Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles
Abstract
:1. Introduction
2. Materials and Equipment
3. Methodology
3.1. Establishing a Novel Method to Pre-Select Hydrophobic Groups for F127 Modification
3.1.1. Synthesis and Structural Confirmation of Model Polymers
3.1.2. Using 1H-NMR and Compound Formula of Surfactant to Predict the HLB of Modified F127
Establishing a Curve to Calculate the HLB of the Raw Materials
Predicting the HLB of Modified Products Based on the HLB of Raw Materials and the Compound Formula
Comparing the Predicted and Measured Values to Evaluate the Accuracy of the HLB Predicting Method
3.1.3. Predicting the CMC of Modified F127
Calculating the MCI and VMIC of Raw Materials
Testing the CMC of F127 and Modified F127 by ITC
Establishing the Mathematical Model for Predicting CMC
Testing the Accuracy of the Prediction Mathematical Model
3.1.4. Predicting the ΔG of Modified F127
3.2. Confirming the Advantages of Modified Product Synthesized by the Pre-Selected Scheme in Preparing High-Quality Nano-Micelles
3.2.1. Evaluating the Appearance of Micelles Prepared by the Polymer Synthesized Using the Pre-Selected Scheme
3.2.2. Evaluating the DL of Micelles Prepared by the Polymer Synthesized Using the Pre-Selected Scheme
3.2.3. Verifying the Compatibility of CUR with the Polymer Synthesized Using Pre-Selected Scheme
3.2.4. Verifying Whether the F127 Modified with the Pre-Selected Scheme Could Enhance the Stability of Micelles
3.2.5. Confirming the Drug Release Rate of F127 Modified According to the Pre-Selected Scheme
4. Results and Discussion
4.1. Establishing a Novel Method to Pre-Select Pluronic F127 Modification Scheme
4.1.1. Confirming the Modification Product
4.1.2. Predicting the HLB of Modified F127 Using 1H-NMR and Compound Formula
Drawing the Linear Curve of Surfactant HLB Value
Calculating the HLB of Raw Materials and Predicting the HLB of Modified F127
Testing the HLB of Modified F127 and Verifying the Accuracy of the Predicting Model
4.1.3. Predicting the CMC of Modified F127
Calculating the MCI and VMIC of Raw Materials
Testing the CMC of F127 and Modified F127 by ITC
Establishing the Mathematical Model for CMC Prediction
Verifying the Accuracy of the Prediction Model
4.1.4. Predicting the ΔG in the Process of Micelle Formation of Modified F127
4.2. It Is Confirmed That F127 Modified with the Pre-Selected Scheme Exhibits Advantages in Micelle Formation
4.2.1. Using TEM and DLS to Confirm the Advantage of F127-PCL5300 in Micellar Morphology
4.2.2. PCL Modification Has Advantages in Increasing the Drug-Loading Rate of CUR
4.2.3. PCL Modification Offers More Advantages in Enhancing the Equilibrium Binding Ratio of CUR
4.2.4. The Micelles Prepared by F127-PCL Exhibited Better Stability
