Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = hydrophobic/hydrophilic balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3566 KiB  
Article
Antagonistic Trends Between Binding Affinity and Drug-Likeness in SARS-CoV-2 Mpro Inhibitors Revealed by Machine Learning
by Anacleto Silva de Souza, Vitor Martins de Freitas Amorim, Eduardo Pereira Soares, Robson Francisco de Souza and Cristiane Rodrigues Guzzo
Viruses 2025, 17(7), 935; https://doi.org/10.3390/v17070935 - 30 Jun 2025
Viewed by 411
Abstract
The SARS-CoV-2 main protease (Mpro) is a validated therapeutic target for inhibiting viral replication. Few compounds have advanced clinically, underscoring the difficulty in optimizing both target affinity and drug-like properties. To address this challenge, we integrated machine learning (ML), molecular docking, and molecular [...] Read more.
The SARS-CoV-2 main protease (Mpro) is a validated therapeutic target for inhibiting viral replication. Few compounds have advanced clinically, underscoring the difficulty in optimizing both target affinity and drug-like properties. To address this challenge, we integrated machine learning (ML), molecular docking, and molecular dynamics (MD) simulations to investigate the balance between pharmacodynamic (PD) and pharmacokinetic (PK) properties in Mpro inhibitor design. We developed ML models to classify Mpro inhibitors based on experimental IC50 data, combining molecular descriptors with structural insights from MD simulations. Our Support Vector Machine (SVM) model achieved strong performance (training accuracy = 0.84, ROC AUC = 0.91; test accuracy = 0.79, ROC AUC = 0.86), while our Logistic Regression model (training accuracy = 0.78, ROC AUC = 0.85; test accuracy = 0.76, ROC AUC = 0.83). Notably, PK descriptors often exhibited opposing trends to binding affinity: hydrophilic features enhanced binding affinity but compromised PK properties, whereas hydrogen bonding, hydrophobic, and π–π interactions in Mpro subsites S2 and S3/S4 are fundamental for binding affinity. Our findings highlight the need for a balanced approach in Mpro inhibitor design, strategically targeting these subsites may balance PD and PK properties. For the first time, we demonstrate antagonistic trends between pharmacokinetic (PK) and pharmacodynamic (PD) features through the integrated application of ML/MD. This study provides a computational framework for rational Mpro inhibitors, combining ML and MD to investigate the complex interplay between enzyme inhibition and drug likeness. These insights may guide the hit-to-lead optimization of the novel next-generation Mpro inhibitors of SARS-CoV-2 with preclinical and clinical potential. Full article
(This article belongs to the Special Issue Advances in Small-Molecule Viral Inhibitors)
Show Figures

Figure 1

12 pages, 2545 KiB  
Article
Rapid Fabrication of ZSM-5/AlPO4-5 Composites via Microwave-Ionothermal Strategy for Enhanced Methanol-to-Olefins Catalysis
by Li Han, Mengting Zhang, Hao Li, Huiru Ding, Jingjing Zhao, Yujia Zhang, Lang Wu, Changzhou Jiao, Jie Feng and Zhikun Peng
Catalysts 2025, 15(6), 605; https://doi.org/10.3390/catal15060605 - 19 Jun 2025
Viewed by 502
Abstract
Microwave-assisted ionothermal strategies offer an effective pathway for rapid zeolite crystallization under mild conditions, while conventional ionothermal approaches are still constrained by prolonged crystallization cycles that limit their industrial applicability. Herein, we report a microwave-activated, ionic liquid-mediated synthesis strategy that enables the precise [...] Read more.
Microwave-assisted ionothermal strategies offer an effective pathway for rapid zeolite crystallization under mild conditions, while conventional ionothermal approaches are still constrained by prolonged crystallization cycles that limit their industrial applicability. Herein, we report a microwave-activated, ionic liquid-mediated synthesis strategy that enables the precise modulation of crystallization kinetics and composite assembly. By introducing ZSM-5 seeds into the ionic liquid system, the nucleation and growth of AlPO4-5 were significantly accelerated, reducing crystallization time by up to 75% (optimal condition: 60 min). Among various imidazolium-based ionic liquids, [BMMIm]Br demonstrated an optimal balance of hydrophilic and hydrophobic interactions, yielding composite zeolites with high surface area (350 m2·g−1) and large pore volume (0.28 cm3·g−1). Comprehensive characterization (XRD, SEM-EDX, NH3-TPD) confirmed the formation of well-defined ZSM-5/AlPO4-5 core–shell structures and revealed tunable acid site distributions depending on the ionic liquid used. In methanol to olefins (MTO) reactions, the composite catalyst exhibited outstanding selectivity towards light olefins (C2=–C4=: 72.84%), markedly outperforming the individual ZSM-5 and AlPO4-5 components. The superior catalytic behavior is primarily attributed to the synergistic effect of hierarchical acid site tuning and the integrated core–shell architecture, which together optimize reaction selectivity. This strategy provides a promising route for the rational design of high-performance zeolites with significant industrial applicability. Full article
Show Figures

