Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = hydroxysafflor yellow A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3733 KiB  
Article
Combating Traumatic Brain Injury: A Dual-Mechanism Hydrogel Delivering Salvianolic Acid A and Hydroxysafflor Yellow A to Block TLR4/NF-κB and Boost Angiogenesis
by Guoying Zhou, Yujia Yan, Linh Nguyen, Jiangkai Fan, Xiao Zhang, Li Gan, Tingzi Yan and Haitong Wan
Polymers 2025, 17(14), 1900; https://doi.org/10.3390/polym17141900 - 9 Jul 2025
Viewed by 431
Abstract
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. [...] Read more.
Traumatic brain injury (TBI) leads to severe neurological dysfunction, disability, and even death. Surgical intervention and neurorehabilitation represent the current clinical management methods, yet there remains no effective treatment for recovery after TBI. Post-traumatic hyperinflammation and vascular injury are the key therapeutic challenges. Therefore, a novel-designed multifunctional HT/SAA/HSYA hydrogel based on hyaluronic acid (HA) co-loaded with salvianolic acid A (SAA) and hydroxysafflor yellow A (HSYA) was developed in order to simultaneously target inflammation and vascular injury, addressing key pathological processes in TBI. The HT hydrogel was formed through covalent cross-linking of tyramine-modified HA catalyzed by horseradish peroxidase (HRP). Results demonstrated that the HT hydrogel possesses a porous structure, sustained release capabilities of loaded drugs, suitable biodegradability, and excellent biocompatibility both in vitro and in vivo. WB, immunofluorescence staining, and PCR results revealed that SAA and HSYA significantly reduced the expression level of pro-inflammatory cytokines (IL-1β and TNF-α) and inhibited M1 macrophage polarization through the suppression of the TLR4/NF-κB inflammatory pathway. In vivo experiments confirmed that the HT/SAA/HSYA hydrogel exhibited remarkable pro-angiogenic effects, as evidenced by increased expression of CD31 and α-SMA. Finally, H&E staining showed that the HT/SAA/HSYA hydrogel effectively reduced the lesion volume in a mouse TBI model, and demonstrated more pronounced effects in promoting brain repair at the injury site, compared to the control and single-drug-loaded hydrogel groups. In conclusion, the HT hydrogel co-loaded with SAA and HSYA demonstrates excellent anti-inflammatory and pro-angiogenic effects, offering a promising therapeutic approach for brain repair following TBI. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

25 pages, 82520 KiB  
Review
Research Progress of Genomics Applications in Secondary Metabolites of Medicinal Plants: A Case Study in Safflower
by Zhihua Wu, Yan Hu, Ruru Hao, Ruting Li, Xiaona Lu, Mdachi Winfrida Itale, Yang Yuan, Xiaoxian Zhu, Jiaqiang Zhang, Longxiang Wang, Meihao Sun and Xianfei Hou
Int. J. Mol. Sci. 2025, 26(8), 3867; https://doi.org/10.3390/ijms26083867 - 19 Apr 2025
Viewed by 911
Abstract
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that [...] Read more.
Medicinal plants, recognized as significant natural resources, have gained prominence in response to the increasing global demand for herbal medicines, necessitating the large-scale production of these plants and their derivatives. Medicinal plants are exposed to a variety of internal and external factors that interact to influence the biosynthesis and accumulation of secondary metabolites. With the rapid development of omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, multi-omics technologies have become important tools for revealing the complexity and functionality of organisms. They are conducive to further uncovering the biological activities of secondary metabolites in medicinal plants and clarifying the molecular mechanisms underlying the production of secondary metabolites. Also, artificial intelligence (AI) technology accelerates the comprehensive utilization of high-dimensional datasets and offers transformative potential for multi-omics analysis. However, there is currently no systematic review summarizing the genomic mechanisms of secondary metabolite biosynthesis in medicinal plants. Safflower (Carthamus tinctorius L.) has rich and diverse bioactive flavonoids, among of which Hydroxysafflor yellow A (HSYA) is specific to safflower and emerging as a potential medication for treating a wide range of diseases. Hence, significant progress has been made in the study of safflower as an excellent example for the regulation of secondary metabolites in medicinal plants in recent years. Here, we review the progress on the understanding of the regulation of main secondary metabolites at the multi-omics level, and summarize the influence of various factors on their types and contents, with a particular focus on safflower flavonoids. This review aims to provide a comprehensive insight into the regulatory mechanisms of secondary metabolite biosynthesis from the perspective of genomics. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

