Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (179)

Search Parameters:
Keywords = hydrothermal annealing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 271
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

11 pages, 2412 KiB  
Article
Lab- and Large-Scale Hydrothermal Synthesis of Vanadium Dioxide Thermochromic Powder
by Emmanouil Gagaoudakis, Eleni Mantsiou, Leila Zouridi, Elias Aperathitis and Vasileios Binas
Crystals 2025, 15(8), 668; https://doi.org/10.3390/cryst15080668 - 23 Jul 2025
Viewed by 166
Abstract
Vanadium dioxide (VO2) is a phase-change material of great importance due to its thermochromic properties, which make it a potential candidate for energy-saving applications. In this work, a comparative study between VO2 thermochromic films prepared from powders synthesized by either [...] Read more.
Vanadium dioxide (VO2) is a phase-change material of great importance due to its thermochromic properties, which make it a potential candidate for energy-saving applications. In this work, a comparative study between VO2 thermochromic films prepared from powders synthesized by either a lab-scale hydrothermal autoclave or a large-scale hydrothermal reactor is presented. In both cases, the as-obtained material, after the hydrothermal step, was subsequently annealed at 700 °C under a nitrogen atmosphere, in order to obtain the monoclinic VO2(M) thermochromic phase. The VO2 powder prepared in the large-scale hydrothermal reactor exhibited a critical transition temperature of 54 °C with a hysteresis width of 9 °C, while for the one prepared in the lab-scale autoclave, the respective values were 62 °C and 5 °C. Despite these differences, the prepared films showed similar thermochromic performance with the lab-scale material displaying a 17% IR (InfraRed), switching at 2000 nm upon heating, and a transmittance solar modulation of 11%, compared to 17% and 9%, respectively, for the large-scale material. Moreover, both films appeared to have similar luminous transmittance of 44% and 46%, respectively, at room temperature (25 °C). These results showcase the potential for scaling up the hydrothermal synthesis of VO2, resulting in films with similar thermochromic performance to those from lab-scale fabrication. Full article
Show Figures

Figure 1

14 pages, 4651 KiB  
Article
Thermal-Induced Oxygen Vacancy Enhancing the Thermo-Chromic Performance of W-VO2−x@AA/PVP Nanoparticle Composite-Based Smart Windows
by Jiran Liang, Tong Wu, Chengye Zhang, Yunfei Bai, Dequan Zhang and Dangyuan Lei
Nanomaterials 2025, 15(14), 1084; https://doi.org/10.3390/nano15141084 - 12 Jul 2025
Viewed by 299
Abstract
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA [...] Read more.
Tungsten-doped vanadium dioxide (W-VO2) shows semiconductor-to-metal phase transition properties at room temperature, which is an ideal thermo-chromic smart window material. However, low visual transmittance and solar modulation limit its application in building energy saving. In this paper, a W-VO2−x@AA core-shell nanoparticle is proposed to improve the thermo-chromic performance of W-VO2. Oxygen vacancies were used to promote the connection of W-VO2−x nanoparticles with L-ascorbic acid (AA) molecules. Oxygen vacancies were tuned in W-VO2 nanoparticles by thermal annealing temperatures in vacuum, and W-VO2−x@AA nanoparticles were synthesized by the hydrothermal method. A smart window was formed by dispersing W-VO2−x@AA core-shell nanoparticles into PVP evenly and spin-coating them on the surface of glass. The visual transmittance of this smart window reaches up to 67%, and the solar modulation reaches up to 12.1%. This enhanced thermo-chromic performance is related to the electron density enhanced by the AA surface molecular coordination effect through W dopant and oxygen vacancies. This work provides a new strategy to enhance the thermo-chromic performance of W-VO2 and its application in the building energy-saving field. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

