HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Environments
2.2. Three-Dimensional Gaussian Splatting and Rendering Devices
2.3. DJI Mini 4 Pro UAV
2.4. Photogrammetry
2.5. Unreal Engine and External Plugins
2.6. Tabletop Hologram Production
2.7. The Experiment Methodology
- Processing time: the duration of each method used for completing 3D reconstruction.
- File size: the size of the output files generated by each method.
- Reconstruction quality: a qualitative evaluation of the accuracy and visual fidelity of 3D visualization.
- Application: the practical applications provided by each method, particularly in architecture and urban planning.
- Optimal route combination: an evaluation of the most effective data collection scenarios for each method based on the findings.
3. Results
3.1. Data Collection Using the UAV and Data Input Scenarios for Both Experiment Environments
3.2. Three-Dimensional Reconstruction Using Gaussian Splatting and Photogrammetry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, T.; Zhang, K.; Shen, Z.-J.M. A systematic review of a digital twin city: A new pattern of urban governance toward smart cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [Google Scholar] [CrossRef]
- Kamra, V.; Kudeshia, P.; ArabiNaree, S.; Chen, D.; Akiyama, Y.; Peethambaran, J. Lightweight reconstruction of urban buildings: Data structures, algorithms, and future directions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 16, 902–917. [Google Scholar] [CrossRef]
- Gonizzi Barsanti, S.; Guagliano, M.; Rossi, A. Digital (re) construction for Structural Analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 685–692. [Google Scholar] [CrossRef]
- Xu, W.; Zeng, Y.; Yin, C. 3D city reconstruction: A novel method for semantic segmentation and building monomer construction using oblique photography. Appl. Sci. 2023, 13, 8795. [Google Scholar] [CrossRef]
- Obradović, M.; Vasiljević, I.; Đurić, I.; Kićanović, J.; Stojaković, V.; Obradović, R. Virtual reality models based on photogrammetric surveys—A case study of the iconostasis of the serbian orthodox cathedral church of saint nicholas in Sremski Karlovci (Serbia). Appl. Sci. 2020, 10, 2743. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, S. A review of 3D reconstruction techniques in civil engineering and their applications. Adv. Eng. Inform. 2018, 37, 163–174. [Google Scholar] [CrossRef]
- Kavouras, I.; Sardis, E.; Protopapadakis, E.; Rallis, I.; Doulamis, A.; Doulamis, N. A low-cost gamified urban planning methodology enhanced with co-creation and participatory approaches. Sustainability 2023, 15, 2297. [Google Scholar] [CrossRef]
- Do, T.L.P.; Sanhae, K.; Hwang, L.; Lee, S. Real-Time Spatial Mapping in Architectural Visualization: A Comparison among Mixed Reality Devices. Sensors 2024, 24, 4727. [Google Scholar] [CrossRef]
- Ruan, X.; Yang, F.; Guo, M.; Zou, C. 3D Scene Modeling Method and Feasibility Analysis of River Water-Land Integration. Photogramm. Eng. Remote Sens. 2023, 89, 353–359. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A. Evaluation of LiDAR-derived features relevance and training data minimization for 3D point cloud classification. Remote Sens. 2022, 14, 5934. [Google Scholar] [CrossRef]
- Carnevali, L.; Ippoliti, E.; Lanfranchi, F.; Menconero, S.; Russo, M.; Russo, V. Close range mini Uavs photogrammetry for architecture survey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 217–224. [Google Scholar] [CrossRef]
- Achille, C.; Adami, A.; Chiarini, S.; Cremonesi, S.; Fassi, F.; Fregonese, L.; Taffurelli, L. UAV-based photogrammetry and integrated technologies for architectural applications—Methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 2015, 15, 15520–15539. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Wang, B.; Chen, C. Drone-NeRF: Efficient NeRF based 3D scene reconstruction for large-scale drone survey. Image Vis. Comput. 2024, 143, 104920. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; De Luca, L.; Piemonte, A.; Véron, P. Neural radiance fields (nerf): Review and potential applications to digital cultural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 453–460. [Google Scholar] [CrossRef]