12 pages, 1409 KiB  
Article
Characteristic Polyphenols in 15 Varieties of Chinese Jujubes Based on Metabolomics
by Yong Shao, Siying Li, Xuan Chen, Jiahui Zhang, Huxitaer Jianaerbieke, Gang Chen, Xiaodong Wang and Jianxin Song
Metabolites 2024, 14(12), 661; https://doi.org/10.3390/metabo14120661 - 28 Nov 2024
Viewed by 1000
Abstract
Background: Jujube is a homologous herb of medicine and food, and polyphenols are key in determining the functional effects of jujubes. Methods: In this study, characteristic polyphenols in 15 varieties of Chinese jujubes were investigated based on untargeted metabolomics. Results: The results showed [...] Read more.
Background: Jujube is a homologous herb of medicine and food, and polyphenols are key in determining the functional effects of jujubes. Methods: In this study, characteristic polyphenols in 15 varieties of Chinese jujubes were investigated based on untargeted metabolomics. Results: The results showed that a total of 79 characteristic polyphenols were identified in the 15 varieties of Chinese jujube, and 55 characteristic polyphenols such as syringetin, spinosin and kaempferol were reported for the first time. Scopoletin (63.94% in LZYZ), pectolinarin (22.63% in HZ) and taxifolin (19.69% in HZ) contributed greatly and presented significant (p < 0.05) differences in the 15 varieties of Chinese jujubes. HZ was characterized by pectolinarin, erianin and wogonoside, while XSHZ, NYDZ and RQHZ, with similar polyphenol profiles, were characterized by (+)-catechin, combretastatin A4 and tectorigenin. JSBZ, HMDZ, TZ, JCJZ and HPZ had similar polyphenol profiles of galangin, isoferulic acid and hydroxysafflor yellow A. Conclusions: Metabolomics is critical in grasping the full polyphenol contents of jujubes, and the differences in the polyphenol profiles and characteristic individual polyphenols of the 15 varieties of Chinese jujubes were well analyzed by principal component analysis (PCA). Full article
Show Figures

Graphical abstract

23 pages, 3926 KiB  
Article
Comparative Analysis of Citrus Species’ Flavonoid Metabolism, Gene Expression Profiling, and Their Antioxidant Capacity under Drought Stress
by Muhammad Junaid Rao, Mingzheng Duan, Momina Eman, Huwei Yuan, Anket Sharma and Bingsong Zheng
Antioxidants 2024, 13(9), 1149; https://doi.org/10.3390/antiox13091149 - 23 Sep 2024
Cited by 15 | Viewed by 2342
Abstract
Citrus species are widely cultivated across the globe and frequently encounter drought stress during their growth and development phases. Previous research has indicated that citrus species synthesize flavonoids as a response mechanism to drought stress. This study aimed to comprehensively quantify and analyze [...] Read more.
Citrus species are widely cultivated across the globe and frequently encounter drought stress during their growth and development phases. Previous research has indicated that citrus species synthesize flavonoids as a response mechanism to drought stress. This study aimed to comprehensively quantify and analyze the presence of 85 distinct flavonoids in the leaf and root tissues of lemon (drought susceptible) and sour orange (drought tolerant). In drought-stressed sour orange roots, flavonoids, such as isosakuranin, mangiferin, trilobatin, liquiritigenin, avicularin, silibinin, and glabridin, were more elevated than control sour orange roots and drought-stressed lemon roots. Additionally, hydroxysafflor yellow A, cynaroside, tiliroside, and apigenin 7-glucoside were increased in drought-stressed sour orange leaves compared to drought-stressed lemon leaves. Under drought stress, flavonoids such as (-)-epigallocatechin, silibinin, benzylideneacetophenone, trilobatin, isorhamnetin, 3,7,4′-trihydroxyflavone, and liquiritigenin were significantly increased, by 3.01-, 3.01-, 2.59-, 2.43-, 2.07-, 2.05-, and 2.01-fold, in sour orange roots compared to control sour orange roots. Moreover, the total flavonoid content and antioxidant capacity were significantly increased in drought-stressed sour orange leaves and root tissues compared to drought-stressed lemon leaves and root tissues. The expression levels of genes involved in flavonoid biosynthesis were highly expressed in sour orange leaves and roots, compared to lemon leaves and root tissues, post-drought stress. These findings indicate that lemons fail to synthesize protective flavonoids under drought conditions, whereas sour orange leaves and root tissues enhance flavonoid synthesis, with higher antioxidant activities to mitigate the adverse effects of reactive oxygen species generated during drought stress. Full article
(This article belongs to the Special Issue Advances in Plant Methods: Antioxidant Activity in Plant Extracts)
Show Figures