10 pages, 2622 KiB  
Article
Optical and Structural Characterization of Cu-Doped Ga2O3 Nanostructures Synthesized via Hydrothermal Method
by Jiwoo Kim, Heejoong Ryou, Janghun Lee, Sunjae Kim and Wan Sik Hwang
Inorganics 2025, 13(7), 231; https://doi.org/10.3390/inorganics13070231 - 7 Jul 2025
Viewed by 407
Abstract
In this study, we investigate the optical and structural properties of Cu-doped β-Ga2O3 nanostructures synthesized via a hydrothermal method, followed by annealing in ambient O2. Different Cu doping concentrations (0, 1.6, and 4.8 at.%) are introduced to [...] Read more.
In this study, we investigate the optical and structural properties of Cu-doped β-Ga2O3 nanostructures synthesized via a hydrothermal method, followed by annealing in ambient O2. Different Cu doping concentrations (0, 1.6, and 4.8 at.%) are introduced to examine their effects on the crystal structure, chemical state, and optical bandgap of β-Ga2O3. X-ray diffraction (XRD) analysis reveals that the host β-Ga2O3 crystal structure is preserved at lower doping levels, whereas secondary phases (Ga2CuO4) appear at higher doping concentrations (4.8 at.%). X-ray photoelectron spectroscopy (XPS) confirms the presence of Cu2+ ions in both lattice substitution sites and surface-adsorbed hydroxylated species (Cu(OH)2). The optical bandgap of β-Ga2O3 is found to decrease with increasing Cu concentration, likely due to the formation of localized states or secondary phases. These findings demonstrate the tunability of the optical properties of β-Ga2O3 via Cu doping, providing insights into the incorporation mechanisms and their impact on structural and electronic properties. Full article
Show Figures

Graphical abstract

11 pages, 998 KiB  
Article
Study on the Absorbing Properties of V-Doped MoS2
by Jiang Zou and Quan Xie
Ceramics 2025, 8(3), 84; https://doi.org/10.3390/ceramics8030084 - 2 Jul 2025
Viewed by 194
Abstract
This study employed a hydrothermal method to prepare V-doped MoS2. The influence of varying filler ratios (30 wt%, 40 wt%, 50 wt%) on its absorption properties was analyzed. For annealing studies, a precursor powder with a 40 wt% filler ratio was [...] Read more.
This study employed a hydrothermal method to prepare V-doped MoS2. The influence of varying filler ratios (30 wt%, 40 wt%, 50 wt%) on its absorption properties was analyzed. For annealing studies, a precursor powder with a 40 wt% filler ratio was heat-treated at 600 °C for 2 h. The results obtained through characterization and testing indicate that the unannealed 40 wt% filler sample demonstrates superior absorption performance, with minimum reflection loss (RLmin) of −32.24 dB, an effective absorption bandwidth (EAB) of 4.40 GHz, and 99.9% electromagnetic (EM) wave attenuation. However, upon subjecting the sample with a 40 wt% filling ratio to annealing treatment, a notable decrease in impedance matching degree was observed, and regions with impedance matching values close to 1 were no longer present. Consequently, it can be concluded that at a filling ratio of 40 wt%, the sample’s excellent attenuation coefficient in conjunction with its good impedance matching collectively contribute to its superior comprehensive absorption performance. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

10 pages, 2971 KiB  
Article
Photoelectrochemical Biosensor Based on 1D In2O3 Tube Decorated with 2D ZnIn2S4 Nanosheets for Sensitive PSA Detection
by Huihui Shi, Jianjian Xu and Yanhu Wang
Nanomaterials 2025, 15(11), 855; https://doi.org/10.3390/nano15110855 - 3 Jun 2025
Viewed by 432
Abstract
In photoelectrochemical (PEC) biosensing, efficient electron-hole separation is crucial to obtain preferred photocurrent response and analytical performance; thus, constructing developed heterointerfaces with high carrier transfer efficiency is an effective method for sensitive evaluation of analytes. Herein, a 1D ZnIn2S4 nanosheet-decorated [...] Read more.
In photoelectrochemical (PEC) biosensing, efficient electron-hole separation is crucial to obtain preferred photocurrent response and analytical performance; thus, constructing developed heterointerfaces with high carrier transfer efficiency is an effective method for sensitive evaluation of analytes. Herein, a 1D ZnIn2S4 nanosheet-decorated 2D In2O3 tube was developed to integrate with a prostate antigen (PSA)-sensitive aptamer for sensitive PSA antigen detection. 1D In2O3 tubes were first prepared by two-step hydrothermal and annealing methods, followed by the in-situ growth of ZnIn2S4 nanosheets. Morphology, optical properties, structure, and PEC performance of prepared In2O3-ZnIn2S4 were characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet–visible spectrophotometry, X-ray diffraction, X-ray photoelectron spectroscopy, and an electrochemical workstation. Benefiting from the photoelectric effect and specific 1D/2D hierarchical structure, In2O3-ZnIn2S4 displayed enhanced optical absorption and photocarrier separation, thus a superior photoelectrochemical response. Proposed bioassay protocol possessed a linear range from 0.001 to 50 ng/mL and a detection limit at 0.00037 ng/mL. In addition, this biosensor exhibited satisfactory anti-interface ability and stability, which also could be extended to other quantitative platforms for detecting other proteins. Full article
(This article belongs to the Special Issue Trends in Electrochemical Nanosensing)
Show Figures