Graphical abstract

28 pages, 8138 KiB  
Article
Characterizing Foam Generated by CO2-Switchable Surfactants for Underground CO2 Storage Application
by Khaled Alturkey, Stephen A. Azongo, Theodoros Argyrelis and Rasoul Mokhtari
Processes 2025, 13(6), 1668; https://doi.org/10.3390/pr13061668 - 26 May 2025
Viewed by 462
Abstract
CO2-switchable surfactants, applicable for mitigating CO2 geological storage efficiency challenges, offer promising control over foam stability under reservoir conditions, but their performance under extreme pressure, temperature, and salinity still needs thorough investigation. This study experimentally characterizes the performance of CO [...] Read more.
CO2-switchable surfactants, applicable for mitigating CO2 geological storage efficiency challenges, offer promising control over foam stability under reservoir conditions, but their performance under extreme pressure, temperature, and salinity still needs thorough investigation. This study experimentally characterizes the performance of CO2-switchable surfactants by evaluating their interfacial tension (IFT) reduction, foamability, and foam stability under reservoir-relevant conditions. Six surfactants, including cationic (cetyltrimethylammonium bromide (CTAB) and benzalkonium chloride (BZK)) and nonionic amine-based surfactants (N,N-Dimethyltetradecylamine, N,N-Dimethyldecylamine, and N,N-Dimethylhexylamine), were assessed using synthetic brine mimicking a depleted North Sea oil reservoir. A fractional factorial design was employed to minimize experimental runs while capturing key interactions between surfactant type, temperature, salinity, and divalent ion concentrations. Foam switchability was analyzed by alternating CO2 and N2 injections, and interfacial properties were measured to establish correlations between foam generation and IFT. Experimental findings demonstrate that cationic surfactants (BZK and CTAB) exhibit CO2-switchability and moderate foam stability. Nonionic surfactants show tail length-dependent responsiveness, where D14 demonstrated the highest foamability due to its optimal hydrophilic–hydrophobic balance. IFT measurements revealed that BZK consistently maintained lower IFT values, facilitating stronger foam generation, while CTAB exhibited higher variability. The inverse correlation between IFT and foamability was observed. These insights contribute to the development of tailored surfactants for subsurface CO2 storage applications, improving foam-based mobility control in CCS projects. Full article
Show Figures

