceivers to mitigate signal distortion; however, these methods have high computational complexity and limited practicality. To address these problems, the present study explored the complexities associated with such transceivers to develop a practical multistep approach for suppressing distortions arising from in-phase and quadrature (I/Q) imbalance, nonlinear power amplifier (PA) responses, and multipath self-interference caused by simultaneous transmissions on the same frequency. In this approach, the I/Q imbalance is estimated and then compensated for, following which nonlinear PA distortion is estimated and pre-compensated for. Subsequently, an auxiliary RF transmitter is combined with linearly regenerating self-interference signals to achieve full-duplex self-interference cancellation. The proposed method was implemented on a software-defined radio platform, with the distortion factor calibration specifically optimized for multiantenna full-duplex transceivers. The experimental results indicate that the image signal caused by I/Q imbalance can be suppressed by up to 60 dB through iterative computation. By combining IQI and DPD preprocessing, the nonlinear distortion spectrum can be reduced by 25 dB. Furthermore, integrating IQI, DPD, and self-interference preprocessing achieves up to 180 dB suppression of self-interference signals. Experimental results also demonstrate that the proposed method achieves approximately 20 dB suppression of self-interference. Thus, the method has high potential for enhancing the performance of multiantenna RF full-duplex systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 5247 KB  
Article
3D Sensitivity Zone Mapping in a Multi-Static, Microwave Breast Imaging Configuration
by Paul Meaney, Zamzam Kordiboroujeni and Keith Paulsen
Sensors 2025, 25(16), 5150; https://doi.org/10.3390/s25165150 - 19 Aug 2025
Viewed by 819
Abstract
One of the keys to medical microwave tomography is understanding the sensitivity of transmit–receive signals to changes in the electromagnetic properties to be reconstructed. This information is embedded in the Jacobian matrix for traditional inverse problem approaches and is a function of transmitter–receiver [...] Read more.
One of the keys to medical microwave tomography is understanding the sensitivity of transmit–receive signals to changes in the electromagnetic properties to be reconstructed. This information is embedded in the Jacobian matrix for traditional inverse problem approaches and is a function of transmitter–receiver design characteristics and associated signal radiation/detection patterns. Previous efforts focused primarily on the 2D imaging problem for which sensitivity maps were generated in a single plane. In this paper, we describe sensitivity maps for the full 3D problem for monopole transceivers and their implications for associated antenna array configurations, including imaging zone coverage and computational efficiency. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

21 pages, 5140 KB  
Article
LoRa Resource Allocation Algorithm for Higher Data Rates
by Hossein Keshmiri, Gazi M. E. Rahman and Khan A. Wahid
Sensors 2025, 25(2), 518; https://doi.org/10.3390/s25020518 - 17 Jan 2025
Cited by 5 | Viewed by 3219
Abstract
LoRa modulation is a widely used technology known for its long-range transmission capabilities, making it ideal for applications with low data rate requirements, such as IoT-enabled sensor networks. However, its inherent low data rate poses a challenge for applications that require higher throughput, [...] Read more.
LoRa modulation is a widely used technology known for its long-range transmission capabilities, making it ideal for applications with low data rate requirements, such as IoT-enabled sensor networks. However, its inherent low data rate poses a challenge for applications that require higher throughput, such as video surveillance and disaster monitoring, where large image files must be transmitted over long distances in areas with limited communication infrastructure. In this paper, we introduce the LoRa Resource Allocation (LRA) algorithm, designed to address these limitations by enabling parallel transmissions, thereby reducing the total transmission time (Ttx) and increasing the bit rate (BR). The LRA algorithm leverages the quasi-orthogonality of LoRa’s Spreading Factors (SFs) and employs specially designed end devices equipped with dual LoRa transceivers, each operating on a distinct SF. For experimental analysis we choose an image transmission application and investigate various parameter combinations affecting Ttx to optimize interference, BR, and image quality. Experimental results show that our proposed algorithm reduces Ttx by 42.36% and 19.98% for SF combinations of seven and eight, and eight and nine, respectively. In terms of BR, we observe improvements of 73.5% and 24.97% for these same combinations. Furthermore, BER analysis confirms that the LRA algorithm delivers high-quality images at SNR levels above −5 dB in line-of-sight communication scenarios. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

