Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (667)

Search Parameters:
Keywords = hydropower plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1515 KiB  
Article
An Energy System Modeling Approach for Power Transformer Oil Temperature Prediction Based on CEEMD and Robust Deep Ensemble RVFL
by Yan Xu, Haohao Li, Xianyu Meng, Jialei Chen, Xinyu Zhang and Tian Peng
Processes 2025, 13(8), 2487; https://doi.org/10.3390/pr13082487 - 6 Aug 2025
Abstract
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random [...] Read more.
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random Vector Functional Link Network (ORedRVFL), and error correction. CEEMD is used to decompose the oil temperature data into multiple subsequences, enhancing the regularity and predictability of the data. Regularization and norm improvements are introduced to edRVFL to obtain a more robust ORedRVFL model. The Tent initialization-based Differential Evolution algorithm (TDE) is employed to optimize the model parameters and predict each subsequence. Finally, error correction is applied to the prediction results. Taking the main transformer of a hydropower station in Yunnan, China as an example, the experimental results show that the proposed method improves the prediction accuracy by 5.05% and 4.13% in winter and summer oil temperature predictions, respectively. Moreover, the model’s degradation is significantly reduced when random noise is added, which verifies its robustness. This method provides an efficient and accurate solution for transformer oil temperature prediction. Full article
25 pages, 5841 KiB  
Article
Creating Micro-Habitat in a Pool-Weir Fish Pass with Flexible Hydraulic Elements: Insights from Field Experiments
by Mehmet Salih Turker and Serhat Kucukali
Water 2025, 17(15), 2294; https://doi.org/10.3390/w17152294 - 1 Aug 2025
Viewed by 152
Abstract
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches [...] Read more.
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches were assessed at the Dagdelen hydropower plant in the Ceyhan River Basin, Türkiye. Three-dimensional velocity measurements were taken in the pool of the fishway using an Acoustic Doppler velocimeter. The measurements were taken with and without a brush block at two different vertical distances from the bottom, which were below and above the level of bristles tips. A computational fluid dynamics (CFD) analysis was conducted for the studied fishway. The numerical model utilized Large Eddy Simulation (LES) combined with the Darcy–Forchheimer law, wherein brush blocks were represented as homogenous porous media. Our results revealed that the relative submergence of bristles in the brush block plays a very important role in velocity and Reynolds shear stress (RSS) distributions. After the placement of the submerged brush block, flow velocity and the lateral RSS component were reduced, and a resting area was created behind the brush block below the bristles’ tips. Fish movements in the pool were recorded by underwater cameras under real-time operation conditions. The heatmap analysis, which is a 2-dimensional fish spatial presence visualization technique for a specific time period, showed that Capoeta damascina avoided the areas with high turbulent fluctuations during the tests, and 61.5% of the fish presence intensity was found to be in the low Reynolds shear regions in the pool. This provides a clear case for the real-world ecological benefits of retrofitting existing pool-weir fishways with such flexible hydraulic elements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 331
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 178
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

20 pages, 7276 KiB  
Article
Research on the Heavy Gas Setting Method of Oil-Immersed Transformer Based on Oil Flow Acceleration Characteristics
by Yuangang Sun, Zhixiang Tong, Jian Mao, Junchao Wang, Shixian He, Tengbo Zhang and Shuting Wan
Energies 2025, 18(14), 3859; https://doi.org/10.3390/en18143859 - 20 Jul 2025
Viewed by 213
Abstract
As the key non-electric protection equipment of an oil-immersed transformer, the gas relay plays an important role in ensuring the safe operation of the transformer. To further enhance the sensitivity of gas relays for the heavy gas alarm, this paper takes the BF [...] Read more.
As the key non-electric protection equipment of an oil-immersed transformer, the gas relay plays an important role in ensuring the safe operation of the transformer. To further enhance the sensitivity of gas relays for the heavy gas alarm, this paper takes the BF type double float gas relay as the research object and proposes a new method for heavy gas setting, which is based on the internal oil flow acceleration characteristics of the gas relay. Firstly, the analytical derivation of the force acting on the gas relay baffle is carried out, and through theoretical analysis, the internal mechanism of heavy gas action under transient oil flow excitation is revealed. Then, the numerical simulation and experimental research on the variation of oil flow velocity and acceleration under different fault energies are carried out. The results show that with the increase of fault energy, the oil flow velocity fluctuates up and down during heavy gas action, but the oil flow acceleration shows a linear correlation. The oil flow acceleration can be set as the threshold of heavy gas action, and the severity of the fault can be judged. At the same time, the alarm time of the heavy gas setting method based on the oil flow acceleration characteristics is greatly shortened, which can reflect the internal fault of the transformer in time and significantly improve the sensitivity of the heavy gas alarm. Full article
Show Figures