Figure 1

19 pages, 1873 KiB  
Article
Effect of Birch Sawdust Hydrolysis on Chemical Characteristics, Aggregation, and Surface Activity of Extracted Soda Lignin
by Galia Shulga, Brigita Neiberte, Valerija Kudrjavceva, Anrijs Verovkins, Arturs Viksna, Sanita Vitolina, Julija Brovkina and Talrits Betkers
Polymers 2025, 17(11), 1455; https://doi.org/10.3390/polym17111455 - 23 May 2025
Viewed by 501
Abstract
Various pretreatment methods, often employed in wood biorefineries, aim to disrupt the wood architecture, thereby enhancing the efficiency of hemicellulose extraction for increasing the production of bio-ethanol, bio-gas, and bio-oil, as well as improving the pulping process. Pretreatment for the pulping process has [...] Read more.
Various pretreatment methods, often employed in wood biorefineries, aim to disrupt the wood architecture, thereby enhancing the efficiency of hemicellulose extraction for increasing the production of bio-ethanol, bio-gas, and bio-oil, as well as improving the pulping process. Pretreatment for the pulping process has advantages such as enhanced yield in biorefined products and reducing chemicals and energy consumption. This study examined the effect of an alkaline hydrolysis of birch sawdust on the chemical composition, aggregation ability, and surface activity of soda lignin obtained by soda pulping. The alkaline hydrolysis of birch sawdust led to a remarkable removal of hemicellulose and reduced its mechanical strength. The resorption of lignin fragments on the lignocellulosic matrix during the hydrolysis was observed. The soda pulping of the original and the treated sawdust was carried out under laboratory conditions at 165 °C for 90 min, using 4.5% sodium hydroxide. A higher yield of soda lignin and pulp was obtained from the treated sawdust. The reduced content of acidic and methoxyl groups in the chemical composition of the soda lignin from the hydrolyzed sawdust was explained by the predominance of polycondensation reactions in forming its primary structure. The changes in size and zeta potential values of the formed lignin particles, as well as in the modality of the size distribution with decreasing pH, were studied. The early-proposed suggestion about the existence of structural complementarity in the formation of the ordered lignin supermolecular structures has been testified. The higher surface activity at the air–water interface for the soda lignin extracted from the hydrolyzed sawdust, compared to the lignin from the original residue, was mainly attributed to a lower content of the acidic groups in its chemical composition, shifting the hydrophilic–hydrophobic balance of its structure toward hydrophobicity. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Figure 1

17 pages, 1201 KiB  
Article
Quality Attributes, Structural Characteristics, and Functional Properties of Brewer’s Spent Grain Protein Concentrates as Affected by Alkaline and Pulsed Electric Field-Assisted Extraction
by Parichat Paksin, Pipat Tangjaidee, Wannaporn Klangpetch, Kridsada Unban, Tabkrich Khumsap, Warinporn Klunklin, Artit Yawootti, Kittisak Jantanasakulwong, Pornchai Rachtanapun and Suphat Phongthai
Foods 2025, 14(9), 1515; https://doi.org/10.3390/foods14091515 - 26 Apr 2025
Viewed by 759
Abstract
The rising protein demand has driven intensified research into alternative protein sources and extraction technologies. Brewer’s spent grain (BSG), which is rich in protein, remains mostly underutilized. This study aimed to optimize BSG protein extraction conditions using pulsed electric field (PEF) by assessing [...] Read more.
The rising protein demand has driven intensified research into alternative protein sources and extraction technologies. Brewer’s spent grain (BSG), which is rich in protein, remains mostly underutilized. This study aimed to optimize BSG protein extraction conditions using pulsed electric field (PEF) by assessing the influence of pulse numbers (5000–9000), electric field strength (8–10 kV/cm), and frequency (8–10 Hz) on protein recovery and purity. The optimized conditions (5386 pulses, 10 kV/cm field strength, and 10 Hz frequency) provided a higher extraction yield with a significant improvement of approximately 90% (p < 0.05). Essential amino acids in proteins extracted via PEF were significantly increased (60,864.84 mg/100 g), particularly phenylalanine, threonine, and valine; furthermore, amino acid score (AAS) and protein digestibility-corrected amino acid score (PDCAAS) were found to be superior to those of protein obtained through alkaline extraction. The PEF treatment resulted in the modification of the secondary structures of proteins from α-helices and β-turns to β-sheets, as well as the enhancement of the hydrophobic−hydrophilic amino acid balance. The functional properties of the proteins, particularly their foaming properties and solubility, were significantly affected by PEF (p < 0.05). In conclusion, PEF-assisted extraction produces high-quality BSG protein concentrates efficiently while rendering the process environmentally sustainable. Full article
Show Figures

