Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = hydrophilic phenolic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2229 KiB  
Article
Unlocking the Skin Health-Promoting Ingredients of Honeysuckle (Lonicera japonica Thunberg) Flower-Loaded Polyglycerol Fatty Acid Ester-Based Low-Energy Nanoemulsions
by Nara Yaowiwat, Pingtawan Bunmark, Siripat Chaichit, Worrapan Poomanee and Karnkamol Trisopon
Cosmetics 2025, 12(4), 151; https://doi.org/10.3390/cosmetics12040151 - 15 Jul 2025
Viewed by 807
Abstract
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes [...] Read more.
This study aims to provide a comprehensive evaluation of the bioactive compounds present in honeysuckle flower (Lonicera japonica Thunb.) extract (HSF) and their remarkable antioxidant activity. A docking simulation was performed to clarify the binding affinities of the identified phytochemicals to enzymes associated with anti-aging and anti-inflammatory activities. In addition, the low-energy nanoemulsions based on optimally formulated polyglycerol fatty acid esters (PGFEs), developed through D-optimality, were designed for the incorporation of HSF extract. The result revealed that HSF is a rich source of diverse phenolic and flavonoid compounds that contribute to its remarkable antioxidant capacity. Molecular docking analysis indicates that its compounds exhibit anti-aging and anti-inflammatory activities, particularly through collagenase, hyaluronidase, and TNF-α inhibition. Furthermore, D-optimality revealed that HSF-loaded nanoemulsions can be fabricated by a surfactant to oil ratio (SOR) of 2:1 with a ratio of low hydrophilic-lipophilic balance (HLB) surfactant to high HLB surfactant (LHR) of 1:2. Polyglyceryl-6 laurate as a high HLB surfactant produced the optimal nanoemulsion with small particle size and possessed an encapsulation efficiency (EE) of 74.32 ± 0.19%. This is the first report to combine D-optimal design-based nanoemulsion development with a multi-level analysis of HSF, including phytochemical profiling, antioxidant evaluation, and in silico molecular docking. These findings highlight that HSF-loaded polyglycerol fatty acid ester-based nanoemulsions could be a skin health-promoting ingredient and effective alternative for a variety of skincare applications. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

17 pages, 8792 KiB  
Essay
Composite Effect of Nanoparticles and Conventional Additives on Hydrate Formation in Seawater-Based Drilling Fluids
by Dongdong Guo, Yunhong Zhang, Ling Ji, Hengyin Zhu, Jinjin Yao, Ran Li and Zhipeng Xin
Processes 2025, 13(7), 2058; https://doi.org/10.3390/pr13072058 - 28 Jun 2025
Cited by 1 | Viewed by 410
Abstract
The design of high-performance drilling fluid systems is of vital importance for the safe and efficient exploitation of natural gas hydrates. Incorporating appropriate nanoparticles into drilling fluids can significantly enhance drilling fluid loss control, wellbore stability, and hydrate inhibition. However, the combined effects [...] Read more.
The design of high-performance drilling fluid systems is of vital importance for the safe and efficient exploitation of natural gas hydrates. Incorporating appropriate nanoparticles into drilling fluids can significantly enhance drilling fluid loss control, wellbore stability, and hydrate inhibition. However, the combined effects of nanoparticles and conventional additives on hydrate inhibition in drilling fluid systems remain poorly understood. In this study, the influence of nanoparticles on hydrate formation was first evaluated in a base mud, followed by an investigation of their combined effects with common drilling fluid additives. The results demonstrate that hydrophilic nano-CaCO3 particles exhibit hydrate inhibitory effects, with the strongest inhibition observed at 3.0%. Composite system tests (incorporating nanoparticles with sepiolite, filtrate reducers, and flow modifiers) revealed diverse effects on hydrate formation. Specifically, the combination of nanoparticles and sepiolite promoted hydrate formation; the combination of nanoparticles and filtrate reducers showed divergent effects. Mixtures of nanoparticles with 0.2% low-viscosity anionic cellulose (LV-PAC), carboxymethyl starch (CMS), and low-viscosity carboxymethyl cellulose (LV-CMC) inhibited hydrate formation, while mixtures with 0.2% sulfonated phenolic resin (SMP-2) and hydrolyzed ammonium polyacrylonitrile (NH4-HPAN) accelerated hydrate formation. Notably, the incorporation of nanoparticles with 0.3% guar gum, sesbania gum, high-viscosity carboxymethyl cellulose (HV-CMC), or high-viscosity polyanionic cellulose (HV-PAC) resulted in the complete inhibition of hydrate formation. By contrast, the synergistic inhibition effect of the nanoparticle/xanthan gum (XC) composite system was relatively weak, with the optimal compounding concentration determined to be 0.3%. These findings provide critical insights for the development of drilling fluid systems in natural gas hydrate reservoirs, facilitating the optimization of drilling performance and enhancing operational safety in hydrate-bearing formations. Full article
(This article belongs to the Special Issue Advances in Gas Hydrate: From Formation to Exploitation Processes)
Show Figures