Figure 1

18 pages, 3630 KiB  
Article
A Combination of Astragaloside IV and Hydroxysafflor Yellow A Attenuates Cerebral Ischemia-Reperfusion Injury via NF-κB/NLRP3/Caspase-1/GSDMD Pathway
by Yongchun Hou, Zi Yan, Haitong Wan, Jiehong Yang, Zhishan Ding and Yu He
Brain Sci. 2024, 14(8), 781; https://doi.org/10.3390/brainsci14080781 - 31 Jul 2024
Cited by 5 | Viewed by 2010
Abstract
Cerebral ischemia-reperfusion injury (IRI), occurring after blood supply restoration, contributes significantly to stroke-related deaths. This study explored the combined impact and mechanisms of astragaloside IV (AS-IV), hydroxysafflor yellow A (HSYA), and their combination in mitigating IRI. Male Sprague–Dawley (SD) rats were randomized to [...] Read more.
Cerebral ischemia-reperfusion injury (IRI), occurring after blood supply restoration, contributes significantly to stroke-related deaths. This study explored the combined impact and mechanisms of astragaloside IV (AS-IV), hydroxysafflor yellow A (HSYA), and their combination in mitigating IRI. Male Sprague–Dawley (SD) rats were randomized to the Sham, MCAO, MCAO+AS-IV, MCAO+HSYA, and MCAO+AS-IV+HSYA groups. Neurological deficits and cerebral infarction were examined after restoring the blood supply to the brain. Pathomorphological changes in the cerebral cortex were observed via HE staining. IL-1β and IL-18 were quantified using ELISA. The expression of NF-κB and GSDMD in the ischemic cerebrum was analyzed using immunohistochemistry. The expression levels of NLRP3, ASC, IL-1β, Caspase-1, and GSDMD in the ischemic cerebrum were evaluated using Western blot. The MCAO+AS-IV, MCAO+HSYA, and MCAO+AS-IV+HSYA groups exhibited notably better neurological function and cerebral infarction compared with the MCAO group. The combined treatment demonstrated superior brain tissue injury alleviation. Reductions in NF-κB, GSDMD positive cells, and NLRP3/ASC/IL-1β/Caspase-1/GSDMD protein expression in the ischemic brain were significantly more pronounced with the combined therapy, indicating a synergistic effect in countering cerebral IRI via the NF-κB/NLRP3/Caspase-1/GSDMD pathway inhibition of cell pyroptosis-induced injury. Full article
(This article belongs to the Section Neurosurgery and Neuroanatomy)
Show Figures

Figure 1

11 pages, 2379 KiB  
Article
Effects of Hydroxysafflor Yellow A (HSYA) on UVA-Induced Damage in HaCaT Keratinocytes
by Szu-Chieh Yu, Wan-Chun Chiu, Pei Yu Loe and Yi-Wen Chien
Int. J. Mol. Sci. 2024, 25(14), 7573; https://doi.org/10.3390/ijms25147573 - 10 Jul 2024
Cited by 2 | Viewed by 1646
Abstract
To assess the effects of hydroxysafflor yellow A (HSYA) on ultraviolet A (UVA)-induced damage in HaCaT keratinocytes. HaCaT keratinocytes were UVA-irradiated, and the effects of HSYA on cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, and messenger (m)RNA expression were measured. mRNA [...] Read more.
To assess the effects of hydroxysafflor yellow A (HSYA) on ultraviolet A (UVA)-induced damage in HaCaT keratinocytes. HaCaT keratinocytes were UVA-irradiated, and the effects of HSYA on cell viability, reactive oxygen species (ROS) generation, lipid peroxidation, and messenger (m)RNA expression were measured. mRNA expressions of matrix metalloproteinase (MMP)-1, MMP-2, MMP-9, and cyclooxygenase (COX)-2 were determined by a real-time polymerase chain reaction (RT-PCR). UVA exposure led to a decrease in cell viability and an increase in ROS generation in HaCaT keratinocytes. HSYA effectively increased the viability of HaCaT keratinocytes after UVA exposure and protected them from UVA-induced oxidative stress. Moreover, HSYA inhibited expressions of MMP-1, MMP-2, MMP-9, and COX-2 by HaCaT keratinocytes with UVA-induced photodamage. Our results suggest that HSYA can act as a free radical scavenger when keratinocytes are photodamaged. HSYA has the potential to be a skin-protective ingredient against UVA-induced photodamage. Full article
Show Figures