Graphical abstract

15 pages, 3782 KiB  
Article
Cassia grandis L.f. Pods as a Source of High-Value-Added Biomolecules: Optimization of Extraction Conditions and Extract Rheology
by Filipe M. M. Cordeiro, Salomé G. Bedoya, Daniel A. P. Santos, Rebeca S. Santos, Thomas V. M. Bacelar, Filipe S. Buarque, George Simonelli, Ana C. M. Silva and Álvaro S. Lima
Biomass 2025, 5(2), 24; https://doi.org/10.3390/biomass5020024 - 25 Apr 2025
Viewed by 822
Abstract
High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of Cassia grandis L.f. Initially, [...] Read more.
High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of Cassia grandis L.f. Initially, the effect of choline-based ionic liquids—ILs (choline chloride [Ch]Cl, dihydrogen citrate [Ch][DHC], and bitartrate [Ch][BIT]) as extracting agents for phenolic compounds and flavonoids was evaluated based on their efficiency and selectivity. Then, a 23 full factorial design with six central points was performed using the IL concentration, the solid–liquid ratio, and the temperature as independent variables. The extract obtained in the best condition was subjected to pervaporation, after which the concentrates and the crude extract were used to determine the physical properties (density, viscosity, and refractive index). The hydrophobic–hydrophilic balance of the extracting agent and the biomolecules are the extraction process’s driving force. The best extraction condition was formed by [Ch][DHC] at 15 wt%, with a solid–liquid ratio of 1:15, at 45 °C for 30 min, resulting in 153.71 ± 5.81 mg·g−1 of reducing sugars; 483.51 ± 13.10 mg·g−1 of total sugars; 11.79 ± 0.54 mg·g−1 of flavonoids; and 38.10 ± 2.90 mg·g−1 of total phenolic compounds. All the physical properties of the biomolecules are temperature-dependent; for density and refractive index, a linear correlation is observed, while for viscosity, the correlation is exponential. Increasing the temperature decreases all properties, and the extract concentration for 8× presents the highest values of density (1.283 g·cm−3), viscosity (9224 mPa·s), and refractive index (1.467). Full article
(This article belongs to the Topic Recovery and Use of Bioactive Materials and Biomass)
Show Figures

Figure 1

21 pages, 3867 KiB  
Article
Influence of Honey Bee Brood Protein on the Hydrophilic, Mechanical, and Thermal Properties of Polysaccharide Gel Films
by Suthaphat Kamthai, Pairote Wiriyacharee, Srisuwan Naruenartwongsakul, Patompong Khaw-on, Aree Deenu, Supakit Chaipoot, Rewat Phongphisutthinant, Kamonwan Tachai and Sawichaya Orpool
Gels 2025, 11(4), 236; https://doi.org/10.3390/gels11040236 - 24 Mar 2025
Viewed by 512
Abstract
Growing concerns over the environmental impact of plastic packaging have driven interest in sustainable alternatives, particularly biopolymer-based films. This study developed ternary-blended polysaccharide gel films composed of carboxymethyl starch (CMS), chitosan (CS), and pectin (PT), with dialdehyde carboxymethyl cellulose (DCMC) as a crosslinker, [...] Read more.
Growing concerns over the environmental impact of plastic packaging have driven interest in sustainable alternatives, particularly biopolymer-based films. This study developed ternary-blended polysaccharide gel films composed of carboxymethyl starch (CMS), chitosan (CS), and pectin (PT), with dialdehyde carboxymethyl cellulose (DCMC) as a crosslinker, and investigated the effects of honey bee brood protein (BBP) (0–0.4% w/v) on their mechanical, barrier, and thermal properties. A completely randomized design (CRD) was employed to evaluate the impact of BBP concentration on film characteristics. Results demonstrated that adding 0.4% BBP enhanced water vapor barrier properties and thermal stability while reducing hydrophilicity. The optimal formulation was observed at 0.1% BBP, providing the highest tensile strength (7.73 MPa), elongation at break (32.23%), and water-absorption capacity (369.01%). The improvements in thermal stability and hydrophilicity were attributed to BBP’s hydrophobic amino acids, which interacted with DCMC to form a denser polymer network, enhancing structural integrity and moisture resistance. Additionally, BBP incorporation contributed to the biodegradability of polysaccharide gel films, improving their environmental sustainability compared to conventional biopolymers. The findings suggest that BBP can serve as a functional additive in polysaccharide-based films, balancing performance and eco-friendliness for applications in biodegradable food and medical packaging. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