Graphical abstract

16 pages, 5111 KiB  
Article
One-Pot Synthesis of Magnetic Core-Shell Fe3O4@C Nanospheres with Pt Nanoparticle Immobilization for Catalytic Hydrogenation of Nitroarenes
by Jun Qiao, Yang Gao, Kai Zheng, Chao Shen, Aiquan Jia and Qianfeng Zhang
Appl. Sci. 2025, 15(10), 5773; https://doi.org/10.3390/app15105773 - 21 May 2025
Viewed by 534
Abstract
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A [...] Read more.
Magnetic materials with intriguing structural and functional modifications demonstrate broad application potential in various fields, including drug delivery, absorption, extraction, separation, and catalysis. In particular, the catalytic hydrogenation of functionalized organic nitro compounds represents a significant research focus in contemporary catalysis studies. A facile synthesis of Fe3O4@C–Pt core-shell nanocatalysts was developed in this work through a sequential process involving (1) one-pot hydrothermal synthesis followed by N2-annealing to obtain the Fe3O4@C core and (2) subsequent solvothermal deposition of platinum nanoparticles. Comprehensive characterization was performed using FT-IR, XRD, Raman spectroscopy, TEM, XPS, BET surface area analysis, TGA, and VSM techniques. The resulting magnetic nanocatalysts exhibited uniformly dispersed Pt nanoparticles and demonstrated exceptional catalytic performance in nitroarene hydrogenation reactions. Remarkably, the system showed excellent functional group tolerance across all 20 substituted nitroarenes, consistently yielding corresponding aromatic amine products with >93% conversion efficiency. Furthermore, the magnetic responsiveness of Fe3O4@C–Pt enabled convenient catalyst recovery through simple magnetic separation, with maintained catalytic activity over 10 consecutive reuse cycles without significant performance degradation. Full article
Show Figures

Figure 1

14 pages, 3391 KiB  
Article
A UV-Photon-Energy-Integrated Gas Sensor Based on Pt-Nanoparticle-Decorated TiO2 Nanorods for Room-Temperature Hydrogen Detection
by Ju-Eun Yang, Sohyeon Kim, Jeonghye Yoon, Jeongmin Lee, Il-Kyu Park and Kyoung-Kook Kim
Chemosensors 2025, 13(5), 177; https://doi.org/10.3390/chemosensors13050177 - 11 May 2025
Viewed by 658
Abstract
Hydrogen sensors play a crucial role in ensuring safety in various industrial applications. In this study, we demonstrated the use of a room-temperature hydrogen gas sensor based on Pt-nanoparticle-decorated TiO2 nanorods (TiO2 NRs/Pt NP). The TiO2 NRs were synthesized via [...] Read more.
Hydrogen sensors play a crucial role in ensuring safety in various industrial applications. In this study, we demonstrated the use of a room-temperature hydrogen gas sensor based on Pt-nanoparticle-decorated TiO2 nanorods (TiO2 NRs/Pt NP). The TiO2 NRs were synthesized via a hydrothermal method, followed by Pt deposition using sputtering and thermal annealing. Under UV illumination, the TiO2 NR/Pt NP gas sensor exhibited a remarkable response of 2.4 at a 1% hydrogen concentration, which is approximately 5.9 times higher than that of bare TiO2 NRs measured in the dark. This enhancement is attributed to the synergistic effect of Pt NPs, which promote charge separation and spillover for oxygen molecules, and UV activation, which generates additional carriers. Moreover, the sensor demonstrated stable and reliable detection of hydrogen concentrations up to 1% without the need for external heating, underscoring its practical applicability under ambient conditions. These results demonstrate that TiO2 NRs/Pt NP, combined with UV activation, provide a promising approach for highly sensitive and room-temperature hydrogen detection, offering significant potential for hydrogen monitoring and hydrogen energy systems. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors)
Show Figures