Figure 1

16 pages, 5650 KiB  
Article
Network Analysis and Experimental Verification of the Mechanisms of Hydroxysafflor Yellow A in Ischemic Stroke Following Atherosclerosis
by Xi Han, Huifen Zhou, Junjun Yin, Jiaqi Zhu, Jiehong Yang and Haitong Wan
Molecules 2023, 28(23), 7829; https://doi.org/10.3390/molecules28237829 - 28 Nov 2023
Cited by 2 | Viewed by 2082
Abstract
Hydroxysafflor yellow A (HSYA) is derived from Carthamus tinctorius L. (Honghua in Chinese) and is used to treat cardiovascular and cerebrovascular disease. However, the mechanism by which HSYA treats ischemic stroke following atherosclerosis (ISFA) remains unclear. The targets and pathways of HSYA against [...] Read more.
Hydroxysafflor yellow A (HSYA) is derived from Carthamus tinctorius L. (Honghua in Chinese) and is used to treat cardiovascular and cerebrovascular disease. However, the mechanism by which HSYA treats ischemic stroke following atherosclerosis (ISFA) remains unclear. The targets and pathways of HSYA against ISFA were obtained using network analysis. A total of 3335 potential IFSA-related targets were predicted using the GenCards and Drugbank databases, and a total of 88 potential HSYA-related targets were predicted using the Swiss Target Prediction database. A total of 62 HSYA-related targets against IFSA were obtained. The network was composed of HSYA, 62 targets, and 20 pathways. The top 20 targets were constructed via the protein–protein interaction (PPI) network. Gene Ontology analysis revealed that the targets were involved in signal transduction, protein phosphorylation, the cytoplasm, the plasma membrane, the cytosol, zinc ion binding, ATP binding, protein kinase binding/activity, and enzyme binding. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that the pathways were associated with cancer, inflammatory mediator regulation of the transient receptor potential channels, and microRNA in cancer. Additionally, molecular docking indicated that HSYA mainly interacts with five targets, namely interleukin 1 beta (IL-1β), signal transducer and activator of transcription 3 (STAT3), E1A-binding protein p300 (EP300), protein kinase C alpha (PRKCA), and inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB). In animal experiments, HSYA administration ameliorated the infarct size, neurological deficit score, histopathological changes, carotid intima-media thickness (IMT), and blood lipid level (total cholesterol and triglycerides). Immunochemistry and quantitative PCR showed that HSYA intervention downregulated the expression of STAT3, EP300, PRKCA, and IKBKB, and the enzyme-linked immunoassay showed reduced IL-1β levels. The findings of this study provide a reference for the development of anti-ISFA drugs. Full article
Show Figures

Graphical abstract

17 pages, 20731 KiB  
Article
Hydroxysafflor Yellow A Alleviates Acute Myocardial Ischemia/Reperfusion Injury in Mice by Inhibiting Ferroptosis via the Activation of the HIF-1α/SLC7A11/GPX4 Signaling Pathway
by Chaowen Ge, Yuqin Peng, Jiacheng Li, Lei Wang, Xiaoyu Zhu, Ning Wang, Dongmei Yang, Xian Zhou and Dennis Chang
Nutrients 2023, 15(15), 3411; https://doi.org/10.3390/nu15153411 - 31 Jul 2023
Cited by 41 | Viewed by 4012
Abstract
Ferroptosis is closely associated with the pathophysiology of myocardial ischemia. Hydroxysafflor yellow A (HSYA), the main active ingredient in the Chinese herbal medicine safflower, exerts significant protective effects against myocardial ischemia/reperfusion injury (MI/RI). The aim of this study was to investigate the protective [...] Read more.
Ferroptosis is closely associated with the pathophysiology of myocardial ischemia. Hydroxysafflor yellow A (HSYA), the main active ingredient in the Chinese herbal medicine safflower, exerts significant protective effects against myocardial ischemia/reperfusion injury (MI/RI). The aim of this study was to investigate the protective effects of HSYA against MI/RI and identify the putative underlying mechanisms. An in vivo model of acute MI/RI was established in C57 mice. Subsequently, the effects of HSYA on myocardial tissue injury were evaluated by histology. Lipid peroxidation and myocardial injury marker contents in myocardial tissue and serum and iron contents in myocardial tissue were determined using biochemical assays. Mitochondrial damage was assessed using transmission electron microscopy. H9C2 cardiomyocytes were induced in vitro by oxygen–glucose deprivation/reoxygenation, and ferroptosis inducer erastin was administered to detect ferroptosis-related indicators, oxidative-stress-related indicators, and expressions of ferroptosis-related proteins and HIF-1α. In MI/RI model mice, HSYA reduced myocardial histopathological damage, ameliorated mitochondrial damage in myocardial cells, and decreased total cellular iron and ferrous ion contents in myocardial tissue. HSYA increased the protein levels of SLC7A11, HIF-1α, and GPX4 and mitigated erastin- or HIF-1α siRNA-induced damage in H9C2 cells. In summary, HSYA alleviated MI/RI by activating the HIF-1α/SLC7A11/GPX4 signaling pathway, thereby inhibiting ferroptosis. Full article
Show Figures