16 pages, 5865 KiB  
Article
Biodegradable Fiber Preparation Technique to Meet Industrial Requisites Through Sheath-Core Melt-Spinning
by Jin Yoo, Ga Hee Kim, Jun-Yeop Shim, Seok Eon Lee, Shi Hyeong Kim, Taehwan Lim and Jun Sik Son
Polymers 2025, 17(4), 527; https://doi.org/10.3390/polym17040527 - 18 Feb 2025
Viewed by 1430
Abstract
Biodegradable polymers are essential for sustainable plastic life cycles and contribute to a carbon-neutral society. Here, we explore the development of biodegradable fibers with excellent mechanical properties using polypropylene (PP) and thermoplastic starch (TPS) blends. To address the inherent immiscibility between hydrophobic PP [...] Read more.
Biodegradable polymers are essential for sustainable plastic life cycles and contribute to a carbon-neutral society. Here, we explore the development of biodegradable fibers with excellent mechanical properties using polypropylene (PP) and thermoplastic starch (TPS) blends. To address the inherent immiscibility between hydrophobic PP and hydrophilic TPS, hydrophilic modification and a masterbatch approach were employed. Melt-spinning trials demonstrated that the modified PP and TPS blends (mPP/TPS) exhibited excellent spinnability and processability comparable to virgin PP. A sheath-core configuration was introduced to enhance biodegradability while maintaining structural stability, with an mPP-rich part as the core and a TPS-rich part with a biodegradable promoter (BP) as the sheath. SEM and DSC analyses confirmed strong interfacial compatibility, uniform fiber morphology, and single melting points, indicating no phase separation. Mechanical testing showed that the sheath-core fibers met industrial requirements, achieving a tenacity of up to 2.47 gf/den and tensile strain above 73%. The addition of a BP increased the biodegradability rate, with PP/TPS/BP fibers achieving 65.93% biodegradation after 115 days, compared to 37.00% for BP-free fibers. These results demonstrate the feasibility of blending petroleum-based polymers with bio-based components to create fibers that balance biodegradability, spinnability, and mechanical performance, offering a sustainable solution for industrial applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 4926 KiB  
Article
Tailored Iron Oxide Nanoparticles as Potential Cannabinoid Carriers for Anti-Cancer Treatment
by Jan Taudul, Joanna Celej, Kinga Żelechowska-Matysiak, Daria Kępińska, Agnieszka Majkowska-Pilip, Marcin Strawski, Paweł Krysiński and Dorota Nieciecka
Biomolecules 2025, 15(2), 230; https://doi.org/10.3390/biom15020230 - 5 Feb 2025
Viewed by 985
Abstract
We present a novel, multicomponent nanoparticulate carrier system based on superparamagnetic iron oxide nanoparticles with a designed hydrophilic/hydrophobic balance based on oleic acid and TWEEN 80 to incorporate hydrophobic cannabinoids—cannabigerol and cannabidiol—as well as the hydrophilic anthracycline drug epirubicin, forming a conjugate anticancer [...] Read more.
We present a novel, multicomponent nanoparticulate carrier system based on superparamagnetic iron oxide nanoparticles with a designed hydrophilic/hydrophobic balance based on oleic acid and TWEEN 80 to incorporate hydrophobic cannabinoids—cannabigerol and cannabidiol—as well as the hydrophilic anthracycline drug epirubicin, forming a conjugate anticancer system. Additionally, the superparamagnetic iron oxide-based nanoparticles formed the core of the system, thus providing it with magnetic hyperthermia capabilities with a specific absorption rate comparable to the corresponding systems in the literature. The interaction of the conjugate with the cell membrane was studied using the Langmuir monolayers at the air/water interface formed of selected lipids modeling the healthy and cancerous cell membranes. Finally, cytotoxicity tests were carried out against the SKOV-3 cell line in vitro. A synergistic effect was observed when both the cannabinoid and epirubicin were present in the conjugate, as compared to the cannabinoid or epirubicin alone, making our system advantageous for further development for tentative therapeutic use. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

