Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = ideal immersion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4175 KiB  
Article
Alluvial Fan Scree Deposits: Formation Characteristics and Erosion Mitigation Strategies
by Fengling Ji, Wei Li, Qingfeng Lv, Zhongping Chen and Xi Yu
Appl. Sci. 2025, 15(13), 7289; https://doi.org/10.3390/app15137289 - 28 Jun 2025
Viewed by 181
Abstract
Alluvial fan scree deposits (AFSDs) in arid/semi-arid regions are highly susceptible to rainfall-induced erosion, posing significant risks to infrastructure like oil pipelines. This study evaluates the efficacy of SH polymer materials in enhancing AFSD erosion resistance through three experimental approaches: film characterization, rainfall [...] Read more.
Alluvial fan scree deposits (AFSDs) in arid/semi-arid regions are highly susceptible to rainfall-induced erosion, posing significant risks to infrastructure like oil pipelines. This study evaluates the efficacy of SH polymer materials in enhancing AFSD erosion resistance through three experimental approaches: film characterization, rainfall erosion simulation, and environmental compatibility assessment. Tensile tests demonstrated that SH polymer films (0.16–0.56 mm thick) retained >80% mass after prolonged immersion, exhibiting prolonged ductility (250 mm elongation) and stable post-immersion softening, ideal for enduring cyclic erosion. Rainfall simulations (200 mm/h intensity) revealed that SH application rates ≥ 1.5 kg/m2 reduced soil loss by >90%, with 2.0 kg/m2 ensuring near-complete slope integrity across planar/curved morphologies. Ecological tests confirmed SH’s environmental friendliness, as treated soils supported robust tall fescue growth without permeability inhibition. The findings advocate SH polymers as a sustainable solution for AFSD stabilization, combining mechanical resilience, terrain adaptability, and eco-compatibility. Full article
Show Figures

Figure 1

17 pages, 1637 KiB  
Article
Influence of Laminated Expanded Clay Proportion on Mortar Properties
by Vanessa Gentil de Oliveira Almeida, Karolaine Rodrigues Farias, Veluza Anchieta Souza, Fernanda Martins Cavalcante de Melo, Herbet Alves de Oliveira, Alexandre Santos Pimenta, Sabir Khan and Rafael Rodolfo de Melo
J. Compos. Sci. 2025, 9(6), 309; https://doi.org/10.3390/jcs9060309 - 18 Jun 2025
Viewed by 604
Abstract
Mortar is widely used in civil construction. The inclusion of expanded clay as a lightweight aggregate reduces the density of mortar, enabling lighter structural elements and potentially lowering material and energy requirements during construction. This research aims to produce lightweight mortars by partially [...] Read more.
Mortar is widely used in civil construction. The inclusion of expanded clay as a lightweight aggregate reduces the density of mortar, enabling lighter structural elements and potentially lowering material and energy requirements during construction. This research aims to produce lightweight mortars by partially replacing fine aggregate with proportions of expanded clay. Six mortar formulations were prepared with varying proportions of expanded clay. The constituent materials of the mixtures and the mortars were characterized according to regulatory prescriptions. The results indicated that the increase in the replacement of fine aggregate with expanded clay reduced the consistency and density of the mass in the fresh state. No significant differences were observed in water absorption by immersion among the mortars in the hardened state. Regarding mechanical tests, most mortars’ tensile strength in bending remained stable. On the other hand, compressive strength decreased. The tensile adhesion was also reduced with the incorporation of expanded clay. After exposure to sodium sulfate solution, all tensile strength results in bending improved. The coefficient of the constructive quality indicated that the ideal replacement formulation is 20% expanded clay. These mortars represent a viable technical alternative, complying with current standards and contributing more efficiently and sustainably to civil construction. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