4.2.5. Hydrophobic Modification Slows Down the Release Rate of CUR in Micelles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, L.; Li, J.; Zhao, Q.; Pan, T.; Zhong, H.; Wang, W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021, 13, 1151. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Williams, G.R.; Wu, J.; Wu, J.; Niu, S.; Xie, X.; Li, S.; Zhu, L.M. Pluronic F127-based micelles for tumor-targeted bufalin delivery. Int. J. Pharm. 2019, 559, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Varghese, S.; Manjusha, V. Hyaluronic acid coated Pluronic F127/Pluronic P123 mixed micelle for targeted delivery of Paclitaxel and Curcumin. Int. J. Biol. Macromol. 2021, 192, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Lv, X.; Xu, J.; Zheng, Y.; Wang, X.; Tang, R. Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. Eur. J. Pharm. Sci. 2020, 146, 105275. [Google Scholar] [CrossRef]
- Gjerde, N.; Zhu, K.; Nystrom, B.; Knudsen, K.D. Effect of PCL end-groups on the self-assembly process of Pluronic in aqueous media. Phys. Chem. Chem. Phys. PCCP 2018, 20, 2585–2596. [Google Scholar] [CrossRef]
- Azum, N.; Alfaifi, S.Y.M.; Abdul Rub, M.; Asiri, A.M. Effects of ionic liquid on micellar aggregate formed by pluronic (F-127) and non-ionic surfactant (TX-100) in aqueous solution. J. Mol. Liq. 2023, 378, 121617. [Google Scholar] [CrossRef]
- Vara, J.; Gualdesi, M.S.; Fernández, M.A.; Ortiz, C.S. Design of polymeric carriers to enhance antimicrobial photodynamic inactivation. J. Drug Deliv. Sci. Technol. 2024, 94, 105494. [Google Scholar] [CrossRef]
- Tiwari, S.; Gupta, P.; Anees, M.; Kaur, H.; Kharbanda, S.; Singh, H. Pluronic modified PLA based hybrid block copolymeric nanoformulation enhanced anti-cancer therapeutic efficacy of Epirubicin. Eur. Polym. J. 2023, 193, 112084. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, X.; Yu, Y.; Li, W.; Huang, H.; Zhang, W.; Hu, Z.; Li, Z. Reduction-sensitive carrier containing disulfide bond based on Pluronic F68 with cholesterol for drug delivery. Polym. Int. 2020, 70, 107–115. [Google Scholar] [CrossRef]
- Di Spirito, N.A.; Grizzuti, N.; Pasquino, R. Self-assembly of Pluronics: A critical review and relevant applications. Phys. Fluids 2024, 36, 111302. [Google Scholar] [CrossRef]
- Jangid, A.K.; Agraval, H.; Rai, D.B.; Jain, P.; Yadav, U.C.S.; Pooja, D.; Kulhari, H. Baicalin encapsulating lipid-surfactant conjugate based nanomicelles: Preparation, characterization and anticancer activity. Chem. Phys. Lipids 2020, 233, 104978. [Google Scholar] [CrossRef] [PubMed]
- Lubtow, M.M.; Haider, M.S.; Kirsch, M.; Klisch, S.; Luxenhofer, R. Like Dissolves Like? A Comprehensive Evaluation of Partial Solubility Parameters to Predict Polymer-Drug Compatibility in Ultrahigh Drug-Loaded Polymer Micelles. Biomacromolecules 2019, 20, 3041–3056. [Google Scholar] [CrossRef]
- Liu, H.; Lu, H.-H.; Alp, Y.; Wu, R.; Thayumanavan, S. Structural determinants of stimuli-responsiveness in amphiphilic macromolecular nano-assemblies. Prog. Polym. Sci. 2024, 148, 101765. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Siddiq, M. Effect of end-group modification, hydrophilic/hydrophobic block ratio and temperature on the surface, associative and thermodynamic behaviour of poly(ethylene oxide)-b-poly(butylene oxide) diblock copolymers in aqueous media. J. Polym. Res. 2014, 21, 1–10. [Google Scholar] [CrossRef]
- Fang, L. Pharmaceutics; People’s Medical Publishing House: Beijing, China, 2022. [Google Scholar]