- Gentet, P.; Coffin, M.; Choi, B.H.; Kim, J.S.; Mirzaevich, N.O.; Kim, J.W.; Le Phuc, T.D.; Ugli, A.J.F.; Lee, S.H. Outdoor Content Creation for Holographic Stereograms with iPhone. Appl. Sci. 2024, 14, 6306. [Google Scholar] [CrossRef]
- Reda, F.; Kontkanen, J.; Tabellion, E.; Sun, D.; Pantofaru, C.; Curless, B. Film: Frame interpolation for large motion. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Jiang, H.; Sun, D.; Jampani, V.; Lv, Z.; Learned-Miller, E.; Kautz, J. Sense: A shared encoder network for scene-flow estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Dalal, A.; Hagen, D.; Robbersmyr, K.G.; Knausgård, K.M. Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review. IEEE Access 2024, 12, 96797–96820. [Google Scholar] [CrossRef]
- Wu, G.; Yi, T.; Fang, J.; Xie, L.; Zhang, X.; Wei, W.; Wang, X. 4d gaussian splatting for real-time dynamic scene rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 17–21 June 2024. [Google Scholar]
- Kerbl, B.; Kopanas, G.; Leimkuehler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Trans. Graph. 2023, 42, 139:1–139:14. [Google Scholar] [CrossRef]
- Wu, T.; Yuan, Y.-J.; Zhang, L.-X.; Yang, J.; Cao, Y.-P.; Yan, L.-Q.; Gao, L. Recent advances in 3d gaussian splatting. Comput. Vis. Media 2024, 10, 613–642. [Google Scholar] [CrossRef]
- Guo, C.; Gao, C.; Bai, Y.; Lv, X. RD-SLAM: Real-Time Dense SLAM Using Gaussian Splatting. Appl. Sci. 2024, 14, 7767. [Google Scholar] [CrossRef]
- Gentet, P.; Gentet, Y.; Lee, S. An in-house-designed scanner for CHIMERA holograms. In Proceedings of the Practical Holography XXXVII: Displays, Materials, and Applications, San Francisco, CA, USA, 31 January–1 February 2023; SPIE: Bellingham, CA, USA, 2023. [Google Scholar]
- Gentet, Y.; Gentet, P. CHIMERA, a new holoprinter technology combining low-power continuous lasers and fast printing. Appl. Opt. 2019, 58, G226–G230. [Google Scholar] [CrossRef]
- Do, T.L.P.; Coffin, M.; Gentet, P.; Hwang, L.; Lee, S. Development of a Tabletop Hologram for Spatial Visualization: Application in the Field of Architectural and Urban Design. Buildings 2024, 14, 2030. [Google Scholar] [CrossRef]
- Saxby, G. Practical Holography; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Fei, B.; Xu, J.; Zhang, R.; Zhou, Q.; Yang, W.; He, Y. 3d gaussian splatting as new era: A survey. In IEEE Transactions on Visualization Computer Graphics; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Cai, Z.; Yang, J.; Wang, T.; Huang, H.; Guo, Y. 3D Reconstruction of Buildings Based on 3D Gaussian Splatting. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 37–43. [Google Scholar] [CrossRef]
- Ham, Y.; Michalkiewicz, M.; Balakrishnan, G. DRAGON: Drone and Ground Gaussian Splatting for 3D Building Reconstruction. In Proceedings of the 2024 IEEE International Conference on Computational Photography (ICCP), Lausanne, Switzerland, 22–24 July 2024; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar]
- Palestini, C.; Basso, A. The photogrammetric survey methodologies applied to low cost 3D virtual exploration in multidisciplinary field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 195–202. [Google Scholar] [CrossRef]
- Ozimek, A.; Ozimek, P.; Skabek, K.; Łabędź, P. Digital modelling and accuracy verification of a complex architectural object based on photogrammetric reconstruction. Buildings 2021, 11, 206. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkuehler, T.; Drettakis, G. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, in Github; 2023. Available online: https://github.com/graphdeco-inria/gaussian-splatting (accessed on 15 September 2024).
- Gerke, M. Developments in UAV-photogrammetry. J. Digit. Landsc. Archit. 2018, 3, 262–272. [Google Scholar]
- Zheng, X.; Wang, F.; Li, Z. A multi-UAV cooperative route planning methodology for 3D fine-resolution building model reconstruction. ISPRS J. Photogramm. Remote Sens. 2018, 146, 483–494. [Google Scholar] [CrossRef]
- Barris, W. Horizontal and Vertical FOV Calculator. 2023. Available online: https://www.litchiutilities.com/fov-1.php (accessed on 14 October 2024).