20 pages, 1009 KiB  
Article
Permeation Investigation of Carbon Fibre Reinforced Polymer Material for LH2 Storage Thermally Shocked and Mechanically Cycled at Cryogenic Temperature
by Giacomo Dreossi and Andrej Bernard Horvat
Aerospace 2025, 12(4), 342; https://doi.org/10.3390/aerospace12040342 - 14 Apr 2025
Cited by 1 | Viewed by 644
Abstract
To achieve the sustainability goals set for the European aviation sector, hydrogen-powered solutions are currently being investigated. Storage solutions are of particular interest, with liquid hydrogen tanks posing numerous challenges with regard to the structural integrity of materials at cryogenic temperatures, as well [...] Read more.
To achieve the sustainability goals set for the European aviation sector, hydrogen-powered solutions are currently being investigated. Storage solutions are of particular interest, with liquid hydrogen tanks posing numerous challenges with regard to the structural integrity of materials at cryogenic temperatures, as well as safety issues because of the high flammability of hydrogen. In this context and in the scope of the Horizon 2020 Clean Aviation Joint Undertaking (CAJU) project H2ELIOS, the gas permeability behavior of prepreg tape carbon fibre reinforced polymer (CFRP) material was studied. Investigations were performed after thermal shock to 20 K (liquid hydrogen immersion) as well as after a uniaxial stress application at 77 K to identify the shift from Fickian behavior after diverse aging conditions. Helium gas permeation was tested at room temperature (RT), and its representativeness to hydrogen permeation in a range of temperatures was considered in the study. The material’s permeation behavior was compared to ideal Fickian diffusion as a means of identifying related permeation barrier function degradation. Finally, it was possible to identify Fickian, near-Fickian, and non-Fickian behaviors and correlate them with the material’s preconditioning. Full article
Show Figures

Figure 1

17 pages, 6066 KiB  
Article
Polydopamine-Coated Copper-Doped Mesoporous Silica/Gelatin–Waterborne Polyurethane Composite: A Multifunctional GBR Membrane for Bone Defect Repair
by Mengmeng Jin, Yi Hou and Feiwu Kang
J. Funct. Biomater. 2025, 16(4), 122; https://doi.org/10.3390/jfb16040122 - 1 Apr 2025
Viewed by 663
Abstract
Guided bone regeneration (GBR) membrane has proven to be a fundamental tool in the realm of bone defect repair. In this study, we develop a mussel-inspired composite biomaterial through polydopamine-assisted, combining gelatin–WPU matrix with the ion-release behavior of Cu–MSNs for augmented bone regeneration. [...] Read more.
Guided bone regeneration (GBR) membrane has proven to be a fundamental tool in the realm of bone defect repair. In this study, we develop a mussel-inspired composite biomaterial through polydopamine-assisted, combining gelatin–WPU matrix with the ion-release behavior of Cu–MSNs for augmented bone regeneration. The optimized composite membrane exhibits enhanced mechanical stability, demonstrating a tensile strength of 11.23 MPa (representing a 2.3-fold increase compared to Bio-Gide®), coupled with significantly slower degradation kinetics that retained 73.3% structural integrity after 35-day immersion in physiological solution. Copper ions act as angiogenic agents to promote blood vessel growth and as antimicrobial agents to prevent potential infections. The combined effect of these components creates a biomimetic environment that is ideal for cell adhesion, growth, and differentiation. This research significantly contributes to the development of advanced biomaterials that combine regeneration and infection-prevention functions. It provides a versatile and effective solution for treating bone injuries and defects, offering new hope for patients in need. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

18 pages, 4338 KiB  
Article
Aflatoxin M1 Determination in Whole Milk with Immersible Silicon Photonic Immunosensor
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Toxins 2025, 17(4), 165; https://doi.org/10.3390/toxins17040165 - 26 Mar 2025
Viewed by 687
Abstract
Aflatoxin M1 (AFM1) appears in the milk of animals that have consumed feed contaminated with aflatoxin B1. AFM1 presence in milk is regulated by the European Commission, which has set the maximum allowable limits for adult and infant consumption to 50 and 25 [...] Read more.
Aflatoxin M1 (AFM1) appears in the milk of animals that have consumed feed contaminated with aflatoxin B1. AFM1 presence in milk is regulated by the European Commission, which has set the maximum allowable limits for adult and infant consumption to 50 and 25 pg/mL, respectively. Here, a rapid and sensitive method for detecting AFM1 in milk based on an immersible silicon photonic chip is presented. The chip features two U-shaped silicon nitride waveguides formed as Mach–Zehnder interferometers. One interferometer is functionalized with AFM1–bovine serum albumin conjugate and the other with BSA to serve as a blank. The chip is connected to a broad-band white LED and a spectrophotometer by a bifurcated optical fiber and an assay is performed by immersing the chip in a mixture of milk with the anti-AFM1 antibody. Then, the chip is sequentially immersed in biotinylated anti-rabbit IgG antibody and streptavidin solutions for signal enhancement. The assay is completed in 20 min and the detection limit for AFM1 in undiluted milk is 20 pg/mL. Given its analytical performance and the absence of pumps and fluidics that lead to a compact instrument design, the proposed immunosensor is ideal for the on-site detection of AFM1 in milk samples. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