11 pages, 2570 KB  
Article
Three-Dimensional Scanning Virtual Aperture Imaging with Metasurface
by Zhan Ou, Yuan Liang, Hua Cai and Guangjian Wang
Sensors 2025, 25(1), 280; https://doi.org/10.3390/s25010280 - 6 Jan 2025
Viewed by 1661
Abstract
Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual [...] Read more.
Metasurface-based imaging is attractive due to its low hardware costs and system complexity. However, most of the current metasurface-based imaging systems require stochastic wavefront modulation, complex computational post-processing, and are restricted to 2D imaging. To overcome these limitations, we propose a scanning virtual aperture imaging system. The system first uses a focused beam to achieve near-field focal plane scanning, meanwhile forming a virtual aperture. Secondly, an adapted range migration algorithm (RMA) with a pre-processing step is applied to the virtual aperture to achieve a 3D high-resolution reconstruction. The pre-processing step fully exploits the feature of near-field beamforming that only a time delay is added on the received signal, which introduces ignorable additional calculation time. We build a compact prototype system working at a frequency from 38 to 40 GHz. Both the simulations and the experiments demonstrate that the proposed system can achieve high-quality imaging without complex implementations. Our method can be widely used for single-transceiver coherent systems to significantly improve the imaging depth of field (DOF). Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

11 pages, 4656 KB  
Article
Mechanically Adjustable 4-Channel RF Transceiver Coil Array for Rat Brain Imaging in a Whole-Body 7 T MR Scanner
by Sigrun Roat, Lena Nohava and Elmar Laistler
Sensors 2024, 24(16), 5377; https://doi.org/10.3390/s24165377 - 20 Aug 2024
Cited by 1 | Viewed by 1939
Abstract
Investigations of human brain disorders are frequently conducted in rodent models using magnetic resonance imaging. Due to the small specimen size and the increase in signal-to-noise ratio with the static magnetic field strength, dedicated small-bore animal scanners can be used to acquire high-resolution [...] Read more.
Investigations of human brain disorders are frequently conducted in rodent models using magnetic resonance imaging. Due to the small specimen size and the increase in signal-to-noise ratio with the static magnetic field strength, dedicated small-bore animal scanners can be used to acquire high-resolution data. Ultra-high-field (≥7 T) whole-body human scanners are increasingly available, and they can also be used for animal investigations. Dedicated sensors, in this case, radiofrequency coils, are required to achieve sufficient sensitivity for the high spatial resolution needed for imaging small anatomical structures. In this work, a four-channel transceiver coil array for rat brain imaging at 7 T is presented, which can be adjusted for use on a wide range of differently sized rats, from infants to large adults. Three suitable array designs (with two to four elements covering the whole rat brain) were compared using full-wave 3D electromagnetic simulation. An optimized static B1+ shim was derived to maximize B1+ in the rat brain for both small and big rats. The design, together with a 3D-printed adjustable coil housing, was tested and validated in ex vivo rat bench and MRI measurements. Full article
(This article belongs to the Special Issue Sensors in Magnetic Resonance Imaging)
Show Figures

Figure 1

31 pages, 4981 KB  
Review
Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications
by Cristina Origlia, David O. Rodriguez-Duarte, Jorge A. Tobon Vasquez, Jean-Charles Bolomey and Francesca Vipiana
Sensors 2024, 24(14), 4515; https://doi.org/10.3390/s24144515 - 12 Jul 2024
Cited by 41 | Viewed by 10713
Abstract
Microwaves can safely and non-destructively illuminate and penetrate dielectric materials, making them an attractive solution for various medical tasks, including detection, diagnosis, classification, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and the growth in computing capabilities have encouraged the development of numerous [...] Read more.
Microwaves can safely and non-destructively illuminate and penetrate dielectric materials, making them an attractive solution for various medical tasks, including detection, diagnosis, classification, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and the growth in computing capabilities have encouraged the development of numerous microwave sensing and imaging systems in the medical field, with the potential to complement or even replace current gold-standard methods. This review aims to provide a comprehensive update on the latest advances in medical applications of microwaves, particularly focusing on the near-field ones working within the 1–15 GHz frequency range. It specifically examines significant strides in the development of clinical devices for brain stroke diagnosis and classification, breast cancer screening, and continuous blood glucose monitoring. The technical implementation and algorithmic aspects of prototypes and devices are discussed in detail, including the transceiver systems, radiating elements (such as antennas and sensors), and the imaging algorithms. Additionally, it provides an overview of other promising cutting-edge microwave medical applications, such as knee injuries and colon polyps detection, torso scanning and image-based monitoring of thermal therapy intervention. Finally, the review discusses the challenges of achieving clinical engagement with microwave-based technologies and explores future perspectives. Full article
(This article belongs to the Special Issue Microwave Sensing Systems)
Show Figures

Figure 1

15 pages, 5563 KB  
Article
Combining Dipole and Loop Coil Elements for 7 T Magnetic Resonance Studies of the Human Calf Muscle
by Veronika Cap, Vasco Rafael Rocha dos Santos, Kostiantyn Repnin, David Červený, Elmar Laistler, Martin Meyerspeer and Roberta Frass-Kriegl
Sensors 2024, 24(11), 3309; https://doi.org/10.3390/s24113309 - 22 May 2024
Cited by 2 | Viewed by 2981
Abstract
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high [...] Read more.
Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right–left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils. Full article
(This article belongs to the Special Issue Sensors in Magnetic Resonance Imaging)
Show Figures