Figure 1

31 pages, 1043 KiB  
Review
Targeted Delivery Strategies for Hydrophilic Phytochemicals
by Marta Sharafan, Anna Dziki, Magdalena Anna Malinowska, Elżbieta Sikora and Agnieszka Szopa
Appl. Sci. 2025, 15(13), 7101; https://doi.org/10.3390/app15137101 - 24 Jun 2025
Cited by 1 | Viewed by 501
Abstract
Hydrophilic phytochemicals, such as flavonoids and phenolic acids, possess important biological activities, including antioxidant, anti-inflammatory, and anticancer effects. However, their application is hindered by low membrane permeability, poor chemical stability, and limited skin penetration. This review provides a comprehensive analysis of advanced delivery [...] Read more.
Hydrophilic phytochemicals, such as flavonoids and phenolic acids, possess important biological activities, including antioxidant, anti-inflammatory, and anticancer effects. However, their application is hindered by low membrane permeability, poor chemical stability, and limited skin penetration. This review provides a comprehensive analysis of advanced delivery strategies aimed at enhancing the solubility, bioavailability, and therapeutic efficacy of selected hydrophilic compounds. Specifically, it focuses on the encapsulation of flavonoids such as quercetin, luteolin, and apigenin, as well as phenolic acids including ferulic acid, caffeic acid, and chlorogenic acid. The review discusses various nanocarrier systems: liposomes, niosomes, exosomes, and polymeric nanoparticles (e.g., nanocapsules, nanospheres) and compares their structural characteristics, preparation methods, and functional benefits. These delivery systems improve the physicochemical stability of active compounds, enable controlled and targeted release, and enhance skin and cellular absorption. Despite certain challenges related to large-scale production and regulatory constraints, such approaches offer promising solutions for the pharmaceutical and cosmetic application of hydrophilic plant-derived compounds. Full article
(This article belongs to the Special Issue Applications of Nanocarriers for Phytochemical Delivery)
Show Figures

Figure 1

14 pages, 4358 KiB  
Article
Clarification of Clove Basil Extract Using Spinel Hollow Fiber Membranes
by Kristopher Rodrigues Dorneles, Guilherme Guimarães Ascendino, Vicelma Luiz Cardoso and Miria Hespanhol Miranda Reis
Ceramics 2025, 8(2), 57; https://doi.org/10.3390/ceramics8020057 - 16 May 2025
Viewed by 521
Abstract
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at [...] Read more.
This study investigates the application of spinel (MgAl2O4) hollow fiber membranes for clarification of clove basil (Ocimum gratissimum L.) aqueous extract, a rich source of bioactive compounds. The membranes were produced using a phase-inversion and sintering method at 1350 °C, combining alumina and dolomite as raw materials. The calcination of the powder materials at 1350 °C resulted in the spinel phase formation, as indicated by the XRD analyses. The spinel hollow fiber membrane presented a hydrophilic surface (water contact angle of 74°), moderate roughness (144.31 ± 12.93 nm), and suitable mechanical strength. The ceramic membrane demonstrated a water permeability of 35.28 ± 2.46 L h−1 m−2 bar−1 and a final permeate flux of 9.22 ± 1.64 L h−1 m−2 for filtration of clove basil extract at 1.0 bar. Fouling analysis identified cake formation as the dominant mechanism for flux decline. The membrane retained 44% of the total phenolic compounds and reduced turbidity by 60%, while preserving significant antioxidant capacity in the permeate. The results highlight the potential of spinel-based hollow fiber membranes as a cost-effective and efficient solution for clarifying bioactive plant extracts, offering enhanced mechanical properties and lower sintering temperatures compared to conventional alumina membranes. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