20 pages, 1619 KiB  
Systematic Review
A Breakthrough in Producing Personalized Solutions for Rehabilitation and Physiotherapy Thanks to the Introduction of AI to Additive Manufacturing
by Emilia Mikołajewska, Dariusz Mikołajewski, Tadeusz Mikołajczyk and Tomasz Paczkowski
Appl. Sci. 2025, 15(4), 2219; https://doi.org/10.3390/app15042219 - 19 Feb 2025
Cited by 2 | Viewed by 2604
Abstract
The integration of artificial intelligence (AI) with additive manufacturing (AM) is driving breakthroughs in personalized rehabilitation and physical therapy solutions, enabling precise customization to individual patient needs. This article presents the current state of knowledge and perspectives of using personalized solutions for rehabilitation [...] Read more.
The integration of artificial intelligence (AI) with additive manufacturing (AM) is driving breakthroughs in personalized rehabilitation and physical therapy solutions, enabling precise customization to individual patient needs. This article presents the current state of knowledge and perspectives of using personalized solutions for rehabilitation and physiotherapy thanks to the introduction of AI to AM. Advanced AI algorithms analyze patient-specific data such as body scans, movement patterns, and medical history to design customized assistive devices, orthoses, and prosthetics. This synergy enables the rapid prototyping and production of highly optimized solutions, improving comfort, functionality, and therapeutic outcomes. Machine learning (ML) models further streamline the process by anticipating biomechanical needs and adapting designs based on feedback, providing iterative refinement. Cutting-edge techniques leverage generative design and topology optimization to create lightweight yet durable structures that are ideally suited to the patient’s anatomy and rehabilitation goals .AI-based AM also facilitates the production of multi-material devices that combine flexibility, strength, and sensory capabilities, enabling improved monitoring and support during physical therapy. New perspectives include integrating smart sensors with printed devices, enabling real-time data collection and feedback loops for adaptive therapy. Additionally, these solutions are becoming increasingly accessible as AM technology lowers costs and improves, democratizing personalized healthcare. Future advances could lead to the widespread use of digital twins for the real-time simulation and customization of rehabilitation devices before production. AI-based virtual reality (VR) and augmented reality (AR) tools are also expected to combine with AM to provide immersive, patient-specific training environments along with physical aids. Collaborative platforms based on federated learning can enable healthcare providers and researchers to securely share AI insights, accelerating innovation. However, challenges such as regulatory approval, data security, and ensuring equity in access to these technologies must be addressed to fully realize their potential. One of the major gaps is the lack of large, diverse datasets to train AI models, which limits their ability to design solutions that span different demographics and conditions. Integration of AI–AM systems into personalized rehabilitation and physical therapy should focus on improving data collection and processing techniques. Full article
(This article belongs to the Special Issue Additive Manufacturing in Material Processing)
Show Figures

Figure 1

30 pages, 6583 KiB  
Article
A Comprehensive Analysis of Non-Thermal Ultrasonic-Assisted Extraction of Bioactive Compounds from Citrus Peel Waste Through a One-Factor-at-a-Time Approach
by Matthew A. Xuereb, Georgios Psakis, Karen Attard, Frederick Lia and Ruben Gatt
Molecules 2025, 30(3), 648; https://doi.org/10.3390/molecules30030648 - 1 Feb 2025
Viewed by 1404
Abstract
Food waste presents a critical environmental and economic challenge across Europe. In the Mediterranean region, the agricultural industry generates considerable quantities of citrus fruits, leading to significant byproduct waste, which remains underutilized. To help address this, this study explored the valorization of orange [...] Read more.
Food waste presents a critical environmental and economic challenge across Europe. In the Mediterranean region, the agricultural industry generates considerable quantities of citrus fruits, leading to significant byproduct waste, which remains underutilized. To help address this, this study explored the valorization of orange peel waste using non-thermal ultrasonic-assisted extraction (UAE) and a one-factor-at-a-time experimental design to investigate the effects of nine chemical and physical UAE parameters. The goal was to identify ideal operational ranges for each parameter using several responses (bioactive compound recovery, antioxidant activity, and radical scavenging activity), thus elucidating the most influential UAE factors and their role in co-extracting various classes of natural compounds. The key findings revealed that the polarity and ionic potential of the extraction medium, tuned through ethanol:water or pH, significantly influenced both the chemical profile and bioactivity of the extracts. Notably, citric acid and citrates appeared to stabilize co-extracted compounds. Lower solid-to-liquid ratios increased yields, while particle sizes between 1400 and 710 µm enhanced phenolic recovery by approximately 150 mg/L GAE. In contrast, increases in pulse, probe diameter, immersion depth, and extraction time led to degradation of bioactive compounds, whereas the maximal amplitude improved phenolic acid recovery by up to 2-fold. Collectively, these insights provide a foundation for optimizing non-thermal UAE to valorize orange peel waste. Full article
(This article belongs to the Special Issue Chemical Analysis of Functional Foods)
Show Figures