- Rafique, A.S.; Khodaparast, S.; Poulos, A.S.; Sharratt, W.N.; Robles, E.S.J.; Cabral, J.T. Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: Effects of concentration, temperature, and salt. Soft Matter 2020, 16, 7835–7844. [Google Scholar] [CrossRef]
- Cooksy, A. PhysicalChemistry: Thermodynamics, Statistical Mechanics, and Kinetics; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Vasileva, L.; Gaynanova, G.; Valeeva, F.; Romanova, E.; Pavlov, R.; Kuznetsov, D.; Belyaev, G.; Zueva, I.; Lyubina, A.; Voloshina, A.; et al. Synthesis, Properties, and Biomedical Application of Dicationic Gemini Surfactants with Dodecane Spacer and Carbamate Fragments. Int. J. Mol. Sci. 2023, 24, 12312. [Google Scholar] [CrossRef]
- An, D.; Zhao, X.; Ye, Z. Enzymatic synthesis and characterization of galactosyl monoesters. Carbohydr. Res. 2015, 414, 32–38. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Y.; Su, D. Studies on the application of NMR for the determination of HLB values of Nonionic surfactants. J. ShenYang Coll. Pharm. 1985, 2, 194–197. [Google Scholar]
- Altaani, B. Synthesis of Sorbitan Esters of Jojoba Oil Fatty Acids as Surfactants: Physicochemical Characterization and Obtaining Solid Dispersion of Ibuprofen to Enhance Dissolution. Farmacia 2024, 72, 405–417. [Google Scholar] [CrossRef]
- Smith, O.E.P.; Waters, L.J.; Small, W.; Mellor, S. CMC determination using isothermal titration calorimetry for five industrially significant non-ionic surfactants. Colloids Surf. B Biointerfaces 2022, 211, 112320. [Google Scholar] [CrossRef]
- Mabrouk, M.M.; Hamed, N.A.; Mansour, F.R. Spectroscopic methods for determination of critical micelle concentrations of surfactants: A comprehensive review. Appl. Spectrosc. Rev. 2021, 58, 206–234. [Google Scholar] [CrossRef]
- Turchi, M.; Karcz, A.P.; Andersson, M.P. First-principles prediction of critical micellar concentrations for ionic and nonionic surfactants. J. Colloid Interface Sci. 2022, 606, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yan, F.; Jia, Q.; Wang, Q. Norm descriptors for predicting the hydrophile-lipophile balance (HLB) and critical micelle concentration (CMC) of anionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123967. [Google Scholar] [CrossRef]
- Qin, S.; Jin, T.; Van Lehn, R.C.; Zavala, V.M. Predicting Critical Micelle Concentrations for Surfactants Using Graph Convolutional Neural Networks. J. Phys. Chem. B 2021, 125, 10610–10620. [Google Scholar] [CrossRef]
- Karakashev, S.I.; Smoukov, S.K. CMC prediction for ionic surfactants in pure water and aqueous salt solutions based solely on tabulated molecular parameters. J. Colloid Interface Sci. 2017, 501, 142–149. [Google Scholar] [CrossRef]
- Khan, M.S.; Wani, A.A.; Ismail, T.; Bhat, S.A.; Sofi, F.A.; Bhat, M.A. Eureka Moment: An Archimedean Alternative for the Determination of cmc of Surfactants via Weight Measurements. ACS Omega 2020, 5, 31640–31643. [Google Scholar] [CrossRef]
- Gad, E.A.M.; Khairou, K.S. QSPR for HLB of Nonionic Surfactants Based on Polyoxyethylene Group. J. Dispers. Sci. Technol. 2008, 29, 940–947. [Google Scholar] [CrossRef]