Figure 1

16 pages, 3880 KiB  
Article
Nanoemulsions of Hydroxysafflor Yellow A for Enhancing Physicochemical and In Vivo Performance
by Yingjie Zhang, Cailing Zhong, Qiong Wang, Jingqing Zhang, Hua Zhao, Yuru Huang, Dezhang Zhao and Junqing Yang
Int. J. Mol. Sci. 2023, 24(10), 8658; https://doi.org/10.3390/ijms24108658 - 12 May 2023
Cited by 3 | Viewed by 1970
Abstract
Stroke was always a disease that threatened human life and health worldwide. We reported the synthesis of a new type of hyaluronic acid-modified multi-walled carbon nanotube. Then, we produced hydroxysafflor yellow A-hydroxypropyl-β-cyclodextrin phospholipid complex water-in-oil nanoemulsion with hyaluronic acid-modified multi-walled carbon nanotubes and [...] Read more.
Stroke was always a disease that threatened human life and health worldwide. We reported the synthesis of a new type of hyaluronic acid-modified multi-walled carbon nanotube. Then, we produced hydroxysafflor yellow A-hydroxypropyl-β-cyclodextrin phospholipid complex water-in-oil nanoemulsion with hyaluronic acid-modified multi-walled carbon nanotubes and chitosan (HC@HMC) for oral treatment of an ischemic stroke. We measured the intestinal absorption and pharmacokinetics of HC@HMC in rats. We found that the intestinal absorption and the pharmacokinetic behavior of HC@HMC was superior to that of HYA. We measured intracerebral concentrations after oral administration of HC@HMC and found that more HYA crossed the blood–brain barrier (BBB) in mice. Finally, we evaluated the efficacy of HC@HMC in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice. In MCAO/R mice, oral administration of HC@HMC demonstrated significant protection against cerebral ischemia-reperfusion injury (CIRI). Furthermore, we found HC@HMC may exert a protective effect on cerebral ischemia-reperfusion injury through the COX2/PGD2/DPs pathway. These results suggest that oral administration of HC@HMC may be a potential therapeutic strategy for the treatment of stroke. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 4868 KiB  
Article
Hydroxysafflor Yellow A Exerts Neuroprotective Effects via HIF-1α/BNIP3 Pathway to Activate Neuronal Autophagy after OGD/R
by Ruheng Wei, Lijuan Song, Zhuyue Miao, Kexin Liu, Guangyuan Han, Haifei Zhang, Dong Ma, Jianjun Huang, Hao Tian, Baoguo Xiao and Cungen Ma
Cells 2022, 11(23), 3726; https://doi.org/10.3390/cells11233726 - 22 Nov 2022
Cited by 14 | Viewed by 2398
Abstract
In the process of ischemic stroke (IS), cellular macroautophagy/autophagy and apoptosis play a vital role in neuroprotection against it. Therefore, regulating their balance is a potential therapeutic strategy. It has been proved that hydroxysafflor yellow A (HSYA) has anti-inflammatory and antioxidant effects, which [...] Read more.
In the process of ischemic stroke (IS), cellular macroautophagy/autophagy and apoptosis play a vital role in neuroprotection against it. Therefore, regulating their balance is a potential therapeutic strategy. It has been proved that hydroxysafflor yellow A (HSYA) has anti-inflammatory and antioxidant effects, which can both protect neurons. By exploring bioinformatics combined with network pharmacology, we found that HIF1A and CASP3, key factors regulating autophagy and apoptosis, may be important targets of HSYA for neuroprotection in an oxygen glucose deprivation and reperfusion (OGD/R) model. In this study, we explored a possible new mechanism of HSYA neuroprotection in the OGD/R model. The results showed that OGD/R increased the expression of HIF1A and CASP3 in SH-SY5Y cells and induced autophagy and apoptosis, while HSYA intervention further promoted the expression of HIF1A and inhibited the level of CASP3, accompanied by an increase in autophagy and a decrease in apoptosis in SH-SY5Y cells. The inhibition of HIF1A diminished the activation of autophagy induced with HSYA, while the inhibition of autophagy increased cell apoptosis and blocked the neuroprotective effect of HSYA, suggesting that the neuroprotective effect of HSYA should be mediated by activating the HIF1A/BNIP3 signaling pathway to induce autophagy. These results demonstrate that HSYA may be a promising agent for treating IS. Full article
(This article belongs to the Special Issue Pharmacological Modulation of Autophagy)
Show Figures