Graphical abstract

21 pages, 6037 KiB  
Article
Structural and Spectroscopic Characterization of TiO2 Nanocrystalline Materials Synthesized by Different Methods
by Alise Podelinska, Elina Neilande, Viktorija Pankratova, Vera Serga, Hanna Bandarenka, Aliaksandr Burko, Sergei Piskunov, Vladimir A. Pankratov, Anatolijs Sarakovskis, Anatoli I. Popov and Dmitry V. Bocharov
Nanomaterials 2025, 15(7), 498; https://doi.org/10.3390/nano15070498 - 26 Mar 2025
Cited by 2 | Viewed by 805
Abstract
Nanocrystalline materials based on titanium dioxide possess unique properties, including photocatalytic and antibacterial activities. Despite many approaches have already been utilized to fabricate and characterize pure and doped TiO2, a systematic description of its nanostructured samples depending on the synthesis method [...] Read more.
Nanocrystalline materials based on titanium dioxide possess unique properties, including photocatalytic and antibacterial activities. Despite many approaches have already been utilized to fabricate and characterize pure and doped TiO2, a systematic description of its nanostructured samples depending on the synthesis method has not been presented yet. In this study, we shed new light on the process–structure relationships of nanocrystalline TiO2-based powders fabricated by extraction–pyrolytic, hydrothermal, and sol–gel techniques. The comprehensive analysis of the fabricated nanocrystalline TiO2-based powders with different anatase/rutile phase content is performed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The hydrothermal and sol–gel methods are also used to grow TiO2 particles doped with Cu and Er-Yb. The correlation between synthesis parameters (pyrolysis and annealing temperature) and properties of the produced materials is studied. Particular attention is paid to Raman spectroscopy and the detailed comparison of our obtained data with existing experimental and theoretical studies. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 3424 KiB  
Article
Preparation of TiO2/α-Fe2O3@SiO2 Nanorod Heterostructures and Their Applications for Efficient Photodegradation of Methylene Blue
by Yujeong Jeong, Kyubeom Lee, Gaeun Kim, Eun-Hye Jang, Youngson Choe, Seok Kim and Sungwook Chung
Crystals 2025, 15(3), 277; https://doi.org/10.3390/cryst15030277 - 17 Mar 2025
Viewed by 583
Abstract
A facile solvo-hydrothermal method was used to synthesize sub-100 nm diameter TiO2/α-Fe2O3@SiO2 nanorods (TiO2/HNRs@SiO2). Thermal annealing of TiO2/HNRs@SiO2 activated the photosensitizing crystalline TiO2 domains containing mixed anatase and [...] Read more.
A facile solvo-hydrothermal method was used to synthesize sub-100 nm diameter TiO2/α-Fe2O3@SiO2 nanorods (TiO2/HNRs@SiO2). Thermal annealing of TiO2/HNRs@SiO2 activated the photosensitizing crystalline TiO2 domains containing mixed anatase and rutile phases. The photocatalytic degradation of methylene blue (MB), conducted using thermally annealed TiO2/HNRs@SiO2 photocatalysts, was successfully demonstrated with ~95% MB removal efficiency under mild conditions of pH = ~7 and room temperature using ~150 min of solar irradiation. The enhanced removal efficiency was attributed to the rapid adsorption of MB onto the TiO2/HNRs@SiO2 surface via favorable electrostatic interactions and the synergistic integration of α-Fe2O3 and TiO2 into nanorod heterostructures with bandgaps of 1.99–2.03 eV, allowing them to absorb visible light for efficient photocatalytic decomposition. This study provides insights into designing photocatalysts with improved selectivity for sustainable water treatment and environmental remediation. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysts Materials)
Show Figures

Figure 1

14 pages, 4821 KiB  
Article
Controllable Hydrothermal Synthesis of 1D β-Ga2O3 for Solar-Blind Ultraviolet Photodetection
by Lingfeng Mao, Xiaoxuan Wang, Chaoyang Huang, Yi Ma, Feifei Qin, Wendong Lu, Gangyi Zhu, Zengliang Shi, Qiannan Cui and Chunxiang Xu
Nanomaterials 2025, 15(5), 402; https://doi.org/10.3390/nano15050402 - 6 Mar 2025
Viewed by 968
Abstract
Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high [...] Read more.
Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-Ga2O3 nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing. The nanorods had a diameter of ~500 nm, length from 0.5 to 3 μm, and structure from nanorods to spindles, indicating that different β-Ga2O3 nanorods can be utilized controllably through tuning reaction parameters. The 1D β-Ga2O3 nanorods with a high length-to-diameter ratio were chosen to construct metal-semiconductor-metal type photodetectors. These devices exhibited a high responsivity of 8.0 × 10−4 A/W and detectivity of 4.58 × 109 Jones under 254 nm light irradiation. The findings highlighted the potential of 1D Ga2O3 nanostructures for high-performance solar-blind ultraviolet photodetectors, paving the way for future integrable deep ultraviolet optoelectronic devices. Full article
Show Figures