- Song, J.; Liu, Y.; Lin, L.; Zhao, Y.; Wang, X.; Zhong, M.; Xie, T.; Luo, Y.; Li, S.; Yang, R.; et al. Glycyrrhetinic acid modified and pH-sensitive mixed micelles improve the anticancer effect of curcumin in hepatoma carcinoma cells. RSC Adv. 2019, 9, 40131–40145. [Google Scholar] [CrossRef]
- Song, J. Study on Glycyrrhetic Acid Modified pH-Sensitive Curcumin Mixed Micelle for Anti-Hepatoma Cell. Ph.D. Thesis, China Academy of Chinese Medical Sciences, Beijing, China, 2020. [Google Scholar]
- Hu, Y.; Lan, T.; Li, J.; Li, L.; Song, J. Glycyrrhetinic acid-modified redox-sensitive polymeric mixed micelles for tumor-specific intracellular delivery of cantharidin. RSC Adv. 2024, 14, 28753–28767. [Google Scholar] [CrossRef]
- Lan, Z.; Tan, F.; He, J.; Liu, J.; Lu, M.; Hu, Z.; Zhuo, Y.; Liu, J.; Tang, X.; Jiang, Z.; et al. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. Phytomedicine 2024, 129, 155635. [Google Scholar] [CrossRef]
- Hajimirzaei, P.; Eyni, H.; Razmgir, M.; Abolfazli, S.; Pirzadeh, S.; Tabatabaei, F.S.A.; Vasigh, A.; Yazdanian, N.; Ramezani, F.; Janzadeh, A.; et al. The analgesic effect of curcumin and nano-curcumin in clinical and preclinical studies: A systematic review and meta-analysis. Naunyn-Schmiedebergs Arch. Pharmacol. 2024, 2024, 26. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Sharma, S.; Xu, S.; Tewari, D.; Fang, J. Curcumin as a Natural Remedy for Atherosclerosis: A Pharmacological Review. Molecules 2021, 26, 4036. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Ryu, C.Y. Scalable PEO-PPO-PEO triblock copolymer purification from Pluronics through competitive adsorption. Polymer 2012, 53, 5052–5059. [Google Scholar] [CrossRef]
- Finch, J.A.; Zhang, W. Frother function–structure relationship: Dependence of CCC95 on HLB and the H-ratio. Miner. Eng. 2014, 61, 1–8. [Google Scholar] [CrossRef]
- Yang, M. Pharmaceutics of Traditional Chinese Medicine; China Press of Traditional Chinese Medicine Co., Ltd.: Beijing, China, 2021. [Google Scholar]
- Abooali, D.; Soleimani, R. Structure-based modeling of critical micelle concentration (CMC) of anionic surfactants in brine using intelligent methods. Sci. Rep. 2023, 13, 13361. [Google Scholar] [CrossRef]
- Mozrzymas, A.; Rozycka-Roszak, B. Prediction of Critical Micelle Concentration of Nonionic Surfactants by a Quantitative Structure–Property Relationship. Comb. Chem. High Throughput Screen. 2010, 13, 39–44. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, X.; Zhen, T. Effect of Hydrophobic Blocks on The Aggregate Behavior of Amphiphilic Triblock Copolymers in Aqueous Solution. Acta Polym. Sin. 2009, 9, 936–941. [Google Scholar] [CrossRef]
- Li, J.; Luo, J. Normal and Frictional Force Hysteresis between Self-Assembled Fluorosurfactant Micelle Arrays at the Nanoscale. Adv. Mater. Interfaces 2018, 5, 1700802. [Google Scholar] [CrossRef]
- Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S. Thermo-triggered drug release from actively targeting polymer micelles. ACS Appl. Mater. Interfaces 2014, 6, 8549–8559. [Google Scholar] [CrossRef]