Figure 1

19 pages, 4333 KiB  
Article
Integrating Network Pharmacology and Transcriptomic Strategies to Explore the Pharmacological Mechanism of Hydroxysafflor Yellow A in Delaying Liver Aging
by Jie Kong, Siming Sun, Fei Min, Xingli Hu, Yuan Zhang, Yan Cheng, Haiyan Li, Xiaojie Wang and Xin Liu
Int. J. Mol. Sci. 2022, 23(22), 14281; https://doi.org/10.3390/ijms232214281 - 18 Nov 2022
Cited by 14 | Viewed by 3491
Abstract
Aging affects the structure and function of the liver. Hydroxysafflor yellow A (HSYA) effectively improves liver aging (LA) in mice, but the potential mechanisms require further exploration. In this study, an integrated approach combining network pharmacology and transcriptomics was used to elucidate the [...] Read more.
Aging affects the structure and function of the liver. Hydroxysafflor yellow A (HSYA) effectively improves liver aging (LA) in mice, but the potential mechanisms require further exploration. In this study, an integrated approach combining network pharmacology and transcriptomics was used to elucidate the potential mechanisms of HSYA delay of LA. The targets of HSYA were predicted using the PharmMapper, SwissTargetPrediction, and CTD databases, and the targets of LA were collected from the GeneCards database. An ontology (GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of genes related to HSYA delay of LA were performed using the DAVID database, and Cytoscape software was used to construct an HSYA target pathway network. The BMKCloud platform was used to sequence mRNA from mouse liver tissue, screen differentially expressed genes (DEGs) that were altered by HSYA, and enrich their biological functions and signaling pathways through the OmicShare database. The results of the network pharmacology and transcriptomic analyses were combined. Then, quantitative real-time PCR (qRT-PCR) and Western blot experiments were used to further verify the prediction results. Finally, the interactions between HSYA and key targets were assessed by molecular docking. The results showed that 199 potentially targeted genes according to network pharmacology and 480 DEGs according to transcriptomics were involved in the effects of HSYA against LA. An integrated analysis revealed that four key targets, including HSP90AA1, ATP2A1, NOS1 and CRAT, as well as their three related pathways (the calcium signaling pathway, estrogen signaling pathway and cGMP–PKG signaling pathway), were closely related to the therapeutic effects of HSYA. A gene and protein expression analysis revealed that HSYA significantly inhibited the expressions of HSP90AA1, ATP2A1 and NOS1 in the liver tissue of aging mice. The molecular docking results showed that HSYA had high affinities with the HSP90AA1, ATP2A1 and NOS1 targets. Our data demonstrate that HSYA may delay LA in mice by inhibiting the expressions of HSP90AA1, ATP2A1 and NOS1 and regulating the calcium signaling pathway, the estrogen signaling pathway, and the cGMP–PKG signaling pathway. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 3527 KiB  
Article
Hydroxysafflor Yellow A Phytosomes Administered via Intervaginal Space Injection Ameliorate Pulmonary Fibrosis in Mice
by Tingting Li, Dong Han, Zhongxian Li, Mengqi Qiu, Yuting Zhu, Kai Li, Jiawei Xiang, Huizhen Sun, Yahong Shi, Tun Yan, Xiaoli Shi and Qiang Zhang
Pharmaceuticals 2022, 15(11), 1394; https://doi.org/10.3390/ph15111394 - 12 Nov 2022
Cited by 6 | Viewed by 2342
Abstract
Idiopathic pulmonary fibrosis is a fatal interstitial disease characterized by fibroblast proliferation and differentiation and abnormal accumulation of extracellular matrix, with high mortality and an increasing annual incidence. Since few drugs are available for the treatment of pulmonary fibrosis, there is an urgent [...] Read more.
Idiopathic pulmonary fibrosis is a fatal interstitial disease characterized by fibroblast proliferation and differentiation and abnormal accumulation of extracellular matrix, with high mortality and an increasing annual incidence. Since few drugs are available for the treatment of pulmonary fibrosis, there is an urgent need for high-efficiency therapeutic drugs and treatment methods to reduce the mortality associated with pulmonary fibrosis. The interstitium, a highly efficient transportation system that pervades the body, plays an important role in the occurrence and development of disease, and can be used as a new route for disease diagnosis and treatment. In this study, we evaluated the administration of hydroxysafflor yellow A phytosomes via intervaginal space injection (ISI) as an anti-pulmonary fibrosis treatment. Our results show that this therapeutic strategy blocked the activation of p38 protein in the MAPK-p38 signaling pathway and inhibited the expression of Smad3 protein in the TGF-β/Smad signaling pathway, thereby reducing secretion of related inflammatory factors, deposition of collagen in the lungs of mice, and destruction of the alveolar structure. Use of ISI in the treatment of pulmonary fibrosis provides a potential novel therapeutic modality for the disease. Full article
(This article belongs to the Special Issue Drug Delivery to the Lungs: Challenges and Opportunities)
Show Figures