Figure 1

13 pages, 2335 KiB  
Article
Energy Mix Constraints Imposed by Minimum EROI for Societal Sustainability
by Ziemowit Malecha
Energies 2025, 18(14), 3765; https://doi.org/10.3390/en18143765 - 16 Jul 2025
Viewed by 233
Abstract
This study analyzes the feasibility of energy mixes composed of different shares of various types of power generation units, including photovoltaic (PV) and wind farms, hydropower, fossil fuel-based plants, and nuclear power. The analysis uses the concept of Energy Return on Investment (EROI), [...] Read more.
This study analyzes the feasibility of energy mixes composed of different shares of various types of power generation units, including photovoltaic (PV) and wind farms, hydropower, fossil fuel-based plants, and nuclear power. The analysis uses the concept of Energy Return on Investment (EROI), which is considered the most reliable indicator for comparing different technologies as it measures the energy required rather than monetary costs needed to build and operate each technology. Literature-based EROI values for individual generation technologies were used, along with the minimum EROI thresholds for the entire energy mix that are necessary to sustain developed societies and a high quality of life. The results show that, depending on the assumed minimum EROI value, which ranges from 10 to 30, the maximum share of intermittent renewable energy sources (IRESs), such as PV and wind farms, in the system cannot exceed 90% or 60%, respectively. It is important to emphasize that this EROI-based analysis does not account for power grid stability, which currently can only be maintained by the inertia of large synchronous generators. Therefore, the scenario with a 90% IRES share should be regarded as purely theoretical. Full article
Show Figures

Figure 1

27 pages, 2333 KiB  
Article
SWOT-AHP Analysis of the Importance and Adoption of Pumped-Storage Hydropower
by Mladen Bošnjaković, Nataša Veljić, Jelena Topić Božič and Simon Muhič
Technologies 2025, 13(7), 305; https://doi.org/10.3390/technologies13070305 - 16 Jul 2025
Viewed by 311
Abstract
Energy storage technologies are becoming increasingly important when it comes to maintaining the balance between electricity generation and consumption, especially with the increasing share of variable renewable energy sources (VRES). Pumped storage hydropower plants (PSHs) are currently the largest form of energy storage [...] Read more.
Energy storage technologies are becoming increasingly important when it comes to maintaining the balance between electricity generation and consumption, especially with the increasing share of variable renewable energy sources (VRES). Pumped storage hydropower plants (PSHs) are currently the largest form of energy storage at the grid level. The aim of this study is to investigate the importance and prospects of using PSHs as part of the energy transition to decarbonize energy sources. A comparison was made between PSHs and battery energy storage systems (BESSs) in terms of technical, economic, and ecological aspects. To identify the key factors influencing the wider adoption of PSHs, a combined approach using SWOT analysis (which assesses strengths, weaknesses, opportunities, and threats) and the Analytical Hierarchy Process (AHP) as a decision support tool was applied. Regulatory and market uncertainties (13.54%) and financial inequality (12.77%) rank first and belong to the “Threats” group, with energy storage capacity (10.11%) as the most important factor from the “Strengths” group and increased demand for energy storage (9.01%) as the most important factor from the “Opportunities” group. Forecasts up to 2050 show that the capacity of PSHs must be doubled to enable the integration of 80% of VRES into the grids. The study concludes that PSHs play a key role in the energy transition, especially for long-term energy storage and grid stabilization, while BESSs offer complementary benefits for short-term storage and fast frequency regulation. Recommendations to policymakers include the development of clear, accelerated project approval procedures, financial incentives, and support for hybrid PSH systems to accelerate the energy transition and meet decarbonization targets. Full article
(This article belongs to the Special Issue Innovative Power System Technologies)
Show Figures