- Metsu, D.; Lanot, T.; Fraissinet, F.; Concordet, D.; Gayrard, V.; Averseng, M.; Ressault, A.; Martin-Blondel, G.; Levade, T.; Fevrier, F.; et al. Comparing ultrafiltration and equilibrium dialysis to measure unbound plasma dolutegravir concentrations based on a design of experiment approach. Sci. Rep. 2020, 10, 12265. [Google Scholar] [CrossRef]
- Rong, R.; Wang, X.; Dan, Y.; Zhang, R.; Zhao, Y.; Yu, Z. Determination of protein binding for novel 2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid enantiomers to rats, dogs, and humans plasma by UPLC-MS/MS. Chirality 2020, 32, 524–534. [Google Scholar] [CrossRef]
- Latif, M.S.; Al-Harbi, F.F.; Nawaz, A.; Rashid, S.A.; Farid, A.; Mohaini, M.A.; Alsalman, A.J.; Hawaj, M.A.A.; Alhashem, Y.N. Formulation and Evaluation of Hydrophilic Polymer Based Methotrexate Patches: In Vitro and In Vivo Characterization. Polymers 2022, 14, 1310. [Google Scholar] [CrossRef]
- Mozrzymas, A.; Różycka-Roszak, B. Prediction of critical micelle concentration of cationic surfactants using connectivity indices. J. Math. Chem. 2010, 49, 276–289. [Google Scholar] [CrossRef]
- Bonizzoni, M.; Ge, X.; Chen, L.; Li, D.; Liu, R.; Ge, G. Estimation of non-constant variance in isothermal titration calorimetry using an ITC measurement model. PLoS ONE 2020, 15, e0244739. [Google Scholar] [CrossRef]
- Solis-Gonzalez, O.A.; Avendaño-Gómez, J.R.; Rojas-Aguilar, A. A thermodynamic study of F108 and F127 block copolymer interactions with liposomes at physiological temperature. J. Liposome Res. 2021, 32, 32–44. [Google Scholar] [CrossRef]
- Rasoulianboroujeni, M.; de Villiers, M.; Kwon, G. Entropy-Driven Liquid-Liquid Phase Separation Transition to Polymeric Micelles. J. Phys. Chem. B 2023, 127, 7925–7936. [Google Scholar] [CrossRef]
- Li, J.; Yan, G.; Zhou, L.; Bai, X.; Chen, X. Molecular mechanism of the effect of benzene ring structure in nonionic surfactants on the wettability of anthracite. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 657, 130634. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Xiao, Y.; Mao, A.; Lang, M. Phenylboronic acid conjugated mPEG-b-PCL micelles as DOX carriers for enhanced drug encapsulation and controlled drug release. Eur. Polym. J. 2022, 173, 111235. [Google Scholar] [CrossRef]
- Hu, S.; Yan, J.; Yang, G.; Ma, C.; Yin, J. Self-Assembled Polymeric Materials: Design, Morphology, and Functional-Oriented Applications. Macromol. Rapid Commun. 2022, 43, 2100791. [Google Scholar] [CrossRef]
- Wu, Z.; Li, H.; Zhao, X.; Ye, F.; Zhao, G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr. Polym. 2022, 284, 119182. [Google Scholar] [CrossRef]
- Pang, Q.; Xu, Z.; Sun, T.; Yue, S.; Yu, Y.; Lu, H.; He, M.; Chen, X.; Lu, Y.; Li, J. Strategic chemical synthesis and application of nanocarriers responsive to the tumor microenvironment. Nano Today 2024, 58, 102421. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Xiang, D.; Luo, S.; Hu, X.; Tang, T.; Sun, T.; Liu, X. Micelles Loaded With Puerarin And Modified With Triphenylphosphonium Cation Possess Mitochondrial Targeting And Demonstrate Enhanced Protective Effect Against Isoprenaline-Induced H9c2 Cells Apoptosis. Int. J. Nanomed. 2019, 14, 8345–8360. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Zhang, C.; Yin, X.; Wang, J.; Wang, J.; Xu, X. Baicalein Loaded Crown Ether-mPEG-PLGA Micelle Drug Delivery System for Increased Breast Cancer Treatment: Preparation, Characterization, In-Vitro and In-Vivo Evaluations. J. Biomed. Nanotechnol. 2022, 18, 2350–2363. [Google Scholar] [CrossRef]