Figure 1

23 pages, 5615 KiB  
Article
Discovering a Multi-Component Combination against Vascular Dementia from Danshen-Honghua Herbal Pair by Spectrum-Effect Relationship Analysis
by Peilin Zhang, Shiru He, Siqi Wu, Yi Li, Huiying Wang, Changyang Yan, Hua Yang and Ping Li
Pharmaceuticals 2022, 15(9), 1073; https://doi.org/10.3390/ph15091073 - 29 Aug 2022
Cited by 10 | Viewed by 3028
Abstract
The Danshen-Honghua (DH) herbal pair exhibits a synergistic effect in protecting the cerebrovascular system from ischemia/reperfusion injury, but the therapeutic effect on vascular dementia (VaD) has not been clarified, and the main active ingredient group has not been clarified. In this work, the [...] Read more.
The Danshen-Honghua (DH) herbal pair exhibits a synergistic effect in protecting the cerebrovascular system from ischemia/reperfusion injury, but the therapeutic effect on vascular dementia (VaD) has not been clarified, and the main active ingredient group has not been clarified. In this work, the chemical constituents in DH herbal pair extract were characterized by UHPLC-QTOF MS, and a total of 72 compounds were identified. Moreover, the DH herbal pair alleviated phenylhydrazine (PHZ)-induced thrombosis and improved bisphenol F (BPF)- and ponatinib-induced brain injury in zebrafish. Furthermore, the spectrum-effect relationship between the fingerprint of the DH herbal pair and the antithrombotic and neuroprotective efficacy was analyzed, and 11 chemical components were screened out as the multi-component combination (MCC) against VaD. Among them, the two compounds with the highest content were salvianolic acid B (17.31 ± 0.20 mg/g) and hydroxysafflor yellow A (15.85 ± 0.19 mg/g). Finally, we combined these 11 candidate compounds as the MCC and found that it could improve thrombosis and neuronal injury in three zebrafish models and rat bilateral common carotid artery occlusion (BCCAO) model, which had similar efficacy compared to the DH herbal pair. This study provides research ideas for the treatment of VaD and the clinical application of the DH herbal pair. Full article
(This article belongs to the Special Issue Zebrafish as a Powerful Tool for Drug Discovery 2023)
Show Figures