26 pages, 7557 KiB  
Article
Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles
by Jizheng Song, Yu Hu, Shiyu Yang, Dexue Liu, Yiider Tseng and Lingjun Li
Polymers 2025, 17(3), 349; https://doi.org/10.3390/polym17030349 - 27 Jan 2025
Viewed by 1048
Abstract
Hydrophobic modification alters the properties of Pluronic F127 to form micelles more efficiently and enhances its drug-loading capacity. However, selecting the appropriate hydrophobic group for modification is laborious. In this paper, we propose an efficient approach for predicting key parameters to select hydrophobic [...] Read more.
Hydrophobic modification alters the properties of Pluronic F127 to form micelles more efficiently and enhances its drug-loading capacity. However, selecting the appropriate hydrophobic group for modification is laborious. In this paper, we propose an efficient approach for predicting key parameters to select hydrophobic groups for F127 modification prior to synthesis, in order to improve the formability and stability of the micelles. The results of nuclear magnetic resonance and isothermal titration calorimetry were utilized to establish a function for predicting the hydrophile–lipophile balance, critical micelle concentration, and Gibbs free energy of the products based on the structure of raw material. These predicted values can assist us in selecting suitable hydrophobic groups for F127 modification. Subsequently, we successfully tested our method and validated our work using pharmaceutical evaluation methods, such as appearance observation, particle size measurement, drug loading determination, equilibrium binding rate assessment, storage stability testing, and the plotting of accumulation release curves. Therefore, we suggest that our work could provide a model linking the molecular structure to properties, with the purpose of pre-selecting modification products that have advantages in micelle preparation. This can facilitate the application of F127 in preparing nano-micelles. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

