Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ice throw

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 21354 KB  
Article
Research on Evaluation Indicator of Ice Rink and Curling Stone Motion for the 2022 Beijing Winter Olympic Games Based on Video Recognition Method
by Qiyong Yang, Shuaiyu Li, Junxing Li, Wenyuan Zhang, Quan Wang and Xiuyue Ma
Lubricants 2023, 11(9), 370; https://doi.org/10.3390/lubricants11090370 - 2 Sep 2023
Cited by 4 | Viewed by 2476
Abstract
During curling sports, the movement of the stone is affected by the quality of the ice. Therefore, the delivery team led by the ice maker hopes that the quality of the ice surface will be stable and that the athletes will always ‘read [...] Read more.
During curling sports, the movement of the stone is affected by the quality of the ice. Therefore, the delivery team led by the ice maker hopes that the quality of the ice surface will be stable and that the athletes will always ‘read the ice’ and pay attention to the small changes in the ice surface. This phenomenon is the charm of curling. Many friction models have been proposed to describe the regularity of the curling motion. In the curling competitions of the 2022 Beijing Winter Olympic Games, the 2021 World Wheelchair Curling Championships, and the warm-up competition before, the research team installed a video image capture system in the arena to capture and record the data of the curling motion by using the depth neural network and object tracking algorithm. Further motion data research verifies the relationship between the friction coefficient and the speed. The quality control parameter of ice rink α is proposed, which is related to the influencing factors of the ice surface temperature, the ice hardness, the size of the pebble point, and the width of the curling friction band. The quality of the curling ice rink can be evaluated accurately and comprehensively by using parameter α. Based on the relationship between the friction coefficient and the speed, a physical model of horizontal sliding of the curling stone is established, which agrees well with the results of data obtained from video acquisition. Therefore, the movement distance along the rink can be accurately predicted. This paper analyzes the relationship between the long-time (the time it takes for the curling stone to travel between the two hog lines) and the stop position and that between the long-time and the split-time (the time it takes for the curling stone to travel from the back line to the hog line). Based on this result, a ruler can be established to assist athletes in estimating the sliding distance of the stone before curling throwing. This research also studies the relationship between three factors (the sliding speed in the x-direction, the angular speed, and a tiny lateral deflection speed in the y-direction) and the deviation of the stone. At the same time, there are also some interesting phenomena of the lateral deflection of the stone, such as the relationship between the lateral deflection angle tanθ and the initial lateral speed. As a result, the prediction of the curling stone’s exact final location can be realized. In summary, this article proposes an indicator for evaluating the quality of ice rinks and a physical model of curling based on the curling friction model, which is validated by data obtained from a video capture system of the 2022 Beijing Winter Olympics. The results described above have been applied in the post-match operation of the National Aquatics Center to guide the production of Olympic-grade ice surfaces and to guide athletes to “read ice” accurately during training. Full article
Show Figures

Figure 1

8 pages, 3802 KB  
Communication
A Wideband True Time Delay Circuit Using 0.25 µm GaN HEMT Technology
by Jeong-Geun Kim and Donghyun Baek
Sensors 2023, 23(15), 6827; https://doi.org/10.3390/s23156827 - 31 Jul 2023
Cited by 1 | Viewed by 2455
Abstract
This paper presents a wideband 4-bit true time delay IC using a 0.25 μm GaN HEMT (High-Electron-Mobility Transistor) process for the beam-squint-free phased array antennas. The true time delay IC is implemented with a switched path circuit topology using DPDT (Double Pole Double [...] Read more.
This paper presents a wideband 4-bit true time delay IC using a 0.25 μm GaN HEMT (High-Electron-Mobility Transistor) process for the beam-squint-free phased array antennas. The true time delay IC is implemented with a switched path circuit topology using DPDT (Double Pole Double Throw) with no shunt transistor in the inter-stages to improve the bandwidth and SPDT (Single Pole Single Throw) switches at the input and the output ports. The delay lines are implemented with CLC π-networks with the lumped element to ensure a compact chip size. A negative voltage generator and an SPI controller are implemented in the PCB (Printed Circuit Board) due to the lack of digital control logic in GaN technology. A maximum time delay of ~182 ps with a time delay resolution of 10.5 ps is achieved at DC–6 GHz. The RMS (Root Mean Square) time delay and amplitude error are <5 ps and <0.6 dB, respectively. The measured insertion loss is <6.8 dB and the input and output return losses are >10 dB at DC–6 GHz. The current consumption is nearly zero with a 3.3 V supply. The chip size including pads is 2.45 × 1.75 mm2. To the authors’ knowledge, this is the first demonstration of a true time delay IC using GaN HEMT technology. Full article
(This article belongs to the Special Issue Wide Bandgap Power Integrated Circuits and Sensors)
Show Figures