Figure 1

14 pages, 3468 KB  
Article
Through-Ice Acoustic Communication for Ocean Worlds Exploration
by Hyeong Jae Lee, Yoseph Bar-Cohen, Mircea Badescu, Stewart Sherrit, Benjamin Hockman, Scott Bryant, Samuel M. Howell, Elodie Lesage and Miles Smith
Sensors 2024, 24(9), 2776; https://doi.org/10.3390/s24092776 - 26 Apr 2024
Cited by 1 | Viewed by 2673
Abstract
Subsurface exploration of ice-covered planets and moons presents communications challenges because of the need to communicate through kilometers of ice. The objective of this task is to develop the capability to wirelessly communicate through kilometers of ice and thus complement the potentially failure-prone [...] Read more.
Subsurface exploration of ice-covered planets and moons presents communications challenges because of the need to communicate through kilometers of ice. The objective of this task is to develop the capability to wirelessly communicate through kilometers of ice and thus complement the potentially failure-prone tethers deployed behind an ice-penetrating probe on Ocean Worlds. In this paper, the preliminary work on the development of wireless deep-ice communication is presented and discussed. The communication test and acoustic attenuation measurements in ice have been made by embedding acoustic transceivers in glacial ice at the Matanuska Glacier, Anchorage, Alaska. Field test results show that acoustic communication is viable through ice, demonstrating the transmission of data and image files in the 13–18 kHz band over 100 m. The results suggest that communication over many kilometers of ice thickness could be feasible by employing reduced transmitting frequencies around 1 kHz, though future work is needed to better constrain the likely acoustic attenuation properties through a refrozen borehole. Full article
Show Figures

Figure 1

18 pages, 9098 KB  
Article
A Full-Duplex 60 GHz Transceiver with Digital Self-Interference Cancellation
by Yisheng Wang, Bharatha Kumar Thangarasu, Nagarajan Mahalingam, Kaixue Ma, Fanyi Meng, Yibo Huang and Kiat Seng Yeo
Electronics 2024, 13(3), 483; https://doi.org/10.3390/electronics13030483 - 24 Jan 2024
Cited by 2 | Viewed by 3004
Abstract
This paper presents the design and measurement of an IEEE 802.11ad standard compatible RF transceiver for 60 GHz wireless communication systems. In addition to the traditional half-duplex (HD) mode, this work supports full-duplex (FD) operations to deliver better channel utilization and faster response [...] Read more.
This paper presents the design and measurement of an IEEE 802.11ad standard compatible RF transceiver for 60 GHz wireless communication systems. In addition to the traditional half-duplex (HD) mode, this work supports full-duplex (FD) operations to deliver better channel utilization and faster response times for the system. The isolation between the transmitter and receiver from the architecture design to system integration for FD operations has been fully considered. A digital self-interference cancellation (DSIC) is implemented in MATLAB to verify the FD performance. The super-heterodyne architecture with an intermediate frequency (IF) of 12 GHz is designed to suppress the image frequencies without using extra filters. A flexible phase-locked loop (PLL) synthesizer provides a local oscillator (LO) frequency with a 2 kHz resolution. Other than the time division duplex (TDD) mode used in the conventional 60 GHz system, a wide-bandwidth baseband digital variable-gain amplifier (DVGA) with a 3 dB bandwidth of more than 4 GHz also supports frequency division duplex (FDD) operations. The transceiver chip is fabricated using the Tower Jazz 0.18 µm SiGe BiCMOS process. With an on-board antenna, the transceiver covers all four channels in the 802.11ad standard, with MCS-12 (7.04 Gbps under 1.76 GSym/s and 16-QAM) under 1.5 m. In the proposed system design, the RF frontend-based self-interference (SI) suppression from the local transmitter to receiver LNA is around 54 dB. To achieve a practical FD application, the SI is further suppressed with the help of a digital SI compensation. The measured power consumption for the transmitter and receiver configurations are 194 mW and 231 mW, respectively, in HD mode and 398 mW for the FDD or FD operation mode. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