Figure 1

14 pages, 4873 KiB  
Article
Self-Supported Cu/Fe3O4 Hierarchical Nanosheets on Ni Foam for High-Efficiency Non-Enzymatic Glucose Sensing
by Jing Xu, Hairui Cai, Ke Yu, Jie Hou, Zhuo Li, Xiaoxiao Zeng, Huijie He, Xiaojing Zhang, Di Su and Shengchun Yang
Nanomaterials 2025, 15(4), 281; https://doi.org/10.3390/nano15040281 - 12 Feb 2025
Cited by 2 | Viewed by 959
Abstract
Electrochemical glucose sensors are vital for clinical diagnostics and the food industry, where accurate detection is essential. However, the limitations of glucose oxidase (GOx)-based sensors, such as complex preparation, high cost, and environmental sensitivity, highlight the need for non-enzymatic sensors that directly oxidize [...] Read more.
Electrochemical glucose sensors are vital for clinical diagnostics and the food industry, where accurate detection is essential. However, the limitations of glucose oxidase (GOx)-based sensors, such as complex preparation, high cost, and environmental sensitivity, highlight the need for non-enzymatic sensors that directly oxidize glucose at the electrode surface. In this study, a self-supporting hierarchical Cu/Fe3O4 nanosheet electrode was successfully fabricated by in situ growth on Ni Foam using a hydrothermal method, followed by annealing treatment. The Cu/Fe3O4 hierarchical nanosheet structure, with its large surface area, provides abundant active sites for electrocatalysis, while the strong interactions between Cu/Fe3O4 and Ni Foam enhance electron transfer efficiency. This novel electrode structure demonstrates exceptional electrochemical performance for non-enzymatic glucose sensing, with an ultrahigh sensitivity of 12.85 μA·μM−1·cm−2, a low detection limit of 0.71 μM, and a linear range extending up to 1 mM. Moreover, the Cu/Fe3O4/NF electrode exhibits excellent stability, a rapid response (~3 s), and good selectivity against interfering substances such as uric acid, ascorbic acid, H2O2, urea, and KCl. It also shows strong reliability in analyzing human serum samples. Therefore, Cu/Fe3O4/NF holds great promise as a non-enzymatic glucose sensor, and this work offers a valuable strategy for the design of advanced electrochemical electrodes. Full article
Show Figures

Figure 1

12 pages, 2231 KiB  
Article
An In-Plane Heterostructure Ni3N/MoSe2 Loaded on Nitrogen-Doped Reduced Graphene Oxide Enhances the Catalyst Performance for Hydrogen Oxidation Reaction
by Abrar Qadir, Peng-Peng Guo, Yong-Zhi Su, Kun-Zu Yang, Xin Liu, Ping-Jie Wei and Jin-Gang Liu
Molecules 2025, 30(3), 488; https://doi.org/10.3390/molecules30030488 - 22 Jan 2025
Viewed by 1130
Abstract
Non-noble metal electrocatalysts for the hydrogen oxidation reaction (HOR) that are both highly active and low-cost are essential for the widespread use of fuel cells. Herein, a simple two-step method for creating an in-plane heterostructure of Ni3N/MoSe2 loaded on N-doped [...] Read more.
Non-noble metal electrocatalysts for the hydrogen oxidation reaction (HOR) that are both highly active and low-cost are essential for the widespread use of fuel cells. Herein, a simple two-step method for creating an in-plane heterostructure of Ni3N/MoSe2 loaded on N-doped reduced graphene oxide (Ni3N/MoSe2@N-rGO) as an effective electrocatalyst for the HOR is described. The process involves hydrothermal treatment of the Ni and Mo precursors with N-doped reduced graphene oxide, followed by the annealing with urea. The Ni3N/MoSe2@N-rGO catalyst exhibits high activities for the HOR, with current densities of 2.15 and 3.06 mA cm−2 at 0.5 V vs. the reversible hydrogen electrode (RHE) in H2-saturated 0.1 M KOH and 0.1 M HClO4 electrolytes, respectively, which is comparable to a commercial 20% Pt/C catalyst under similar experimental conditions. Furthermore, the catalyst demonstrates excellent durability, maintaining its performance during accelerated degradation tests for 5000 cycles. This work offers a practical framework for the designing and preparing of non-precious metal electrocatalysts for the HOR in fuel cells. Full article
Show Figures