22 pages, 2120 KiB  
Article
Antimicrobial and Antioxidant Properties of Sambucus nigra L. (Elderflower) Oil: A Molecular Docking and Biochemical Study
by Doris Floares (Oarga), Diana Obistioiu, Anca Hulea, Mukhtar Adeiza Suleiman, Iuliana Popescu, Adina Berbecea, Ionel Samfira and Isidora Radulov
Agronomy 2025, 15(2), 310; https://doi.org/10.3390/agronomy15020310 - 26 Jan 2025
Cited by 2 | Viewed by 1545
Abstract
The present study investigates the antimicrobial and antioxidant potential of an essential oil extracted from Sambucus nigra L. flowers. Using hydrodistillation, the volatile compounds were profiled through GC–MS analysis for the fatty acid profile and volatile compounds. The fatty acid profile demonstrated a [...] Read more.
The present study investigates the antimicrobial and antioxidant potential of an essential oil extracted from Sambucus nigra L. flowers. Using hydrodistillation, the volatile compounds were profiled through GC–MS analysis for the fatty acid profile and volatile compounds. The fatty acid profile demonstrated a balanced composition of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids, with oleic, palmitic, and linolenic acids as key contributors. The volatile profile revealed the dominance of nonanal, cis-rose oxide, trans-rose oxide, and 2-Pentadecanone, 6,10,14-trimethyl-. Antioxidant activity was assessed using the 1,1-Diphenyl-2-Picrylhydrazyl radical scavenging assay, showing significant inhibition, with an IC50 value of 2.52 mg/mL. Antimicrobial efficacy was determined against Gram-positive, Gram-negative, and fungal strains, highlighting moderate inhibitory activity for Streptococcus pyogenes, Staphylococcus aureus, and Candida albicans. The S. nigra essential oil exhibited more activity against fungal strains, especially C. albicans, compared to the bacterial strains, which might be attributed to differences in the composition and permeability of the cell wall between fungi and bacteria. Among the bacteria, E. coli was the most susceptible, while P. aeruginosa showed moderate resistance, in agreement with its known stronger membrane structure and efflux mechanisms. Molecular docking analysis was conducted to evaluate the potential inhibitory effects of the oil on microbial proteins to corroborate the observed in vitro outcome. The results indicated that nonanal, cis-rose oxide, trans-rose oxide, and 2-pentadecanone, 6,10,14-trimethyl- displayed interesting hydrophilic and hydrophobic binding interactions with the putative microbial proteins. These findings elucidate the bioactive role of Sambucus nigra essential oils, suggesting their potential as therapeutic agents in managing oxidative stress and microbial infections. Full article
(This article belongs to the Special Issue Tissue Structure and Plant Phytochemicals)
Show Figures

Figure 1

11 pages, 2507 KiB  
Article
Enhancing Starch Film Properties Using Bacterial Nanocellulose-Stabilized Pickering Emulsions
by Natália Tavares de Almeida, André Luís Sousa Pereira, Matheus de Oliveira Barros, Adriano Lincoln Albuquerque Mattos and Morsyleide de Freitas Rosa
Polymers 2024, 16(23), 3346; https://doi.org/10.3390/polym16233346 - 29 Nov 2024
Cited by 1 | Viewed by 1471
Abstract
This study aimed to address issues related to hydrophilicity, barrier properties, and mechanical performance in starch-based films by incorporating Pickering emulsions stabilized with nano-fibrillated bacterial cellulose (BC). Emulsions were added to the film-forming suspension at varying concentrations (1.0%, 2.5%, 5.0%, and 7.5% v [...] Read more.
This study aimed to address issues related to hydrophilicity, barrier properties, and mechanical performance in starch-based films by incorporating Pickering emulsions stabilized with nano-fibrillated bacterial cellulose (BC). Emulsions were added to the film-forming suspension at varying concentrations (1.0%, 2.5%, 5.0%, and 7.5% v/v) for comparison. The films were evaluated using water vapor permeability (WVP), contact angle, Fourier Transform Infrared Spectroscopy (FTIR), and tensile tests. The results showed a significant reduction in film hydrophilicity, with the contact angle increasing from 49.7° ± 1.5 to 71.0° ± 1.4, and improved water vapor barrier properties, with WVP decreasing from 0.085 ± 0.04 to 0.016 ± 0.01 g·mm/h·m2·kPa. FTIR analysis confirmed the successful incorporation of the emulsion into the starch matrix. Among the tested concentrations, 2.5% provided an optimal balance, increasing hydrophobicity while maintaining mechanical strength. These findings demonstrate that Pickering emulsions are an effective strategy for enhancing the functional properties of starch films. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