17 pages, 7346 KB  
Article
W-Band FMCW MIMO System for 3-D Imaging Based on Sparse Array
by Wenyuan Shao, Jianmin Hu, Yicai Ji, Wenrui Zhang and Guangyou Fang
Electronics 2024, 13(2), 369; https://doi.org/10.3390/electronics13020369 - 16 Jan 2024
Cited by 7 | Viewed by 2891
Abstract
Multiple-input multiple-output (MIMO) technology is widely used in the field of security imaging. However, existing imaging systems have shortcomings such as numerous array units, high hardware costs, and low imaging resolutions. In this paper, a sparse array-based frequency modulated continuous wave (FMCW) millimeter [...] Read more.
Multiple-input multiple-output (MIMO) technology is widely used in the field of security imaging. However, existing imaging systems have shortcomings such as numerous array units, high hardware costs, and low imaging resolutions. In this paper, a sparse array-based frequency modulated continuous wave (FMCW) millimeter wave imaging system, operating in the W-band, is presented. In order to reduce the number of transceiver units of the system and lower the hardware cost, a linear sparse array with a periodic structure was designed using the MIMO technique. The system operates at 70~80 GHz, and the high operating frequency band and 10 GHz bandwidth provide good imaging resolution. The system consists of a one-dimensional linear array, a motion control system, and hardware for signal generation and image reconstruction. The channel calibration technique was used to eliminate inherent errors. The system combines mechanical and electrical scanning, and uses FMCW signals to extract distance information. The three-dimensional (3-D) fast imaging algorithm in the wave number domain was utilized to quickly process the detection data. The 3-D imaging of the target in the near-field was obtained, with an imaging resolution of 2 mm. The imaging ability of the system was verified through simulations and experiments. Full article
(This article belongs to the Special Issue Radar Signal Processing Technology)
Show Figures

Figure 1

12 pages, 3619 KB  
Article
A Synthetic Ultra-Wideband Transceiver for Millimeter-Wave Imaging Applications
by Amir Mirbeik, Laleh Najafizadeh and Negar Ebadi
Micromachines 2023, 14(11), 2031; https://doi.org/10.3390/mi14112031 - 31 Oct 2023
Cited by 2 | Viewed by 2034
Abstract
In this work, we present a transceiver front-end in SiGe BiCMOS technology that can provide an ultra-wide bandwidth of 100 GHz at millimeter-wave frequencies. The front-end utilizes an innovative arrangement to efficiently distribute broadband-generated pulses and coherently combine received pulses with minimal loss. [...] Read more.
In this work, we present a transceiver front-end in SiGe BiCMOS technology that can provide an ultra-wide bandwidth of 100 GHz at millimeter-wave frequencies. The front-end utilizes an innovative arrangement to efficiently distribute broadband-generated pulses and coherently combine received pulses with minimal loss. This leads to the realization of a fully integrated ultra-high-resolution imaging chip for biomedical applications. We realized an ultra-wide imaging band-width of 100 GHz via the integration of two adjacent disjointed frequency sub-bands of 10–50 GHz and 50–110 GHz. The transceiver front-end is capable of both transmit (TX) and receive (RX) operations. This is a crucial component for a system that can be expanded by repeating a single unit cell in both the horizontal and vertical directions. The imaging elements were designed and fabricated in Global Foundry 130-nm SiGe 8XP process technology. Full article
(This article belongs to the Special Issue Micromachines Research and Development in North America)
Show Figures

Figure 1

22 pages, 6363 KB  
Article
Identification of Solid and Liquid Materials Using Acoustic Signals and Frequency-Graph Features
by Jie Zhang and Kexin Zhou
Entropy 2023, 25(8), 1170; https://doi.org/10.3390/e25081170 - 5 Aug 2023
Cited by 1 | Viewed by 2425
Abstract
Material identification is playing an increasingly important role in various sectors such as industry, petrochemical, mining, and in our daily lives. In recent years, material identification has been utilized for security checks, waste sorting, etc. However, current methods for identifying materials require direct [...] Read more.
Material identification is playing an increasingly important role in various sectors such as industry, petrochemical, mining, and in our daily lives. In recent years, material identification has been utilized for security checks, waste sorting, etc. However, current methods for identifying materials require direct contact with the target and specialized equipment that can be costly, bulky, and not easily portable. Past proposals for addressing this limitation relied on non-contact material identification methods, such as Wi-Fi-based and radar-based material identification methods, which can identify materials with high accuracy without physical contact; however, they are not easily integrated into portable devices. This paper introduces a novel non-contact material identification based on acoustic signals. Different from previous work, our design leverages the built-in microphone and speaker of smartphones as the transceiver to identify target materials. The fundamental idea of our design is that acoustic signals, when propagated through different materials, reach the receiver via multiple paths, producing distinct multipath profiles. These profiles can serve as fingerprints for material identification. We captured and extracted them using acoustic signals, calculated channel impulse response (CIR) measurements, and then extracted image features from the time–frequency domain feature graphs, including histogram of oriented gradient (HOG) and gray-level co-occurrence matrix (GLCM) image features. Furthermore, we adopted the error-correcting output code (ECOC) learning method combined with the majority voting method to identify target materials. We built a prototype for this paper using three mobile phones based on the Android platform. The results from three different solid and liquid materials in varied multipath environments reveal that our design can achieve average identification accuracies of 90% and 97%. Full article
Show Figures

Figure 1

Back to TopTop