Figure 1

24 pages, 6178 KiB  
Article
HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments
by Tam Le Phuc Do, Jinwon Choi, Viet Quoc Le, Philippe Gentet, Leehwan Hwang and Seunghyun Lee
Remote Sens. 2024, 16(23), 4591; https://doi.org/10.3390/rs16234591 - 6 Dec 2024
Cited by 1 | Viewed by 2595
Abstract
Several studies have explored the use of hologram technology in architecture and urban design, demonstrating its feasibility. Holograms can represent 3D spatial data and offer an immersive experience, potentially replacing traditional methods such as physical 3D and offering a promising alternative to mixed-reality [...] Read more.
Several studies have explored the use of hologram technology in architecture and urban design, demonstrating its feasibility. Holograms can represent 3D spatial data and offer an immersive experience, potentially replacing traditional methods such as physical 3D and offering a promising alternative to mixed-reality display technologies. Holograms can visualize realistic scenes such as buildings, cityscapes, and landscapes using the novel view synthesis technique. This study examines the suitability of spatial data collected through the Gaussian splatting method for tabletop hologram visualization. Recent advancements in Gaussian splatting algorithms allow for real-time spatial data collection of a higher quality compared to photogrammetry and neural radiance fields. Both hologram visualization and Gaussian splatting share similarities in that they recreate 3D scenes without the need for mesh reconstruction. In this research, unmanned aerial vehicle-acquired primary image data were processed for 3D reconstruction using Gaussian splatting techniques and subsequently visualized through holographic displays. Two experimental environments were used, namely, a building and a university campus. As a result, 3D Gaussian data have proven to be an ideal spatial data source for hologram visualization, offering new possibilities for real-time motion holograms of real environments and digital twins. Full article
(This article belongs to the Special Issue Application of Photogrammetry and Remote Sensing in Urban Areas)
Show Figures

Graphical abstract

15 pages, 11772 KiB  
Article
Fabrication and Microstructure Analysis of Phosphate-Coated Mg Powder for Biomedical PLA/Mg Composites
by Ying-Ting Huang and Fei-Yi Hung
J. Compos. Sci. 2024, 8(12), 495; https://doi.org/10.3390/jcs8120495 - 26 Nov 2024
Viewed by 1085
Abstract
Powdered magnesium has been widely applied in various fields. Magnesium is a highly reactive metal, with fine particles that are easy to agglomerate and have the risk of explosion. Furthermore, the storage of Mg particles is a challenge. Therefore, powdered magnesium is usually [...] Read more.
Powdered magnesium has been widely applied in various fields. Magnesium is a highly reactive metal, with fine particles that are easy to agglomerate and have the risk of explosion. Furthermore, the storage of Mg particles is a challenge. Therefore, powdered magnesium is usually passivated by surface modification methods. In our research, an environmentally friendly phosphate solution was used to prepare conversion coating on magnesium particles. The results demonstrated that the phosphate coating layer attached on Mg particles surface successfully. From SEM images, the average particle size reduces slightly after the coating process. The composition of the coating layer is confirmed to be OCP and HAp by XRD and EPMA. The immersion test showed that the phosphate coating improved the corrosion resistance, and the ideal processing time is 20 min. Moreover, Mg and phosphate have good biocompatibility; therefore, the coated Mg powder can be a potential candidate for biomedical applications. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