Figure 1

27 pages, 4242 KB  
Article
Diagenetic and Biological Overprints in Geochemical Signatures of the Gigantoproductus Tertiary Layer (Brachiopoda): Assessing the Paleoclimatic Interpretation
by José R. Mateos-Carralafuente, Ismael Coronado, Juncal A. Cruz, Pedro Cózar, Esperanza Fernández-Martínez and Sergio Rodríguez
Life 2023, 13(3), 714; https://doi.org/10.3390/life13030714 - 6 Mar 2023
Cited by 1 | Viewed by 2389
Abstract
Variations in the geochemical signatures of fossil brachiopod shells may be due to diagenesis and/or biological processes (i.e., ‘vital effects’). It is critical to characterise them in order to identify reliable shell areas suitable for paleoclimate studies. This investigation contributes to an in-depth [...] Read more.
Variations in the geochemical signatures of fossil brachiopod shells may be due to diagenesis and/or biological processes (i.e., ‘vital effects’). It is critical to characterise them in order to identify reliable shell areas suitable for paleoclimate studies. This investigation contributes to an in-depth understanding of geochemical variations in Gigantoproductus sp. shells (SW Spain, Serpukhovian age), throwing light onto the Late Paleozoic Ice Age interpretation. Microstructural, crystallographic, cathodoluminescence and geochemical (minor and trace elements, δ18O, δ13C, and strontium isotopes) characterisations have been performed on the tertiary layer of the ventral valve, to assess the preservation state. Poorly preserved areas exhibit microstructural and geochemical changes such as recrystallisation, fracturing and higher Mn and Fe enrichment. Moreover, these areas have a higher dispersion of ⁸⁶Sr, ⁸⁷Sr, δ18O and δ13C than well-preserved areas. Three structural regions have been identified in well-preserved areas of the ventral valve by differences in valve curvature and thickness, such as the umbonal and thick and thin regions. These regions have different proportions of Mg, S, Na, δ18O, and δ13C, which are interpreted as ‘vital effects’ and probably related to growth-rate differences during shell growth. The Gigantoproductus tertiary layer seems the most suitable for paleoclimate studies, because it retains the original microstructure and geochemical composition. Full article
(This article belongs to the Special Issue Recent Research on Palaeontology)
Show Figures