13 pages, 1023 KiB  
Article
Hydroxytyrosyl Eicosapentaenoate as a Potential Antioxidant for Omega-3 Fatty Acids: Improved Synthesis and Comparative Evaluation with Other Natural Antioxidants
by Natalia García-Acosta, Rosa Cert, Marta Jordán, Luis Goya, Raquel Mateos and Jose Luis Espartero
Biomolecules 2025, 15(5), 714; https://doi.org/10.3390/biom15050714 - 13 May 2025
Viewed by 656
Abstract
Hydroxytyrosol (HT), the primary phenolic compound in virgin olive oil, has notable cardiovascular benefits, particularly in preventing low-density lipoprotein (LDL) oxidation. However, its hydrophilicity limits its solubility and integration into lipid-based formulations. This study aimed to enhance its lipophilicity by synthesizing hydroxytyrosyl eicosapentaenoate [...] Read more.
Hydroxytyrosol (HT), the primary phenolic compound in virgin olive oil, has notable cardiovascular benefits, particularly in preventing low-density lipoprotein (LDL) oxidation. However, its hydrophilicity limits its solubility and integration into lipid-based formulations. This study aimed to enhance its lipophilicity by synthesizing hydroxytyrosyl eicosapentaenoate (HT-EPA), a derivative of HT and eicosapentaenoic acid (EPA), using a one-step enzymatic catalysis with lipase B from Candida antarctica (CALB). The reaction, performed as a suspension of HT in ethyl eicosapentaenoate (Et-EPA) (1:9 molar ratio) under vacuum, achieved higher yields and shorter reaction times than previously reported, with a purity exceeding 98%, confirmed by 1H-NMR. For the first time, the antioxidant capacity of HT-EPA in comparison with other natural antioxidants was assessed using the FRAP assay, while its oxidative stability in an omega-3-rich oil matrix was evaluated via the Rancimat method. HT-EPA and hydroxytyrosyl acetate (HT-Ac) displayed antioxidant activity comparable to HT but significantly higher than α-tocopherol, a common food antioxidant. Given the scarcity of effective lipid-soluble antioxidants, HT-EPA represents a promising candidate for omega-3 nutraceuticals, offering enhanced stability and potential health benefits. This study provides a simple, efficient, and scalable strategy for developing functional lipid-based formulations with cardioprotective potential by improving HT solubility while preserving its antioxidant properties. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