19 pages, 6344 KiB  
Article
Influence of Basalt Fiber Morphology on the Properties of Asphalt Binders and Mixtures
by Chenhao Cai, Keke Lou, Fuxin Qian and Peng Xiao
Materials 2024, 17(21), 5358; https://doi.org/10.3390/ma17215358 - 1 Nov 2024
Cited by 4 | Viewed by 1257
Abstract
Basalt fiber (BF) has been proven to be an effective additive for improving the properties of asphalt mixtures. However, the influence of basalt fiber morphology on the properties of asphalt binders and mixtures remains inadequately explored. In this study, chopped basalt fiber (CBF) [...] Read more.
Basalt fiber (BF) has been proven to be an effective additive for improving the properties of asphalt mixtures. However, the influence of basalt fiber morphology on the properties of asphalt binders and mixtures remains inadequately explored. In this study, chopped basalt fiber (CBF) and flocculent basalt fiber (FBF) were selected to make samples for testing the influence of the two types of basalt fibers on asphalt materials. Fluorescence microscopy was used to obtain the dispersion of fiber in asphalt binders. Then, a temperature sweep test and a multiple stress creep recovery (MSCR) test were carried out to appraise the rheological characteristics of the binder. Moreover, the performance of the fiber-reinforced asphalt mixture was evaluated by a wheel tracking test, a uniaxial penetration test, an indirect tensile asphalt cracking test (IDEAL-CT), a low-temperature bending test, a water-immersion stability test, and a freeze–thaw splitting test. The results indicate that the rheological behavior of asphalt binders could be enhanced by both types of fibers. Notably, FBFs exhibit a larger contact area with asphalt mortar compared to CBFs, resulting in improved resistance to deformation under identical shear conditions. Meanwhile, the performance of the asphalt mixture underwent different levels of enhancement with the incorporation of two morphologies of basalt fiber. Specifically, as for the road property indices with FBFs, the enhancement extent of DS in the wheel tracking test, that of RT in the uniaxial penetration test, that of the CTindex in the IDEAL-CT test, and that of εB in the low-temperature trabecular bending test was 3.1%, 6.8%, 15.1%, and 6.5%, respectively, when compared to the CBF-reinforced mixtures. Compared with CBFs, FBFs significantly enhanced the elasticity and deformation recovery ability of asphalt mixtures, demonstrating greater resistance to high-temperature deformation and a more pronounced effect in delaying the onset of middle- and low-temperature cracking. Additionally, the volume of the air void for asphalt mixtures containing FBFs was lower than that containing CBFs, thereby reducing the likelihood of water damage due to excessive voids. Consequently, the moisture susceptibility enhancement of CBFs to asphalt mixture was not obvious, while FBFs could improve moisture susceptibility by more than 20%. Overall, the impact of basalt fibers with different morphologies on the properties of asphalt pavement materials varies significantly, and the research results may provide reference values for the choice of engineering fibers. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

17 pages, 20073 KiB  
Article
Effect of Zinc Powder Reduced Graphene Oxide on the Corrosion Resistance of Waterborne Inorganic Zinc-Rich Coatings
by Xuefei Fang, Yuchun Yuan, Qiuyue Wang, Chengwei Ji, Yuna Wu, Huan Liu, Jinghua Jiang and Aibin Ma
Coatings 2024, 14(10), 1321; https://doi.org/10.3390/coatings14101321 - 16 Oct 2024
Cited by 3 | Viewed by 1615
Abstract
Graphene oxide (GO) is considered an ideal material for applications involving corrosion resistance due to its excellent properties. However, the structure, surface functional groups, and distribution of GO in zinc-rich coatings (ZRCs) have a remarkable influence on coating properties. GO was reduced in [...] Read more.
Graphene oxide (GO) is considered an ideal material for applications involving corrosion resistance due to its excellent properties. However, the structure, surface functional groups, and distribution of GO in zinc-rich coatings (ZRCs) have a remarkable influence on coating properties. GO was reduced in a hydrochloric acid environment using spherical zinc powder, and the resulting products were subsequently dried and incorporated into waterborne inorganic ZRCs. Results show that zinc powder effectively reduces oxygen-containing functional groups on the GO surface, and reduced GO (rGO) is deposited on the surface of zinc powder. This improves the electron migration efficiency of rGO and decreases its surface energy. The electrochemical impedance spectroscopy (EIS) and salt spray test results demonstrate that among the coatings, the ZRC containing 0.2 wt.% rGO (40Zn–0.2rGO) exhibits the highest impedance modulus at the low frequency end. Its impedance modulus reaches 1 × 104 Ω∙cm2 after 216 h immersion. Furthermore, 40Zn–0.2rGO exhibits no signs of corrosion at the marked areas even after 216 h of the salt spray test. The good dispersion effect of the added 0.2 wt.% rGO in the coating, coupled with its exceptional electrical conductivity, facilitates the enhanced contribution of zinc powder to cathodic protection, thereby mitigating the matrix erosion caused by corrosive media. Following zinc powder corrosion, the surface of the coating can still be adorned with insoluble corrosion products such as ZnO or Zn5(OH)8Cl2, thereby offering shielding protection to the substrate. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Graphical abstract