Figure 1

15 pages, 4364 KB  
Article
Experimental Measurement of Ice-Curling Stone Friction Coefficient Based on Computer Vision Technology: A Case Study of “Ice Cube” for 2022 Beijing Winter Olympics
by Junxing Li, Shuaiyu Li, Wenyuan Zhang, Bo Wei and Qiyong Yang
Lubricants 2022, 10(10), 265; https://doi.org/10.3390/lubricants10100265 - 18 Oct 2022
Cited by 4 | Viewed by 5045
Abstract
In the curling sport, the coefficient of friction between the curling stone and pebbled ice is crucial to predict the motion trajectory. However, the theoretical and experimental investigations on stone–ice friction are limited, mainly due to the limitations of the field measurement techniques [...] Read more.
In the curling sport, the coefficient of friction between the curling stone and pebbled ice is crucial to predict the motion trajectory. However, the theoretical and experimental investigations on stone–ice friction are limited, mainly due to the limitations of the field measurement techniques and the inadequacy of the experimental data from professional curling rinks. In this paper, on-site measurement of the stone–ice friction coefficient in a prefabricated ice rink for the Beijing Winter Olympics curling event was carried out based on computer vision technology. Firstly, a procedure to determine the location of the curling stone was proposed using YOLO-V3 (You Only Look Once, Version 3) deep neural networks and the CSRT Object tracking algorithm. Video data was recorded during the curling stone throwing experiments, and the friction coefficient was extracted. Furthermore, the influence of the sliding velocity on the friction coefficient was discussed. Comparison with published experimental data and models and verification of the obtained results, using a sensor-based method, were conducted. Results show that the coefficient of friction (ranging from 0.006 to 0.016) decreased with increasing sliding velocity, due to the presence of a liquid-like layer. Our obtained results were consistent with the literature data and the friction model of Lozowski. In addition, the experimental results of the computer vision technique method and the accelerometer sensor method showed remarkable agreement, supporting the accuracy and reliability of our proposed measurement procedure based on deep learning. Full article
(This article belongs to the Special Issue State-of-the-Art of Tribology in China)
Show Figures

Figure 1

30 pages, 5892 KB  
Article
Multigene Phylogeny, Beauvericin Production and Bioactive Potential of Fusarium Strains Isolated in India
by Shiwali Rana, Sanjay Kumar Singh and Laurent Dufossé
J. Fungi 2022, 8(7), 662; https://doi.org/10.3390/jof8070662 - 24 Jun 2022
Cited by 7 | Viewed by 4768
Abstract
The taxonomy of the genus Fusarium has been in a flux because of ambiguous circumscription of species-level identification based on morphotaxonomic criteria. In this study, multigene phylogeny was conducted to resolve the evolutionary relationships of 88 Indian Fusarium isolates based on the internal [...] Read more.
The taxonomy of the genus Fusarium has been in a flux because of ambiguous circumscription of species-level identification based on morphotaxonomic criteria. In this study, multigene phylogeny was conducted to resolve the evolutionary relationships of 88 Indian Fusarium isolates based on the internal transcribed spacer region, 28S large subunit, translation elongation factor 1-alpha, RNA polymerase second largest subunit, beta-tubulin and calmodulin gene regions. Fusarium species are well known to produce metabolites such as beauvericin (BEA) and enniatins. These identified isolates were subjected to fermentation in Fusarium-defined media for BEA production and tested using TLC, HPLC and HRMS. Among 88 isolates studied, 50 were capable of producing BEA, which varied from 0.01 to 15.82 mg/g of biomass. Fusarium tardicrescens NFCCI 5201 showed maximum BEA production (15.82 mg/g of biomass). The extract of F. tardicrescens NFCCI 5201 showed promising antibacterial activity against Staphylococcus aureus MLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with MIC of 62.5 and 15.63 µg/mL, respectively. Similarly, the F. tardicrescens NFCCI 5201 extract in potato dextrose agar (40 µg/mL) exhibited antifungal activity in the food poison technique against plant pathogenic and other fungi, Rhizoctonia solani NFCCI 4327, Sclerotium rolfsii NFCCI 4263, Geotrichum candidum NFCCI 3744 and Pythium sp. NFCCI 3482, showing % inhibition of 84.31, 49.76, 38.22 and 35.13, respectively. The antibiotic effect was found to synergize when Fusarium extract and amphotericin B (20 µg/mL each in potato dextrose agar) were used in combination against Rhizopus sp. NFCCI 2108, Sclerotium rolfsii NFCCI 4263, Bipolaris sorokiniana NFCCI 4690 and Absidia sp. NFCCI 2716, showing % inhibition of 50.35, 79.37, 48.07 and 76.72, respectively. The extract also showed satisfactory dose-dependent DPPH radical scavenging activity with an IC50 value of 0.675 mg/mL. This study reveals the correct identity of the Indian Fusarium isolates based on multigene phylogeny and also throws light on BEA production potential, suggesting their possible applicability in the medicine, agriculture and industry. Full article
Show Figures