Group | MW of F127 | HLB of F127 | MW of Hydrophobic Group | HLB of Hydrophobic Group | Predicted HLB |
---|---|---|---|---|---|
F127-PLGA | 14,600 | 18.434 ± 0.025 | 2500 | 11.596 ± 0.029 | 16.690 ± 0.131 |
4700 | 11.580 ± 0.011 | 15.750 ± 0.139 | |||
F127-PLA | 2000 | 9.038 ± 0.010 | 16.413 ± 0.111 | ||
3500 | 9.055 ± 0.015 | 15.395 ± 0.121 | |||
5000 | 9.086 ± 0.001 | 14.634 ± 0.128 | |||
F127-PCL | 2000 | 7.076 ± 0.002 | 15.991 ± 0.099 | ||
3500 | 7.122 ± 0.010 | 14.768 ± 0.113 | |||
5300 | 7.154 ± 0.006 | 13.689 ± 0.124 |
Name | Hw | Ho | R | HLB |
---|---|---|---|---|
F127-PLGA2500 | 1.000 | 0.245 ± 0.001 | 0.803 ± 0.001 | 17.441 ± 0.014 |
F127-PLGA4700 | 1.000 | 0.309 ± 0.002 | 0.764 ± 0.001 | 16.694 ± 0.020 |
F127-PLA2000 | 1.000 | 0.267 ± 0.003 | 0.789 ± 0.002 | 17.171 ± 0.041 |
F127-PLA3500 | 1.000 | 0.348 ± 0.002 | 0.742 ± 0.001 | 16.279 ± 0.023 |
F127-PLA5000 | 1.000 | 0.436 ± 0.002 | 0.696 ± 0.001 | 15.406 ± 0.017 |
F127-PCL2000 | 1.000 | 0.315 ± 0.002 | 0.76 ± 0.002 | 16.622 ± 0.018 |
F127-PCL3500 | 1.000 | 0.421 ± 0.002 | 0.704 ± 0.001 | 15.551 ± 0.010 |
F127-PCL5300 | 1.000 | 0.528 ± 0.004 | 0.654 ± 0.002 | 14.614 ± 0.031 |
Groups | CMC (mmol/L) |
---|---|
F127 | 0.358 × 10−2 ± 0.003 × 10−2 |
F127-PLA2000 | 0.756 × 10−3 ± 0.002 × 10−3 |
F127-PLA3500 | 0.188 × 10−3 ± 0.005 × 10−3 |
F127-PCL2000 | 0.301 × 10−3 ± 0.005 × 10−3 |
F127-PCL3500 | 0.748 × 10−4 ± 0.041 × 10−4 |
Stage | 0χ | 1χ | 2χ | 3χ | 4χ | 0χv | 1χv | 2χv | 3χv | 4χv | |
---|---|---|---|---|---|---|---|---|---|---|---|
First step | r | 0.956 | 0.985 | 0.950 | 0.469 | 0.433 | 0.974 | 0.993 | 0.990 | 0.363 | 0.402 |
F | 31.787 | 97.018 | 27.797 | 0.844 | 0.693 | 55.270 | 221.885 | 150.146 | 0.455 | 0.577 | |
s | 0.217 | 0.128 | 0.230 | 0.652 | 0.665 | 0.168 | 0.085 | 0.103 | 0.688 | 0.676 | |
Second step | r | 0.526 | 0.577 | 0.546 | 0.528 | 0.593 | 0.567 | - | 0.522 | 0.543 | 0.509 |
Groups | Predicted lg CMC | Tested CMC ( ± S) | Tested lg CMC ( ± S) |
---|---|---|---|
F127 | −2.468 | 0.358 × 10−2 ± 0.003 × 10−2 | −2.447 ± 0.003 |
F127-PLGA2500 | −3.292 | 0.484 × 10−3 ± 0.004 × 10−3 | −3.315 ± 0.003 |
F127-PLGA4700 | −4.028 | 0.879 × 10−4 ± 0.029 × 10−4 | −4.056 ± 0.014 |
F127-PLA5000 | −4.231 | 0.586 × 10−4 ± 0.008 × 10−4 | −4.231 ± 0.006 |
F127-PCL5300 | −4.894 | 0.132 × 10−4 ± 0.010 × 10−4 | −4.879 ± 0.033 |
Groups | ΔH (kJ/mol) | CMC (mmol/L) | ΔG (kJ/mol) | ΔS (kJ/mol·K) |
---|---|---|---|---|
F127 | 77.684 ± 1.712 | 0.358 × 10−2 ± 0.003 × 10−2 | −43.112 ± 0.020 | 0.386 ± 0.006 |
F127-PLGA2500 | 78.474 ± 1.783 | 0.484 × 10−3 ± 0.004 × 10−3 | −48.315 ± 0.020 | 0.405 ± 0.005 |
F127-PLGA4700 | 115.254 ± 0.767 | 0.879 × 10−4 ± 0.029 × 10−4 | −52.755 ± 0.087 | 0.537 ± 0.003 |