19 pages, 591 KiB  
Article
Analytical and Numerical Investigation of Star Polymers in Confined Geometries
by Zoriana Danel, Joanna Halun and Pawel Karbowniczek
Int. J. Mol. Sci. 2024, 25(17), 9561; https://doi.org/10.3390/ijms25179561 - 3 Sep 2024
Cited by 1 | Viewed by 1101
Abstract
The analysis of the impact of the star polymer topology on depletion interaction potentials, depletion forces, and monomer density profiles is carried out analytically using field theory methods and techniques as well as molecular dynamic simulations. The dimensionless depletion interaction potentials and the [...] Read more.
The analysis of the impact of the star polymer topology on depletion interaction potentials, depletion forces, and monomer density profiles is carried out analytically using field theory methods and techniques as well as molecular dynamic simulations. The dimensionless depletion interaction potentials and the dimensionless depletion forces for a dilute solution of ideal star polymers with three and five legs (arms) in a Θ-solvent confined in a slit between two parallel walls with repulsive surfaces and for the case where one of the surfaces is repulsive and the other inert are obtained. Furthermore, the dimensionless layer monomer density profiles for ideal star polymers with an odd number (f˜ = 3, 5) of arms immersed in a dilute solution of big colloidal particles with different adsorbing or repelling properties in respect of polymers are calculated, bearing in mind the Derjaguin approximation. Molecular dynamic simulations of a dilute solution of star-shaped polymers in a good solvent with N = 901 (3 × 300 + 1 -star polymer with three arms) and 1501 (5 × 300 + 1 -star polymer with five arms) beads accordingly confined in a slit with different boundary conditions are performed, and the results of the monomer density profiles for the above-mentioned cases are obtained. The numerical calculation of the radius of gyration for star polymers with f˜ = 3, 5 arms and the ratio of the perpendicular to parallel components of the radius of gyration with respect to the wall orientation for the above-mentioned cases is performed. The obtained analytical and numerical results for star polymers with an odd number (f˜ = 3, 5) of arms are compared with our previous results for linear polymers in confined geometries. The acquired results show that a dilute solution of star polymer chains can be applied in the production of new functional materials, because the behavior of these solutions is strictly correlated with the topology of polymers and also with the nature and geometry of confined surfaces. The above-mentioned properties can find extensive practical application in materials engineering, as well as in biotechnology and medicine for drug and gene transmission. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

13 pages, 5707 KiB  
Article
Photonic Dipstick Immunosensor to Detect Adulteration of Ewe, Goat, and Donkey Milk with Cow Milk through Bovine κ-Casein Detection
by Dimitra Kourti, Michailia Angelopoulou, Eleni Makarona, Anastasios Economou, Panagiota Petrou, Konstantinos Misiakos and Sotirios Kakabakos
Sensors 2024, 24(17), 5688; https://doi.org/10.3390/s24175688 - 31 Aug 2024
Cited by 1 | Viewed by 1569
Abstract
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a [...] Read more.
The quality and authenticity of milk are of paramount importance. Cow milk is more allergenic and less nutritious than ewe, goat, or donkey milk, which are often adulterated with cow milk due to their seasonal availability and higher prices. In this work, a silicon photonic dipstick sensor accommodating two U-shaped Mach–Zehnder Interferometers (MZIs) was employed for the label-free detection of the adulteration of ewe, goat, and donkey milk with cow milk. One of the two MZIs of the chip was modified with bovine κ-casein, while the other was modified with bovine serum albumin to serve as a blank. All assay steps were performed by immersion of the chip side where the MZIs are positioned into the reagent solutions, leading to a photonic dipstick immunosensor. Thus, the chip was first immersed in a mixture of milk with anti-bovine κ-casein antibody and then in a secondary antibody solution for signal enhancement. A limit of detection of 0.05% v/v cow milk in ewe, goat, or donkey milk was achieved in 12 min using a 50-times diluted sample. This fast, sensitive, and simple assay, without the need for sample pre-processing, microfluidics, or pumps, makes the developed sensor ideal for the detection of milk adulteration at the point of need. Full article
(This article belongs to the Special Issue Feature Papers in Biosensors Section 2024)
Show Figures