- García-Gago, J.; González-Aguilera, D.; Gómez-Lahoz, J.; José-Alonso, J.I.S. A photogrammetric and computer vision-based approach for automated 3D architectural modeling and its typological analysis. Remote Sens. 2014, 6, 5671–5691. [Google Scholar] [CrossRef]
- Basso, A.; Condorelli, F.; Giordano, A.; Morena, S.; Perticarini, M. Evolution of Rendering Based on Radiance Fields. The Palermo Case Study for a Comparison Between Nerf and Gaussian Splatting. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 57–64. [Google Scholar] [CrossRef]
- González, E.R.; Ausió, J.R.C.; Pérez, S.C. Application of real-time rendering technology to archaeological heritage virtual reconstruction: The example of Casas del Turuñuelo (Guareña, Badajoz, Spain). Virtual Archaeol. Rev. 2023, 14, 38–53. [Google Scholar] [CrossRef]
- Shannon, T. Unreal Engine 4 for Design Visualization: Developing Stunning Interactive Visualizations, Animations, and Renderings; Addison-Wesley Professional: Boston, MA, USA, 2017. [Google Scholar]
- LumaAI. Luma Unreal Engine Plugin (0.41). 2024. Notion. Available online: https://lumaai.notion.site/Luma-Unreal-Engine-Plugin-0-41-8005919d93444c008982346185e933a1 (accessed on 15 September 2024).
- Liu, Y.; Luo, C.; Fan, L.; Wang, N.; Peng, J.; Zhang, Z. Citygaussian: Real-time high-quality large-scale scene rendering with gaussians. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar]
- Dalenius, T.N.; Rees, S.; Richardson, M. Holographic data visualization: Using synthetic full-parallax holography to share information. In Proceedings of the Practical Holography XXXI: Materials and Applications, San Francisco, CA, USA, 30–31 January 2017; SPIE: Bellingham, DC, USA, 2017. [Google Scholar]
- Fiorillo, F.; Teruggi, S.; Bolognesi, C.M. Enhanced Interaction Experience for Holographic Visualization, in Representation Challenges New Frontiers of AR and AI Research for Cultural Heritage and Innovative Design; FrancoAngeli: Milan, Italy, 2022; pp. 269–276. [Google Scholar]
- Wu, J.; Zhu, J.; Zhang, J.; Dang, P.; Li, W.; Guo, Y.; Fu, L.; Lai, J.; You, J.; Xie, Y.; et al. A dynamic holographic modelling method of digital twin scenes for bridge construction. Int. J. Digit. Earth 2023, 16, 2404–2425. [Google Scholar] [CrossRef]
- Lecci, N.; Prodi, F.; Trovatelli, F.; Vezzi, A. Experiencing heritage dynamic through visualization. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 715–719. [Google Scholar] [CrossRef]
No | Specifications | Parameters | Units |
---|---|---|---|
1 | Take-off weight | 249 | g |
2 | Take-off dimensions (Length × Width × Height) | 298 × 373 × 101 | mm |
3 | Flying speed during experiment | 6–16 | m/s |
4 | Camera sensor | 1/1.3-inch CMOS 48 MP | N/A |
5 | Focal length | 24 | mm |
6 | Aperture | 1.7 | N/A |
7 | Video resolution | 1920 × 1080 (FHD) | px |
8 | Frame rate | 60 | fps |
9 | ISO | Automatic | N/A |
10 | Vertical field of view (FOV) | 42.9 | degree |
11 | Horizontal field of view (FOV) | 69.7 | degree |
Data Collecting Angle (A) | Radius (r) | Height (h) | Distance (s) | Route (C) | Vertical Coverage (CV) | Horizontal Coverage (CH) | Collected Images (I) |
---|---|---|---|---|---|---|---|
Experiment Environment 1—Circular Path | |||||||
60° | 150 m | 75.0 m | 129.9 m | 816.2 m | 439.1 m | 208.9 m | 117 |
50° | 150 m | 96.4 m | 114.9 m | 722.0 m | 234.9 m | 208.9 m | 103 |
40° | 150 m | 114.9 m | 96.4 m | 605.8 m | 172.6 m | 208.9 m | 87 |