15 pages, 3782 KiB  
Article
Cassia grandis L.f. Pods as a Source of High-Value-Added Biomolecules: Optimization of Extraction Conditions and Extract Rheology
by Filipe M. M. Cordeiro, Salomé G. Bedoya, Daniel A. P. Santos, Rebeca S. Santos, Thomas V. M. Bacelar, Filipe S. Buarque, George Simonelli, Ana C. M. Silva and Álvaro S. Lima
Biomass 2025, 5(2), 24; https://doi.org/10.3390/biomass5020024 - 25 Apr 2025
Viewed by 827
Abstract
High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of Cassia grandis L.f. Initially, [...] Read more.
High-value-added biomolecules such as phenolic compounds and flavonoids from secondary metabolism and macromolecules such as sugars are the main constituents of several plants. Thus, this work aims to optimize the extraction of these biomolecules present in the pods of Cassia grandis L.f. Initially, the effect of choline-based ionic liquids—ILs (choline chloride [Ch]Cl, dihydrogen citrate [Ch][DHC], and bitartrate [Ch][BIT]) as extracting agents for phenolic compounds and flavonoids was evaluated based on their efficiency and selectivity. Then, a 23 full factorial design with six central points was performed using the IL concentration, the solid–liquid ratio, and the temperature as independent variables. The extract obtained in the best condition was subjected to pervaporation, after which the concentrates and the crude extract were used to determine the physical properties (density, viscosity, and refractive index). The hydrophobic–hydrophilic balance of the extracting agent and the biomolecules are the extraction process’s driving force. The best extraction condition was formed by [Ch][DHC] at 15 wt%, with a solid–liquid ratio of 1:15, at 45 °C for 30 min, resulting in 153.71 ± 5.81 mg·g−1 of reducing sugars; 483.51 ± 13.10 mg·g−1 of total sugars; 11.79 ± 0.54 mg·g−1 of flavonoids; and 38.10 ± 2.90 mg·g−1 of total phenolic compounds. All the physical properties of the biomolecules are temperature-dependent; for density and refractive index, a linear correlation is observed, while for viscosity, the correlation is exponential. Increasing the temperature decreases all properties, and the extract concentration for 8× presents the highest values of density (1.283 g·cm−3), viscosity (9224 mPa·s), and refractive index (1.467). Full article
(This article belongs to the Topic Recovery and Use of Bioactive Materials and Biomass)
Show Figures

Figure 1

29 pages, 7203 KiB  
Article
New Cu(II), Cu(I) and Ag(I) Complexes of Phenoxy-Ketimine Schiff Base Ligands: Synthesis, Structures and Antibacterial Activity
by Miriam Caviglia, Zhenzhen Li, Carlo Santini, Jo’ Del Gobbo, Cristina Cimarelli, Miao Du, Alessandro Dolmella and Maura Pellei
Molecules 2025, 30(9), 1893; https://doi.org/10.3390/molecules30091893 - 24 Apr 2025
Cited by 1 | Viewed by 890
Abstract
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag [...] Read more.
Two phenoxy-ketimines ligands, 2-(1-(benzylimino)ethyl)phenol (HLBSMe) and 2-((benzylimino)(phenyl)methyl)phenol (HLBSPh), were synthesized and used as supporting ligands of new copper(II), copper(I), and silver(I) complexes. In order to confer different solubility properties to the metal complexes and to stabilize Cu and Ag in their +1 oxidation state, the lipophilic triphenylphosphine (PPh3) and the hydrophilic 1,3,5-triaza-7-phosphaadamantane (PTA) were selected as co-ligands in the syntheses of the Cu(I) and Ag(I) complexes. All compounds were characterized by CHN analysis, NMR, FT-IR spectroscopy, and electrospray ionization mass spectrometry (ESI-MS); the molecular structure of the copper(II) complex [Cu(LBSPh)2] was also determined by single-crystal X-ray diffraction. Finally, the antibacterial activity of the metal complexes, the Schiff base ligands and phosphane co-ligands, were assessed by determining the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). Full article
Show Figures

Graphical abstract

14 pages, 757 KiB  
Article
The Influence of Standard and Freeze-Dried Tofu on the Phenols and Quality of Virgin Olive Oil Used as an Immersion Medium
by Olivera Koprivnjak, Valerija Majetić Germek, Paula Žurga and Karolina Brkić Bubola
Molecules 2025, 30(3), 672; https://doi.org/10.3390/molecules30030672 - 3 Feb 2025
Viewed by 936
Abstract
Various protein-rich foods are traditionally immersed in virgin olive oil (VOO), a medium rich in phenols, which are health-promoting and sensorially important compounds. Immersing tofu in VOO may modify the sensory properties and nutritional value of both due to the oil’s hydrophilic phenol [...] Read more.
Various protein-rich foods are traditionally immersed in virgin olive oil (VOO), a medium rich in phenols, which are health-promoting and sensorially important compounds. Immersing tofu in VOO may modify the sensory properties and nutritional value of both due to the oil’s hydrophilic phenol interactions with proteins and water. In this study, cubes of fresh tofu (T) (70% water) and freeze-dried tofu (FD-T) (5% water) were immersed in VOO for 7 days of cold storage. The changes in the phenolic compound content and standard quality parameters of the oil were noted after 1, 3, 5, and 7 days of contact with the tofu. The total phenols in the oil were determined using the Fast Blue BB assay, while single phenols were analyzed by HPLC-UV/VIS. During the 7 days, the total phenols in the oil decreased by up to 56% and 26% under the influence of fresh and freeze-dried tofu, respectively, including a significant decrease in hydroxytyrosol, oleacein, tyrosol, and oleocanthal. The water content and its release from fresh tofu significantly contributed to this decline. The degradation of the quality of the oil in contact with the fresh tofu was observed only in its sensory properties, with a marked reduction in the intensity of its fruitiness, bitterness and pungency. Full article
Show Figures