F127-PLA2000 | 82.986 ± 3.024 | 0.756 × 10−3 ± 0.002 × 10−3 | −47.156 ± 0.065 | 0.416 ± 0.010 |
F127-PLA3500 | 96.076 ± 2.128 | 0.188 × 10−3 ± 0.005 × 10−3 | −50.771 ± 0.067 | 0.469 ± 0.007 |
F127-PLA5000 | 123.67 ± 4.453 | 0.588 × 10−4 ± 0.009 × 10−4 | −53.803 ± 0.037 | 0.567 ± 0.014 |
F127-PCL2000 | 111.376 ± 2.322 | 0.301 × 10−3 ± 0.005 × 10−3 | −49.552 ± 0.044 | 0.514 ± 0.008 |
F127-PCL3500 | 129.151 ± 2.957 | 0.748 × 10−4 ± 0.041 × 10−4 | −53.177 ± 0.153 | 0.582 ± 0.009 |
F127-PCL5300 | 141.382 ± 2.836 | 0.132 × 10−4 ± 0.010 × 10−4 | −57.684 ± 0.195 | 0.636 ± 0.008 |
Groups | Particle Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
F127 | 45.373 ± 1.52 | 0.575 ± 0.052 | −4.765 ± 0.275 |
F127-PLGA4700 | 54.307 ± 2.014 | 0.577 ± 0.037 | −5.478 ± 0.116 |
F127-PLA5000 | 76.682 ± 1.024 | 0.437 ± 0.016 | −5.801 ± 0.133 |
F127-PCL5300 | 92.189 ± 1.368 | 0.207 ± 0.006 | −6.007 ± 0.211 |
Groups | EE (%) | DL (%) | HLB |
---|---|---|---|
F127 | 0.734 ± 0.005 | 0.072 ± 0.002 | 18.402 ± 0.010 |
F127-PLGA2500 | 14.809 ± 0.254 | 1.463 ± 0.016 | 17.441 ± 0.014 |
F127-PLGA4700 | 22.478 ± 0.329 | 2.200 ± 0.020 | 16.694 ± 0.020 |
F127-PLA2000 | 17.413 ± 0.283 | 1.690 ± 0.017 | 17.171 ± 0.041 |
F127-PLA3500 | 28.846 ± 0.689 | 2.773 ± 0.026 | 16.279 ± 0.023 |
F127-PLA5000 | 55.977 ± 0.799 | 5.229 ± 0.046 | 15.406 ± 0.017 |
F127-PCL2000 | 22.485 ± 0.275 | 2.173 ± 0.018 | 16.622 ± 0.018 |
F127-PCL3500 | 51.844 ± 0.468 | 4.873 ± 0.047 | 15.551 ± 0.010 |
F127-PCL5300 | 81.784 ± 1.553 | 7.519 ± 0.088 | 14.614 ± 0.031 |
Groups | Ct (mg/mL) | Cf (mg/mL) | Equilibrium Binding Rate (%) | HLB |
---|---|---|---|---|
F127 | 0.0490 ± 0.0003 | 0.0483 ± 0.0003 | 1.426 ± 0.202 | 18.402 ± 0.010 |
F127-PLGA2500 | 0.0487 ± 0.0005 | 0.0469 ± 0.0005 | 3.696 ± 0.042 | 17.441 ± 0.014 |
F127-PLGA4700 | 0.0486 ± 0.0003 | 0.0448 ± 0.0002 | 7.882 ± 0.087 | 16.694 ± 0.020 |
F127-PLA2000 | 0.0485 ± 0.0004 | 0.0455 ± 0.0004 | 6.014 ± 0.077 | 17.171 ± 0.041 |
F127-PLA3500 | 0.0486 ± 0.0004 | 0.0440 ± 0.0003 | 9.527 ± 0.210 | 16.279 ± 0.023 |
F127-PLA5000 | 0.0487 ± 0.0002 | 0.0428 ± 0.0002 | 12.038 ± 0.103 | 15.406 ± 0.017 |
F127-PCL2000 | 0.0487 ± 0.0007 | 0.0446 ± 0.0006 | 8.543 ± 0.118 | 16.622 ± 0.018 |
F127-PCL3500 | 0.0486 ± 0.0004 | 0.0430 ± 0.0004 | 11.643 ± 0.303 | 15.551 ± 0.010 |
F127-PCL5300 | 0.0484 ± 0.0005 | 0.0415 ± 0.0005 | 14.178 ± 0.170 | 14.614 ± 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Hu, Y.; Yang, S.; Liu, D.; Tseng, Y.; Li, L. Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles. Polymers 2025, 17, 349. https://doi.org/10.3390/polym17030349
Song J, Hu Y, Yang S, Liu D, Tseng Y, Li L. Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles. Polymers. 2025; 17(3):349. https://doi.org/10.3390/polym17030349
Chicago/Turabian StyleSong, Jizheng, Yu Hu, Shiyu Yang, Dexue Liu, Yiider Tseng, and Lingjun Li. 2025. "Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles" Polymers 17, no. 3: 349. https://doi.org/10.3390/polym17030349
APA StyleSong, J., Hu, Y., Yang, S., Liu, D., Tseng, Y., & Li, L. (2025). Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles. Polymers, 17(3), 349. https://doi.org/10.3390/polym17030349