Figure 1

24 pages, 3851 KiB  
Article
Nuclear Power Plants as Equivalents of Hydroelectric Reservoirs and Providers of Grid Stability: The Case of the Brazilian Electrical System
by Ivo Leandro Dorileo, Welson Bassi and Danilo Ferreira de Souza
Energies 2025, 18(14), 3642; https://doi.org/10.3390/en18143642 - 9 Jul 2025
Viewed by 1805
Abstract
In the current configuration of Brazil’s hydro-thermal-wind power system, hydroelectric reservoirs have progressively lost their long-term regulatory role due to inadequate planning, inefficient energy use, and reduced inflows. In the context of the energy transition and the incorporation of low-emission technologies into the [...] Read more.
In the current configuration of Brazil’s hydro-thermal-wind power system, hydroelectric reservoirs have progressively lost their long-term regulatory role due to inadequate planning, inefficient energy use, and reduced inflows. In the context of the energy transition and the incorporation of low-emission technologies into the generation mix, this study proposes expanding nuclear baseload capacity as a “regulatory thermal buffer” to mitigate hydrological uncertainty and strengthen grid stability. Using the São Francisco River basin as a case study, an equivalence factor is developed to relate nuclear energy output to stored hydropower reservoir volume. Results show that nuclear generation can help restore the multi-annual regulatory capacity of Brazil’s hydropower system and enhance the resilience of the National Interconnected System by contributing substantial inertia to an increasingly variable, renewable-based grid. Full article
Show Figures

Figure 1

16 pages, 5784 KiB  
Article
Enhanced Early Warning Threshold Setting for Dam Safety Monitoring Based on M-Estimation and Confidence Interval Method
by Peilin Dai, Xing Li, Guochun Hua and Yanling Li
Water 2025, 17(13), 2040; https://doi.org/10.3390/w17132040 - 7 Jul 2025
Viewed by 306
Abstract
Accurate online identification of abnormal sudden change observations is crucial for ensuring data reliability and has been a key challenge in dam safety monitoring. Traditional methods, such as those based on the Pauta criterion, often fail to effectively identify anomalies in complex data [...] Read more.
Accurate online identification of abnormal sudden change observations is crucial for ensuring data reliability and has been a key challenge in dam safety monitoring. Traditional methods, such as those based on the Pauta criterion, often fail to effectively identify anomalies in complex data sequences like step-type and oscillatory-type data, primarily due to unreasonable early warning threshold settings. To address this issue, this paper introduces a novel method for setting early warning thresholds by combining the scale estimator ST based on the location M-estimator with the confidence interval radius D derived from predicted values, thereby constructing the MZ criterion with a threshold of 3ST+D. The proposed model demonstrates strong resistance to outliers and good robustness, effectively improving the accuracy of online anomaly identification for various data sequences. The MZ standard achieves a false alarm and missed detection rate of less than 10% in the monitoring data of the XB hydropower plant, which is a significant improvement in detection accuracy compared to the traditional Pauta standard. Engineering applications have shown that the MZ criterion-based identification method achieves a low misjudgment and omission rate, high recognition accuracy, and is highly reliable for online dam safety monitoring. This method holds significant value for both theoretical research and practical engineering applications. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

16 pages, 9182 KiB  
Article
Analysis of the Energy Loss Characteristics of a Francis Turbine Under Off-Design Conditions with Sand-Laden Flow Based on Entropy Generation Theory
by Xudong Lu, Kang Xu, Zhongquan Wang, Yu Xiao, Yaogang Xu, Changjiu Huang, Jiayang Pang and Xiaobing Liu
Water 2025, 17(13), 2002; https://doi.org/10.3390/w17132002 - 3 Jul 2025
Viewed by 283
Abstract
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid [...] Read more.
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid two-phase flow throughout the entire flow passage of the turbine at the Gengda Hydropower Station (Minjiang River Basin section, 103°17′ E and 31°06′ N). The energy loss characteristics under different off-design conditions are analyzed on the basis of the average sediment concentration during the flood season (2.9 kg/m3) and a median particle diameter of 0.058 mm. The results indicate that indirect entropy generation and wall entropy generation are the primary contributors to total energy loss, while direct entropy generation accounts for less than 1%. As the guide vane opening increases, the proportion of wall entropy generation initially rises and then decreases, while the total indirect entropy generation exhibits a non-monotonic trend dominated by the flow pattern in the draft tube. Entropy generation on the runner walls increases steadily with larger openings, whereas entropy generation on the draft tube walls first decreases and then increases. The variation in entropy generation on the guide vanes remains relatively small. These findings provide technical support for the optimal design and operation of turbines in sediment-rich rivers. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