Figure 1

17 pages, 2877 KB  
Article
Criteria-Based Fuzzy Logic Risk Analysis of Wind Farms Operation in Cold Climate Regions
by Albara M. Mustafa and Abbas Barabadi
Energies 2022, 15(4), 1335; https://doi.org/10.3390/en15041335 - 12 Feb 2022
Cited by 4 | Viewed by 2400
Abstract
Different risks are associated with the operation and maintenance of wind farms in cold climate regions, mainly due to the harsh weather conditions that wind farms experience in that region such as the (i) increased stoppage rate of wind turbines due to harsh [...] Read more.
Different risks are associated with the operation and maintenance of wind farms in cold climate regions, mainly due to the harsh weather conditions that wind farms experience in that region such as the (i) increased stoppage rate of wind turbines due to harsh weather conditions, (ii) limited accessibility to wind farms due to snow cover on roads, and (iii) cold stress to workers at wind farms. In addition, there are risks that are caused by wind farms during their operation, which impact the surrounding environment and community such as the (iv) risk of ice throw from wind turbines, (v) environmental risks caused by the wind farms, and (vi) social opposition risk to installing wind farms in cold climate regions, such as the Arctic. The analysis of these six risks provides an overall view of the potential risks encountered by designers, operators, and decision makers at wind farms. This paper presents a methodology to quantify the aforementioned risks using fuzzy logic method. At first, two criteria were established for the probability and the consequences of each risk; with the use of experts’ judgments, membership functions were graphed to reflect the two established criteria, which represented the input to the risk analysis process. Furthermore, membership functions were created for the risk levels, which represented the output. To test the proposed methodology, a wind farm in Arctic Norway was selected as a case study to quantify its risks. Experts provided their assessments of the probability and consequences of each risk on a scale from 0–10, depending on the description of the wind farm provided to them. Risk levels were calculated using MATLAB fuzzy logic toolbox and ranked accordingly. Limited accessibility to the wind farm was ranked as the highest risk, while the social opposition to the wind farm was ranked as the lowest. In addition, to demonstrate the effects of the Arctic operating conditions on performance and safety of the wind farm, the same methodology was applied to a wind farm located in a non-cold-climate region, which showed that the risks ranked differently. Full article
(This article belongs to the Special Issue Critical Infrastructure Resilience Assessment and Management)
Show Figures

Figure 1

9 pages, 743 KB  
Article
Relationship between Kinematic Variables of Jump Throwing and Ball Velocity in Elite Handball Players
by Abdel-Rahman Akl, Ibrahim Hassan, Amr Hassan and Phillip Bishop
Appl. Sci. 2019, 9(16), 3423; https://doi.org/10.3390/app9163423 - 20 Aug 2019
Cited by 7 | Viewed by 7710
Abstract
The purpose of this pilot study was to evaluate the relationship between the kinematic variables of the right hand and left leg with ball velocity during jump-throwing phases in handball for better-informed training. We investigated ball velocity and the key kinematic variables of [...] Read more.
The purpose of this pilot study was to evaluate the relationship between the kinematic variables of the right hand and left leg with ball velocity during jump-throwing phases in handball for better-informed training. We investigated ball velocity and the key kinematic variables of jump throwing during different throwing phases in three strides. Ten right-handed male handball professional players who had competed in the Egyptian Handball Super League participated in this study. Jump throwing performance was divided into three phases (cocking, acceleration and follow-through), which included eight events during the throwing. Five trials were captured for each player, and a 3D analysis was performed on the best trial. Results indicated that the velocity of the throwing hand was the most important variable during jump throwing, which was correlated with ball velocity during the three phases of performance in four events: Initial contact (IC) (r = 0.66*), initial flight (IF) (r = 63*), maximum height of the throwing hand (Max-HH) (r = 0.78*) and ground contact (GC) (r = 0.83*). In addition, the initial flight was the most important event in which players need to be using the best angles during performance, particularly the shoulder angle. Full article
(This article belongs to the Special Issue Biomechanical Spectrum of Human Sport Performance)
Show Figures