39 pages, 3549 KiB  
Review
Zirconium Phosphates and Phosphonates: Applications in Catalysis
by Anna Donnadio, Monica Pica, Morena Nocchetti and Oriana Piermatti
Catalysts 2024, 14(10), 733; https://doi.org/10.3390/catal14100733 - 19 Oct 2024
Cited by 2 | Viewed by 2296
Abstract
This review covers recent advancements in the use of zirconium phosphates and phosphonates (ZrPs) as catalysts or catalyst supports for a variety of reactions, including biomass conversion, acid–base catalysis, hydrogenation, oxidation, and C-C coupling reactions, from 2015 to the present. The discussion emphasizes [...] Read more.
This review covers recent advancements in the use of zirconium phosphates and phosphonates (ZrPs) as catalysts or catalyst supports for a variety of reactions, including biomass conversion, acid–base catalysis, hydrogenation, oxidation, and C-C coupling reactions, from 2015 to the present. The discussion emphasizes the intrinsic catalytic properties of ZrPs, focusing on how surface acidity, hydrophobic/hydrophilic balance, textural properties, and particle morphology influence their catalytic performance across various reactions. Additionally, this review thoroughly examines the use of ZrPs as supports for catalytic species, ranging from organometallic complexes and metal ions to noble metals and metal oxide nanoparticles. In these applications, ZrPs not only enhance the dispersion and stabilization of active catalytic species but also facilitate their recovery and reuse due to their robust immobilization on the solid support. This dual functionality underscores the importance of ZrPs in promoting efficient, selective, and sustainable catalytic processes, making them essential to the advancement of green chemistry. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section)
Show Figures

Graphical abstract

26 pages, 3627 KiB  
Article
Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform
by Efstathia Triantafyllopoulou, Diego Romano Perinelli, Aleksander Forys, Pavlos Pantelis, Vassilis G. Gorgoulis, Nefeli Lagopati, Barbara Trzebicka, Giulia Bonacucina, Georgia Valsami, Natassa Pippa and Stergios Pispas
Pharmaceutics 2024, 16(9), 1204; https://doi.org/10.3390/pharmaceutics16091204 - 13 Sep 2024
Cited by 2 | Viewed by 1474
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the [...] Read more.
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors’ knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane’s fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Figure 1

20 pages, 5325 KiB  
Article
Rosehip Seed Oil-Incorporated Chitosan Films for Potential Fruit Packaging Applications
by Maria Marudova, Gabor Zsivanovits, Asya Viraneva, Biser Gechev and Snezhana Rusinova-Videva
Appl. Sci. 2024, 14(17), 7669; https://doi.org/10.3390/app14177669 - 30 Aug 2024
Cited by 2 | Viewed by 1793
Abstract
The concept of food packaging plays a crucial role in ensuring consumer satisfaction and extending the shelf life of food products. The rising trend of introducing innovative materials for food packaging has become prominent in recent years. The present study aims to investigate [...] Read more.
The concept of food packaging plays a crucial role in ensuring consumer satisfaction and extending the shelf life of food products. The rising trend of introducing innovative materials for food packaging has become prominent in recent years. The present study aims to investigate the impact of rosehip seed oil (RSO) on the physical, physicochemical, antioxidant, and antimicrobial properties of edible films based on chitosan for potential fruit packaging applications. Scanning electron microscopy revealed a uniform distribution of the incorporated emulsion throughout the edible film. The addition of RSO increased the deformation at break in both tensile and puncture test, thereby improving the elastic properties of the films. The resulting films exhibited a light-yellow color with high opacity. The immobilization of RSO led to a decrease in water content by almost two times and an increase in water vapor permeability of the films. The films showed enhanced antioxidant activity and retained good protective properties against the yeast S. cerevisiae. Consequently, these newly formulated multicomponent films are found to be suitable for applications in the development of active food packaging because of their physical, antioxidant, and antimicrobial properties. Full article
(This article belongs to the Special Issue Application of Natural Resources for Sustainable Packaging)
Show Figures

Figure 1

Back to TopTop