Graphical abstract

17 pages, 2168 KiB  
Article
Syntrichia laevipila Brid., a Bryophyta from Northwest Argentina as a Source of Antioxidants and Antimicrobials
by Luis Ignacio Jiménez, Florencia Maria Correa Uriburu, José Javier Martínez Chamás, Guillermo Martin Suárez, Iris Catiana Zampini, Mario J. Simirgiotis and María Inés Isla
Plants 2025, 14(2), 253; https://doi.org/10.3390/plants14020253 - 17 Jan 2025
Cited by 1 | Viewed by 965
Abstract
In recent years, numerous studies have emerged on the biological activities of bryophytes and their potential for therapeutic use. However, mosses appear to be a relatively overlooked group. The objective of this study was to conduct a phytochemical analysis of one hydroalcoholic extract [...] Read more.
In recent years, numerous studies have emerged on the biological activities of bryophytes and their potential for therapeutic use. However, mosses appear to be a relatively overlooked group. The objective of this study was to conduct a phytochemical analysis of one hydroalcoholic extract of Syntrichia laevipila and to evaluate its potential as an antioxidant and antimicrobial agent. The moss was collected in the Chaco Serrano region of Argentina, specifically on Jacaranda mimosifolia, and subsequently extracted by maceration in ethanol/water. UHPLC/ESI/MS/MS analysis identified 32 peaks, including phenolic compounds (phenolic acids, lignans, chalcones, and flavonoids) and non-hydrophilic compounds (terpenoids, fatty acids, and brassinosteroids). Maslinic and oleanolic acids, two triterpenoids present in S. laevipila, were also detected in J. mimosifolia, a substrate of this moss. The concentration of phenolic compounds was 19.05 ± 0.21 µg GAE/mL, while the total flavonoid concentration was 13.13 ± 0.33 µg QE/mL. The determination of reducing and total sugars yielded 0.22 ± 0.03 mg GE/mL and 1.26 ± 0.24 mg GE/mL, respectively, while the concentration of soluble proteins was 90.60 ± 4.50 µg BSAE/mL. The extract exhibited antioxidant properties by scavenging ABTS•+, H2O2, AAPH, and HO radicals. Additionally, it demonstrated antibacterial activity by inhibiting the growth of four strains of Staphylococcus aureus. The data obtained suggest that the hydroalcoholic extract of S. laevipila possesses significant potential as a natural antioxidant and antimicrobial agent, making it a promising candidate for the development of phytotherapeutic and cosmetic products. Full article
Show Figures