Figure 1

14 pages, 530 KB  
Article
Numerical Modelling of the Ice Throw from Wind Turbines
by Róbert-Zoltán Szász, Alexandre Leroyer and Johan Revstedt
Int. J. Turbomach. Propuls. Power 2019, 4(1), 4; https://doi.org/10.3390/ijtpp4010004 - 26 Feb 2019
Cited by 4 | Viewed by 3858
Abstract
Ice throw is a significant risk factor in the vicinity of wind turbines located in cold climate areas. We present a method to estimate the ice chunk trajectories. First, similar to the common practice, only translation is accounted for and the object trajectory [...] Read more.
Ice throw is a significant risk factor in the vicinity of wind turbines located in cold climate areas. We present a method to estimate the ice chunk trajectories. First, similar to the common practice, only translation is accounted for and the object trajectory is determined by gravity and the aerodynamic drag force. The sensitivity of the trajectories to the launch positions, wind speed, turbine rotation and aerodynamic drag is assessed. Next, trajectory computations with six-degree-of-freedom motion are presented. The required aerodynamic forces and moments are precomputed using CFD. The results indicate that object rotation might be non-negligible when higher accuracy is needed for the trajectory estimates. Full article
Show Figures

Figure 1

14 pages, 2249 KB  
Article
Influence of Icing on the Modal Behavior of Wind Turbine Blades
by Sudhakar Gantasala, Jean-Claude Luneno and Jan-Olov Aidanpää
Energies 2016, 9(11), 862; https://doi.org/10.3390/en9110862 - 26 Oct 2016
Cited by 27 | Viewed by 7168
Abstract
Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the [...] Read more.
Wind turbines installed in cold climate sites accumulate ice on their structures. Icing of the rotor blades reduces turbine power output and increases loads, vibrations, noise, and safety risks due to the potential ice throw. Ice accumulation increases the mass distribution of the blade, while changes in the aerofoil shapes affect its aerodynamic behavior. Thus, the structural and aerodynamic changes due to icing affect the modal behavior of wind turbine blades. In this study, aeroelastic equations of the wind turbine blade vibrations are derived to analyze modal behavior of the Tjaereborg 2 MW wind turbine blade with ice. Structural vibrations of the blade are coupled with a Beddoes-Leishman unsteady attached flow aerodynamics model and the resulting aeroelastic equations are analyzed using the finite element method (FEM). A linearly increasing ice mass distribution is considered from the blade root to half-length and thereafter constant ice mass distribution to the blade tip, as defined by Germanischer Lloyd (GL) for the certification of wind turbines. Both structural and aerodynamic properties of the iced blades are evaluated and used to determine their influence on aeroelastic natural frequencies and damping factors. Blade natural frequencies reduce with ice mass and the amount of reduction in frequencies depends on how the ice mass is distributed along the blade length; but the reduction in damping factors depends on the ice shape. The variations in the natural frequencies of the iced blades with wind velocities are negligible; however, the damping factors change with wind velocity and become negative at some wind velocities. This study shows that the aerodynamic changes in the iced blade can cause violent vibrations within the operating wind velocity range of this turbine. Full article
(This article belongs to the Special Issue Modeling and Simulation for Wind Turbine Loads Analysis)
Show Figures

Figure 1

Back to TopTop