Figure 1

17 pages, 6613 KiB  
Article
The Conceptual Model Mediated by IVR and 3DP as a First Architectural Idea Generator
by Hugo Gomez-Tone and Javier F. Raposo Grau
Buildings 2024, 14(8), 2334; https://doi.org/10.3390/buildings14082334 - 28 Jul 2024
Viewed by 1453
Abstract
The first ideas generation of the architectural project has traditionally been carried out through sketches. Even though in recent decades models have also gained importance, their use is still restricted due to the time required to make them and their difficulty of realization [...] Read more.
The first ideas generation of the architectural project has traditionally been carried out through sketches. Even though in recent decades models have also gained importance, their use is still restricted due to the time required to make them and their difficulty of realization when it comes to complex forms. This research argues that the use of concept models mediated by two disruptive technologies such as Immersive Virtual Reality and 3D Printing can foster the cognitive process of the ideation and configuration of the first architectural ideas. To demonstrate the hypothesis, a pilot study was conducted with 32 architecture students; 17 students created models manually and 15 used IVR and 3DP. Two observation sheets were used to collect information. The results show that in the process of generating ideas, the group that used the two technologies developed three of the four characteristics of the cognitive process better, being an undecided and slow process, then fast and continuous, and finally perceptual for reinterpretation. Also, both technologies complemented each other and favored the development of an intense, tactile, and phenomenological experience. Finally, regarding the model as a product, a better result was found in 3D-printed models in terms of two of the three characteristics, three-dimensionality complexity and materiality. It is concluded that these two technologies ideally complement each other as mediating tools for three-dimensional architectural thinking, making it possible to use the conceptual models as the first generators of the architectural idea. Full article
(This article belongs to the Special Issue Architectural Design Supported by Information Technology: 2nd Edition)
Show Figures

Figure 1

19 pages, 5358 KiB  
Article
Optimization of Biologically Inspired Electrospun Scaffold for Effective Use in Bone Regenerative Applications
by Susai Mani Mary Stella, Murugapandian Rama, T. M. Sridhar and Uthirapathy Vijayalakshmi
Polymers 2024, 16(14), 2023; https://doi.org/10.3390/polym16142023 - 15 Jul 2024
Cited by 1 | Viewed by 2593
Abstract
Human bone is composed of organic and inorganic composite materials, contributing to its unique strength and flexibility. Hydroxyapatite (HAP) has been extensively studied for bone regeneration, due to its excellent bioactivity and osteoconductivity, which makes it a highly valuable biomaterial for tissue engineering [...] Read more.
Human bone is composed of organic and inorganic composite materials, contributing to its unique strength and flexibility. Hydroxyapatite (HAP) has been extensively studied for bone regeneration, due to its excellent bioactivity and osteoconductivity, which makes it a highly valuable biomaterial for tissue engineering applications. For better therapeutic effects, composite nanofibers containing polyvinyl alcohol (PVA) and polyvinyl Pyrrolidone (PVP) were developed using an electrospinning technique in this study. Herein, hydroxyapatite (a major inorganic constituent of native bone) concentrations varying from 5 to 25% were reinforced in the composite, which could alter the properties of nanofibers. The as-prepared composite nanofibers were characterized by SEM, TEM, XRD, and FT-IR spectroscopy, and a bioactivity assessment was performed in simulated body fluid (SBF). The ICP-OES analysis was used to determine the concentration of Ca2+ and PO42– ions before and after SBF immersion. To optimize the material selection, the nanofibrous scaffolds were subjected to cell proliferation and differentiation in MG-63 osteoblast cell lines, but no significant toxicity was observed. In conclusion, HAP-PVA-PVP scaffolds exhibit unique physical and chemical properties and ideal biocompatibility, with great promise to serve as effective candidates for bone tissue applications. Full article
(This article belongs to the Special Issue Polymer Scaffold for Tissue Engineering Applications)
Show Figures

Graphical abstract

Back to TopTop