Graphical abstract

11 pages, 3009 KiB  
Article
Hybridizing Fabrications of Gd-CeO2 Thin Films Prepared by EPD and SILAR-A+ for Solid Electrolytes
by Taeyoon Kim, Yun Bin Kim, Sungjun Yang and Sangmoon Park
Molecules 2025, 30(3), 456; https://doi.org/10.3390/molecules30030456 - 21 Jan 2025
Viewed by 968
Abstract
Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus (SILAR-A+) method. The Ce1−xGdxO2− [...] Read more.
Thin films of gadolinium-doped ceria (GDC) nanoparticles were fabricated as electrolytes for low-temperature solid oxide fuel cells (SOFCs) by combining electrophoretic deposition (EPD) and the successive ionic layer adsorption and reaction-air spray plus (SILAR-A+) method. The Ce1−xGdxO2−x/2 solid solution was synthesized using hydrothermal (HY) and solid-state (SS) procedures to produce high-quality GDC nanoparticles suitable for EPD fabrication. The crystalline structure, cell parameters, and phases of the GDC products were analyzed using X-ray diffraction. Variations in oxygen vacancy concentrations in the GDC samples were achieved through the two synthetic methods. The ionic conductivities of pressed pellets from the HY, SS, and commercial G0.2DC samples, measured at 150 °C, were 0.6 × 10−6, 2.6 × 10−6, and 2.9 × 10−6 S/cm, respectively. These values were determined using electrochemical impedance spectroscopy (EIS) with a simplified equivalent circuit method. The morphologies of G0.2DC thin films prepared via EPD and SILAR-A+ processes were characterized, with particular attention to surface cracking. Crack-free GDC thin films, approximately 730–1200 nm thick, were successfully fabricated on conductive substrates through the hybridization of EPD and SILAR-A+, followed by hydrothermal annealing. EIS and ionic conductivity (1.39 × 10−9 S/cm) measurements of the G0.2DC thin films with thicknesses of 733 nm were performed at 300 °C. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Energy Storage Devices)
Show Figures

Figure 1

15 pages, 2591 KiB  
Article
Microwave-Assisted Reduction of Graphene Oxide to Reduced Graphene Oxide
by Jessica T. Mhlongo, Boitumelo Tlhaole, Linda Z. Linganiso, Tshwafo E. Motaung and Ella C. Linganiso-Dziike
Processes 2025, 13(1), 216; https://doi.org/10.3390/pr13010216 - 14 Jan 2025
Cited by 2 | Viewed by 1434
Abstract
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO [...] Read more.
Green chemistry seeks to find alternative synthesis routes that are less harsh to living organisms and the environment. In this communication, a microwave-assisted hydrothermal technique and a thermal annealing method were used in the reduction of graphene oxide (GO) to make reduced GO (rGO). Graphite powder was oxidised using the Improved Hummers’ method, exfoliated, and freeze-dried. Thereafter, an aqueous suspension of GO was reduced under microwave (MW) irradiation for 10 min at 600 W with and without the help of a reducing agent (hydrazine hydrate). Thermal annealing reduction was also conducted under a nitrogen atmosphere at 300 °C for 1 h. Prepared samples were analysed using Raman laser spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, and X-ray photoelectron spectroscopy (XPS). A successful reduction in the GO functional groups between the sheets was established using XRD. In the Raman analysis, the ratio of the intensity of the D and G band (ID/IG) in graphene sheets assisted in assessing the quality of the graphene films. An estimation of the number of structural defects was calculated using the ID/IG ratio. The Raman analysis showed an increase in the ID/IG ratio after both oxidation and reduction processes. The defect densities of both MW-treated samples were comparable while an increased defect density was evident in the thermally annealed sample. TEM micrographs confirmed the sheet-like morphology of the samples. The rGO sheets obtained from the MW-treated method appeared to be smaller when compared to the rGO ones obtained by thermal treatment. It was also evident from XRD analysis that thermal treatment promoted the coalition of graphitic layers, such that the estimated number of layers was larger than that of GO. The elemental analysis showed that the C/O ratio of GO increased from 2 to 7.8 after MW hydrazine reduction. Full article
(This article belongs to the Special Issue Microwave Conversion Technique Intensification, 2nd Edition)
Show Figures

Figure 1

Back to TopTop