Figure 1

22 pages, 4719 KiB  
Article
Faecal Metabolome Profiles in Individuals Diagnosed with Hyperplastic Polyps and Conventional Adenomas
by Alberto Valdés, Sergio Ruiz-Saavedra, Nuria Salazar, Alejandro Cifuentes, Adolfo Suárez, Ylenia Díaz, Carmen González del Rey, Sonia González and Clara G. de los Reyes-Gavilán
Int. J. Mol. Sci. 2024, 25(24), 13324; https://doi.org/10.3390/ijms252413324 - 12 Dec 2024
Cited by 1 | Viewed by 1205
Abstract
Colorectal cancer (CRC) development is a gradual process in which progressive histological alterations of the intestinal mucosa damage occur over years. This process can be influenced by modifiable external factors such as lifestyle and diet. Most CRC cases (>80%) originate from conventional adenomas [...] Read more.
Colorectal cancer (CRC) development is a gradual process in which progressive histological alterations of the intestinal mucosa damage occur over years. This process can be influenced by modifiable external factors such as lifestyle and diet. Most CRC cases (>80%) originate from conventional adenomas through the adenomatous pathway and usually harbour dysplastic cells, whereas the serrated pathway is less frequent (<20% cases) and comprises hyperplastic polyps and other polyps containing dysplastic cells. The aim of the present work was to shed light on alterations of the faecal metabolome associated with hyperplastic polyps and conventional adenomas. Metabolites were analysed by Reversed-Phase High-Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (RP/HPLC-Q/TOF-MS/MS) and Hydrophilic Interaction Liquid Chromatography–Quadrupole-Time of Flight Mass Spectrometry (HILIC-Q/TOF-MS/MS) and the results were integrated. Comparisons were performed between controls without mucosal lesions and the polyps’ group, hyperplastic polyps versus conventional adenomas, and hyperplastic polyps or conventional adenomas versus controls. Alterations of metabolites in specific biochemical modules differentiated hyperplastic polyps and conventional adenomas. The metabolome of the hyperplastic polyps was characterized by an enrichment in glycerophospholipids and an altered metabolism of the degradation pathways of xanthines/purines and pyrimidines, whereas the enrichment in some phenolic compounds and disaccharides, all of them from exogenous origin, was the main differential faecal signature of conventional adenomas. Further research could help to elucidate the contribution of diet and the intestinal microbiota to these metabolomics alterations. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

17 pages, 7755 KiB  
Article
Potential Unlocking of Biological Activity of Caffeic Acid by Incorporation into Hydrophilic Gels
by Monika Jokubaite and Kristina Ramanauskiene
Gels 2024, 10(12), 794; https://doi.org/10.3390/gels10120794 - 4 Dec 2024
Cited by 5 | Viewed by 1744
Abstract
Caffeic acid, a phenolic compound with antioxidant and antimicrobial properties, shows promise in the dermatological field. The research aimed to incorporate caffeic acid into hydrophilic gels based on poloxamer 407, carbomer 980, and their mixture in order to enhance its biological activity. Different [...] Read more.
Caffeic acid, a phenolic compound with antioxidant and antimicrobial properties, shows promise in the dermatological field. The research aimed to incorporate caffeic acid into hydrophilic gels based on poloxamer 407, carbomer 980, and their mixture in order to enhance its biological activity. Different gel formulations were prepared using different concentrations of these polymers to optimize caffeic acid release characteristics. The results showed that increasing the concentration of polymeric materials increased the viscosity and slowed down the release of caffeic acid. The antioxidant and antimicrobial activities of the gels were assessed. The results confirmed the potential of hydrophilic gels as delivery systems for caffeic acid, with formulations showing antimicrobial activity against Gram-positive Staphylococcus aureus bacteria and antifungal activity against Candida albicans fungus. This study provides a perception of the development of new semi-solid caffeic acid-based formulations for therapeutic and cosmetic applications. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Figure 1