30° | 150 m | 129.9 m | 75.0 m | 471.2 m | 143.5 m | 208.9 m | 67 |
20° | 150 m | 141.0 m | 51.3 m | 322.3 m | 128.1 m | 208.9 m | 46 |
10° | 150 m | 147.7 m | 26.0 m | 163.7 m | 120.3 m | 208.9 m | 23 |
0° | 150 m | 150.0 m | 0.0 m | 0.0 m | 117.9 m | 208.9 m | 1 |
Flying Direction | Data Collecting Angle (A) | Radius (r) | Height (h) | Distance (s) | Distance to Boundary (s’) | Route (C) | Vertical Coverage (CV) | Horizontal Coverage (CH) | Collected Images (I) |
---|---|---|---|---|---|---|---|---|---|
Experiment environment 2—Rectangular path | |||||||||
N/A | 60° | 216 m | 75.0 m | 129.9 m | 59.8 m | 1639 m | 439.1 m | 208.9 m | 164 |
N/A | 30° | 216 m | 187.1 m | 108.0 m | 28.1 m | 1512 m | 206.6 m | 300.8 m | 152 |
N/A | 0° | 150 m | 216.0 m | 0.0 m | 0.0 m | 400 m | 169.7 m | 300.8 m | 40 |
Experiment environment 2—Crossover path | |||||||||
Vertical | 60° | 216 m | 145.0 m | 251.1 m | 115.5 m | 572 m | 632.3 m | 300.8 m | 58 |
50° | 216 m | 186.4 m | 222.2 m | 101.4 m | 338.2 m | 300.8 m | |||
40° | 216 m | 222.2 m | 186.4 m | 74.5 m | 248.6 m | 300.8 m | |||
30° | 216 m | 251.1 m | 145.0 m | 37.8 m | 206.6 m | 300.8 m | |||
20° | 216 m | 272.5 m | 99.2 m | −6.9 m | 184.4 m | 300.8 m | |||
10° | 216 m | 285.6 m | 50.4 m | −57.8 m | 173.2 m | 300.8 m | |||
0° | 216 m | 290.0 m | 0.0 m | −150.0 m | 169.7 m | 300.8 m | |||
Horizontal/ Diagonal 1 and 2 | 60° | 290 m | 145.0 m | 251.1 m | 115.5 m | 531 m for each path | 848.9 m | 403.9 m | 54 for each path |
50° | 290 m | 186.4 m | 222.2 m | 101.4 m | 454.1 m | 403.9 m | |||
40° | 290 m | 222.2 m | 186.4 m | 74.5 m | 333.8 m | 403.9 m | |||
30° | 290 m | 251.1 m | 145.0 m | 37.8 m | 277.4 m | 403.9 m | |||
20° | 290 m | 272.5 m | 99.2 m | −6.9 m | 247.6 m | 403.9 m | |||
10° | 290 m | 285.6 m | 50.4 m | −57.8 m | 232.5 m | 403.9 m | |||
0° | 290 m | 290.0 m | 0.0 m | −150.0 m | 227.9 m | 403.9 m |
Scenarios | Recording Angles | Collected Images | Gaussian Splatting— 3DGS | Photogrammetry— Agisoft Metashape | ||
---|---|---|---|---|---|---|
Processing Time (min) | File Size (mb) | Processing Time (min) | File Size (mb) | |||
Experiment Environment 1 | ||||||
1.1 | 0°, 30°, 60° | 185 | 41 | 477 | 18 | 40 |
1.2 | 0°, 20°, 40°, 60° | 251 | 45 | 508 | 23 | 42 |
1.3 | 0°, 10°, 20°, 30°, 40°, 50°, 60° | 444 | 62 | 577 | 41 | 41 |
Experiment Environment 2 | ||||||
2.1 | Rectangular path | 356 | 56 | 831 | 64 | 151 |
2.2 | Crossover path | 220 | 40 | 470 | 36 | 48 |
2.3 | Rectangular and crossover path | 576 | 49 | 589 | 45 | 158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, T.L.P.; Choi, J.; Le, V.Q.; Gentet, P.; Hwang, L.; Lee, S. HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments. Remote Sens. 2024, 16, 4591. https://doi.org/10.3390/rs16234591
Do TLP, Choi J, Le VQ, Gentet P, Hwang L, Lee S. HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments. Remote Sensing. 2024; 16(23):4591. https://doi.org/10.3390/rs16234591
Chicago/Turabian StyleDo, Tam Le Phuc, Jinwon Choi, Viet Quoc Le, Philippe Gentet, Leehwan Hwang, and Seunghyun Lee. 2024. "HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments" Remote Sensing 16, no. 23: 4591. https://doi.org/10.3390/rs16234591
APA StyleDo, T. L. P., Choi, J., Le, V. Q., Gentet, P., Hwang, L., & Lee, S. (2024). HoloGaussian Digital Twin: Reconstructing 3D Scenes with Gaussian Splatting for Tabletop Hologram Visualization of Real Environments. Remote Sensing, 16(23), 4591. https://doi.org/10.3390/rs16234591