18 pages, 6847 KiB  
Article
Numerical Simulation of Slope Excavation and Stability Under Earthquakes in Cataclastic Loose Rock Mass of Hydropower Station on Lancang River
by Wenjing Liu, Hui Deng and Shuo Tian
Appl. Sci. 2025, 15(13), 7480; https://doi.org/10.3390/app15137480 - 3 Jul 2025
Viewed by 442
Abstract
This study investigates the excavation of the cataclastic loose rock slope at the mixing plant on the right bank of the BDa Hydropower Station, which is situated in the upper reaches of Lancang River. The dominant structural plane of the cataclastic loose rock [...] Read more.
This study investigates the excavation of the cataclastic loose rock slope at the mixing plant on the right bank of the BDa Hydropower Station, which is situated in the upper reaches of Lancang River. The dominant structural plane of the cataclastic loose rock mass was obtained using unmanned aerial vehicle tilt photography and 3D point cloud technology. The actual 3D numerical model of the study area was developed using the 3DEC discrete element numerical simulation software. The excavation response characteristics and overall stability of the cataclastic loose rock slope were analyzed. The support effect was evaluated considering the preliminary shaft micropile and Macintosh reinforced mat as slope support measures, and the stability was assessed by applying seismic waves. The results showed the main deformation and failure area after slope cleaning excavation at the junction of the cataclastic loose rock mass and Qedl deposits in the shallow surface of the excavation face. Moreover, the maximum total displacement could reach 18.3 cm. Subsequently, the overall displacement of the slope was significantly reduced, and the maximum total displacement decreased to 2.78 cm. The support effect was significant. Under an earthquake load, the slope with support exhibited considerable displacement in the shallow surface of the excavation slope, with collapse deformation primarily occurring through shear failure. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

32 pages, 3854 KiB  
Review
Danube River: Hydrological Features and Risk Assessment with a Focus on Navigation and Monitoring Frameworks
by Victor-Ionut Popa, Eugen Rusu, Ana-Maria Chirosca and Maxim Arseni
Earth 2025, 6(3), 70; https://doi.org/10.3390/earth6030070 - 2 Jul 2025
Viewed by 972
Abstract
Danube River represents a critical axis of ecological and economic importance for the countries along its course. From this perspective, this paper aims to assess the most significant characteristics of the river and of its main tributaries, as well as its impact on [...] Read more.
Danube River represents a critical axis of ecological and economic importance for the countries along its course. From this perspective, this paper aims to assess the most significant characteristics of the river and of its main tributaries, as well as its impact on the environmental sustainability and socio-economic development. Navigation and the economic contribution of the Danube River are the key issues of this work, emphasizing its importance as an international transport artery that facilitates trade and tourism, and develops the energy industry through hydropower plants. The study includes an analysis of the volume of goods transported from 2019 to 2023, as well as an analysis of the goods traffic in the busiest port on the Danube. Furthermore, climate change affects the hydrological regime of the Danube, as well as the ecosystems, economy, and energy security of the riparian countries. Main impacts include changes in the hydrological regime, increased frequency of droughts and floods, reduced water quality, deterioration of biodiversity, and disruption of the economic activities dependent on the river, such as navigation, agriculture, and hydropower production. Thus, hydrological risks and challenges are investigated, focusing on the extreme events of the last two decades and the awareness of their repercussions. In this context, the national and international institutions responsible for monitoring and managing the Danube are presented, and their role in promoting a sustainable river policy is explored. Methods and technologies are shown to be essential tools for monitoring and prediction studies. The Danube includes an extensive network of hydrometric stations that help to prevent and manage the most significant risks. Finally, a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis of the development of the hydrological studies was conducted, highlighting the potential of the river. Full article
Show Figures

Figure 1

27 pages, 11229 KiB  
Article
Hydraulic Scale Modeling of Pressurized Sediment Laden Flow
by Kalekirstos G. Gebrelibanos, Kaspar Vereide, Sirak A. Weldemariam, Asli Bor, Asfafaw H. Tesfay and Leif Lia
Water 2025, 17(13), 1970; https://doi.org/10.3390/w17131970 - 30 Jun 2025
Viewed by 367
Abstract
In hydropower tunnel systems, unlined pressurized tunnels in competent rock are commonly used for cost-effective construction. Incorporating pressurized sand traps at the downstream end of these tunnels can increase plant capacity and improve energy efficiency. The present work focuses on optimizing the performance [...] Read more.
In hydropower tunnel systems, unlined pressurized tunnels in competent rock are commonly used for cost-effective construction. Incorporating pressurized sand traps at the downstream end of these tunnels can increase plant capacity and improve energy efficiency. The present work focuses on optimizing the performance of existing pressurized sand traps. Hydraulic scale models were developed and tested at the Hydraulic Laboratory of NTNU, Within the 960 MW Tonstad Hydropower Plant in southern Norway as a case study. This study compares 1:1 velocity/sediment scaling with Froude scaling through physical experiments, analyzing velocity profiles via Particle Image Velocimetry (PIV) and sediment trap efficiency. Results show that Froude scaling, combined with geometric sediment scaling, provides superior accuracy in trap efficiency scaling across varying factors. However, in many practical hydropower applications, the large scaling factor required for laboratory models results in very small model sediments, leading to cohesion limitations. In such cases, Froude scaling may not be feasible. The 1:1 scaling method provides a conservative alternative. Hence, for practical applications, 1:1 scaling may be more cost-effective and sufficient for designing pressurized sand traps. This study emphasizes the importance of accounting for unscaled parameters and flow phenomena in hydraulic model design. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