6 pages, 1147 KiB  
Proceeding Paper
Hydro-Lipophilic Properties of Chlorinated and Brominated 1-Hydroxynaphthalene-2-Carboxanilides
by Lucia Vrablova, Tomas Gonec and Josef Jampilek
Chem. Proc. 2024, 16(1), 26; https://doi.org/10.3390/ecsoc-28-20151 - 14 Nov 2024
Viewed by 503
Abstract
1-Hydroxy-N-phenylnaphthalene-2-carboxamide and a series of seventeen other carboxanilides in the anilide part of dichlorinated, trichlorinated, dibrominated, tribrominated, and chlorinated/brominated variants have recently been reported as biologically active compounds mainly with antibacterial, antimycobacterial, and anticancer effects. Since lipophilicity is one of the [...] Read more.
1-Hydroxy-N-phenylnaphthalene-2-carboxamide and a series of seventeen other carboxanilides in the anilide part of dichlorinated, trichlorinated, dibrominated, tribrominated, and chlorinated/brominated variants have recently been reported as biologically active compounds mainly with antibacterial, antimycobacterial, and anticancer effects. Since lipophilicity is one of the factors influencing the bioavailability (absorption, distribution, metabolism, and elimination), activity, and even toxicity of bioactive compounds, all the derivatives were investigated for their lipophilic and hydrophilic properties. All eighteen compounds were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC). The procedure was performed under isocratic conditions with methanol as the organic modifier in the mobile phase using an end-capped non-polar C18 stationary reversed-phase column. The lipophilicity values are expressed as the logarithm of the capacity factor k (for the mobile phase water/methanol) and the distribution coefficients D at pH values of 6.5 and 7.4 (for the mobile phase buffer/methanol), as well as the calculated values of log P/Clog P by various methods. 1-Hydroxy-N-(3,4,5-trichlorophenyl)naphtha- lene-2-carboxamide and N-(4-bromo-3-chlorophenyl)-1-hydroxynaphthalene-2-carboxamide are the most lipophilic compounds of the whole series; on the other hand, surprisingly, unsubstituted 1-hydroxy-N-phenylnaphthalene-2-carboxamide is not the least lipophilic derivative. The mutual correlations between the experimental and predicted lipophilicity values are low; in addition, there are large deviations in the cross-correlations between log k and log D, which are due to the presence of a free ionizable phenolic group in the molecule. Full article
Show Figures

Figure 1

18 pages, 6587 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Capacity, and Anti-Inflammatory Effects of Lipophilic and Hydrophilic Extracts of the Pericarp of Passiflora tripartita var. mollissima at Two Stages of Ripening
by Hugo Jesús Justil-Guerrero, Jorge Luis Arroyo-Acevedo, Juan Pedro Rojas-Armas, Carlos Orlando García-Bustamante, Miriam Palomino-Pacheco, Robert Dante Almonacid-Román and James Willan Calva Torres
Molecules 2024, 29(20), 4964; https://doi.org/10.3390/molecules29204964 - 21 Oct 2024
Cited by 1 | Viewed by 1917
Abstract
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in [...] Read more.
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in the hydrophilic and lipophilic extracts of mature and green pericarps were identified by GC-MS and UV–VIS, while the antioxidant capacity was measured by free radical reduction. Anti-inflammatory effects were tested using a rat paw edema model with carrageenan-induced edema, indomethacin, or PTM extracts (100, 250, and 500 mg/kg). The effect of mature hydrophilic extract was further evaluated in an air pouch model, where rats received the placebo, carrageenan, indomethacin, or the extract (500 and 1000 mg/kg). Leukocytes, cytokines, and markers of oxidative stress were evaluated. The results showed the presence of organic compounds, total phenols, and flavonoids. The mature hydrophilic extract exhibited the highest antioxidant activity. At 500 mg/kg, it reduced edema, leukocyte migration, and levels of IL-1β, IL-6, and TNF-α while managing oxidative stress and preventing histological damage. In conclusion, PTM contains bioactive compounds with potential pharmacological properties. The hydrophilic extract of the mature pericarp, at a dose of 500 mg/kg, exhibits an enhanced antioxidant and anti-inflammatory effect. Full article
(This article belongs to the Special Issue Pharmacological Activities of Medicinal Plants)
Show Figures