Figure 1

19 pages, 5651 KiB  
Article
Hydroxysafflor Yellow A Blocks HIF-1α Induction of NOX2 and Protects ZO-1 Protein in Cerebral Microvascular Endothelium
by Yi Li, Xiao-Tian Liu, Pei-Lin Zhang, Yu-Chen Li, Meng-Ru Sun, Yi-Tao Wang, Sheng-Peng Wang, Hua Yang, Bao-Lin Liu, Mei Wang, Wen Gao and Ping Li
Antioxidants 2022, 11(4), 728; https://doi.org/10.3390/antiox11040728 - 7 Apr 2022
Cited by 25 | Viewed by 4049
Abstract
Zonula occludens-1 (ZO-1) is a tight junction protein in the cerebrovascular endothelium, responsible for blood–brain barrier function. Hydroxysafflor yellow A (HSYA) is a major ingredient of safflower (Carthamus tinctorius L.) with antioxidative activity. This study investigated whether HSYA protected ZO-1 by targeting [...] Read more.
Zonula occludens-1 (ZO-1) is a tight junction protein in the cerebrovascular endothelium, responsible for blood–brain barrier function. Hydroxysafflor yellow A (HSYA) is a major ingredient of safflower (Carthamus tinctorius L.) with antioxidative activity. This study investigated whether HSYA protected ZO-1 by targeting ROS-generating NADPH oxidases (NOXs). HSYA administration reduced cerebral vascular leakage with ZO-1 protection in mice after photothrombotic stroke, largely due to suppression of ROS-associated inflammation. In LPS-stimulated brain microvascular endothelial cells, HSYA increased the ratio of NAD+/NADH to restore Sirt1 induction, which bound to Von Hippel–Lindau to promote HIF-1αdegradation. NOX2 was the predominant isoform of NOXs in endothelial cells and HIF-1α transcriptionally upregulated p47phox and Nox2 subunits for the assembly of the NOX2 complex, but the signaling cascades were blocked by HSYA via HIF-1α inactivation. When oxidate stress impaired ZO-1 protein, HSYA attenuated carbonyl modification and prevented ZO-1 protein from 20S proteasomal degradation, eventually protecting endothelial integrity. In microvascular ZO-1 deficient mice, we further confirmed that HSYA protected cerebrovascular integrity and attenuated ischemic injury in a manner that was dependent on ZO-1 protection. HSYA blocked HIF-1α/NOX2 signaling cascades to protect ZO-1 stability, suggestive of a potential therapeutic strategy against ischemic brain injury. Full article
(This article belongs to the Topic Oxidative Stress and Inflammation)
Show Figures

Graphical abstract

14 pages, 3960 KiB  
Article
Synthesis of Methyl Mercaptan on Mesoporous Alumina Prepared with Hydroxysafflor Yellow A as Template: The Synergistic Effect of Potassium and Molybdenum
by Chuang Peng, Dong Zeng, Jianjun Li, Shuai Peng, Jun Xiong, Weiming Wang, Yingming Chen, Hong Liu, Hao Liu and Rui Qin
Catalysts 2021, 11(11), 1365; https://doi.org/10.3390/catal11111365 - 13 Nov 2021
Cited by 10 | Viewed by 2948
Abstract
K-promoted Mo-based catalysts showed great promise for the hydrogenation of CS2 to methyl mercaptan (CH3SH). However, the research on the synergistic effect of K and Mo, and the active site of CS2 hydrogenation to CH3SH were unexplored [...] Read more.
K-promoted Mo-based catalysts showed great promise for the hydrogenation of CS2 to methyl mercaptan (CH3SH). However, the research on the synergistic effect of K and Mo, and the active site of CS2 hydrogenation to CH3SH were unexplored widely. To solve this problem, the synergistic effect of K and Mo in the K-promoted Mo-based catalysts for CS2 hydrogenation to prepare CH3SH was investigated. The mesoporous alumina was the support and loaded the active components potassium and molybdenum to prepare the catalyst. The results suggested that the active components K and Mo can not only cooperatively regulate the acid-base sites on the catalyst surface, but also stabilize the molybdate species at +5 valence during the reduction process and increase the Mo unsaturated coordination sites. Combined with the results of the catalytic activity evaluation, indicating that the main active site of the catalysts is the weak Lewis acid-base site, and the strong acidic site and strong alkaline site are not conducive to the formation of CH3SH. Moreover, the possible catalytic mechanism of CS2 hydrogenation to CH3SH on the weak Lewis acid-base sites of the catalysts was proposed. The research results of this paper can provide an experimental basis and theoretical guidance for the design of high-performance CH3SH synthesis catalyst and further mechanism research. Full article
Show Figures

Graphical abstract

Back to TopTop