20 pages, 2078 KiB  
Article
Holistically Green and Sustainable Pathway Prioritisation for Chemical Process Plant Systems via a FAHP–TOPSIS Framework
by Daniel Li, Mohamed Galal Hassan-Sayed, Nuno Bimbo, Zhaomin Li and Ihab M. T. Shigidi
Processes 2025, 13(7), 2068; https://doi.org/10.3390/pr13072068 - 30 Jun 2025
Viewed by 369
Abstract
Multi-criteria Decision Making (MCDM) presents a novel approach towards truly holistic green sustainability, particularly within the context of chemical process plants (CPPs). ASPEN Plus v12.0 was utilised for two representative CPP cases: isopropanol (IPA) production via isopropyl acetate, and green ammonia (NH3 [...] Read more.
Multi-criteria Decision Making (MCDM) presents a novel approach towards truly holistic green sustainability, particularly within the context of chemical process plants (CPPs). ASPEN Plus v12.0 was utilised for two representative CPP cases: isopropanol (IPA) production via isopropyl acetate, and green ammonia (NH3) production. An integrated Fuzzy Analytic Hierarchy Process (FAHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was modelled in MATLAB v24.1 to prioritise the holistically green and sustainable pathways. Life cycle assessments (LCAs) were employed to select the pathways, and the most suitable sub-criteria per the four criteria are as follows: social, economic, environmental, and technical. In descending order of optimality, the pathways were ranked as follows for green NH3 and IPA, respectively: Hydropower (HPEA) > Wind Turbine (WGEA) > Biomass Gasification (BGEA)/Solar Photovoltaic (PVEA) > Nuclear High Temperature (NTEA), and Propylene Indirect Hydration (IAH) > Direct Propylene Hydration (PH) > Acetone Hydrogenation (AH). Sensitivity analysis evaluated the FAHP–TOPSIS framework to be overall robust. However, there are potential uncertainties within and/or among sub-criteria, particularly in the social dimension, due to software and data limitations. Future research would seek to integrate FAHP with VIKOR and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE-II). Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 1230 KiB  
Article
Lessons from the ITAIPU Binational Power Plant in South America: A Negotiation Framework for Transboundary Hydropower Governance
by Eduardo Ortigoza, Victorio Oxilia, Richard Ríos, Diana Valdez, Estela Riveros and Cecilia Llamosas
Water 2025, 17(13), 1947; https://doi.org/10.3390/w17131947 - 29 Jun 2025
Viewed by 645
Abstract
The equitable use and distribution of shared water resources is a topic of renewed regional debate in Latin America, especially given the recent review of the Binational ITAIPU Treaty between Brazil and Paraguay. Building more equitable and transparent agreements in this context requires [...] Read more.
The equitable use and distribution of shared water resources is a topic of renewed regional debate in Latin America, especially given the recent review of the Binational ITAIPU Treaty between Brazil and Paraguay. Building more equitable and transparent agreements in this context requires an understanding of the historical trends of negotiations. This study analyzes five decades of negotiations on the shared use of water resources in the Paraná River Basin, drawing on interviews with former negotiators and officials from Argentina, Brazil, and Paraguay. The complex interaction between internal dynamics and geopolitical factors in establishing state-owned transboundary hydroelectric plants is highlighted. Based on these findings, we propose a conceptual framework that identifies the key elements to consider when negotiating strategic resources at national and regional levels. This study, extending beyond the Paraná basin, offers an applicable model for managing other shared natural resources, providing useful insights into negotiation strategies for transboundary resource and infrastructure management. Full article
Show Figures

Figure 1

Back to TopTop