Graphical abstract

27 pages, 3524 KiB  
Article
Valorization of Strawberry Tree Berries and Beeswax from Montesinho Natural Park for Cosmetic Industry—A Case Study Formulation
by Mariana Lamas, Ana Margarida Silva, Manuela M. Moreira, Maria Luz Maia, Valentina F. Domingues, Cristina Delerue-Matos, Maria Helena Amaral, Virgínia Cruz Fernandes and Francisca Rodrigues
Antioxidants 2024, 13(10), 1152; https://doi.org/10.3390/antiox13101152 - 24 Sep 2024
Viewed by 1704
Abstract
Consumers are increasingly concerned about cosmetic ingredients’ origin, looking more than ever to sustainable and greener formulations. The Natural Park of Montesinho, located in Portugal, is characterized by an enormous fauna and flora diversity. Among them, beeswax and strawberry trees (Arbutus unedo [...] Read more.
Consumers are increasingly concerned about cosmetic ingredients’ origin, looking more than ever to sustainable and greener formulations. The Natural Park of Montesinho, located in Portugal, is characterized by an enormous fauna and flora diversity. Among them, beeswax and strawberry trees (Arbutus unedo) have attracted the cosmetic researchers’ interest due to their bioactive compounds’ richness, particularly fatty acids and phenolic compounds. The main goal of this study was to develop an innovative cosmetic product with antioxidant properties composed by both matrices. Briefly, samples were obtained in the Natural Park of Montesinho in October 2022. Beeswax was analysed for lipid profile and contaminants, while extracts were obtained from fruits by ultrasound-assisted extraction (UAE) using water as a solvent. The effect of extraction time (15–90 min) was studied on the total phenolic content (TPC), in vitro antioxidant/antiradical activity, and reactive oxygen species (ROS) scavenging capacity. The beeswax lipid profile presented a high incidence of palmitic, oleic, and linoleic acids. The extract obtained at 60 min presented the highest TPC (30.27 mg GAE/g dw) and antioxidant/antiradical activities (ABTS = 30.36 mg AAE/g dw; DPPH = 43.83 mg TE/g dw; FRAP = 415.61 µmol FSE/g dw). An IC50 of 19.78 µg/mL was achieved for the hypochlorous acid, while for superoxide radical and peroxyl radical the IC50 were, respectively, 90.51 µg/mL and 0.19 µmol TE/mg dw. The phytochemical profile revealed a high content of gallic acid, and catechin and its derivatives. The hydrophilic cream developed revealed ideal technological parameters, particularly its stability. Full article
(This article belongs to the Special Issue Bee Products as a Source of Natural Antioxidants: Second Edition)
Show Figures

Figure 1

12 pages, 2235 KiB  
Article
Deep Eutectic Solvent-Based Aqueous Two-Phase Systems and Their Application in Partitioning of Phenol Compounds
by Isabela N. Souza, Lucas C. V. Rodrigues, Cleide M. F. Soares, Filipe S. Buarque, Ranyere L. Souza and Álvaro S. Lima
Molecules 2024, 29(18), 4383; https://doi.org/10.3390/molecules29184383 - 15 Sep 2024
Cited by 2 | Viewed by 2078
Abstract
This work studies the partition of phenolic compounds, namely caffeic acid, syringic acid, vanillic acid, ferulic acid, and vanillin, in aqueous two-phase systems (ATPSs) formed by acetonitrile and deep eutectic solvents (DESs) based on choline chloride ([Ch]Cl) and carbohydrates (sucrose, d-glucose, d [...] Read more.
This work studies the partition of phenolic compounds, namely caffeic acid, syringic acid, vanillic acid, ferulic acid, and vanillin, in aqueous two-phase systems (ATPSs) formed by acetonitrile and deep eutectic solvents (DESs) based on choline chloride ([Ch]Cl) and carbohydrates (sucrose, d-glucose, d-mannose, arabinose, and d-xylose). The binodal curves built at 25 °C and 0.1 MPa using DES were compared with ATPS composed of [Ch]Cl and the same carbohydrates. The ability to form ATPS depends on the number and kind of hydroxyl groups in DES’s hydrogen-bond donor compound (carbohydrates). ATPS based on DES showed biphasic regions larger than the systems based on [Ch]Cl and carbohydrates alone due to the larger hydrophilicity of DES. The ATPS were used to study the partition of the phenolic compounds. For all the systems, the biomolecules preferentially partitioned to the acetonitrile-rich phase (K > 1), and the best recovery in the top phase ranged between 53.36% (caffeic acid) and 90.09% (vanillin). According to the remarkable results, DES-based ATPS can selectively separate ferulic acid and vanillin for the top phase and syringic, caffeic, and vanillic acids for the bottom phase, achieving a selectivity higher than two. Full article
(This article belongs to the Special Issue New Advances in Deep Eutectic Solvents)
Show Figures

Figure 1

Back to TopTop