Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (955)

Search Parameters:
Keywords = hydrological forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2070 KB  
Article
Enhanced Time Series–Physics Model Approach for Dam Discharge Impacts on River Levels: Seomjin River, South Korea
by Chunggil Jung, Darae Kim, Gayeong Lee and Jongyoon Park
Water 2025, 17(21), 3057; https://doi.org/10.3390/w17213057 (registering DOI) - 24 Oct 2025
Abstract
In dam operations, sudden discharges during extreme rainfall events can pose severe flood risks to downstream communities. This study developed a dam discharge-based river water level forecasting model using a data-driven deep learning approach, long short-term memory (LSTM). To enhance predictive performance, physics-based [...] Read more.
In dam operations, sudden discharges during extreme rainfall events can pose severe flood risks to downstream communities. This study developed a dam discharge-based river water level forecasting model using a data-driven deep learning approach, long short-term memory (LSTM). To enhance predictive performance, physics-based HEC-RAS simulation outputs, including extreme events, were incorporated as additional inputs. The Seomjin River Basin in South Korea, which recently experienced severe flooding, was selected as the study area. Hydrological data from 2010 to 2023 were utilized, with 2023 reserved for model testing. Forecasts were generated for four lead times (3, 6, 12, and 24 h), consistent with the operational flood forecasting system of the Ministry of Environment, South Korea. Using only observed data, the model achieved high accuracy at upstream sites, such as Imsil-gun (Iljung-ri, R2 = 0.92, RMSE = 0.27 m) and Gokseong (Geumgok Bridge, R2 = 0.91, RMSE = 0.35 m), for a 6-h lead time. However, performance was lower at Gurye-gun (Songjeong-ri, R2 = 0.72, RMSE = 1.48 m) due to the complex influence of two dams. Incorporating enhanced inputs significantly improved predictions at Gurye-gun (R2 = 0.91, RMSE = 1.17 m at 3 h). Overall, models using only observed data performed better at upstream sites, while enhanced inputs were more effective in downstream or multi-dam regions. The 6-h lead time yielded the highest overall accuracy, highlighting the potential of this approach to improve real-time dam operations and flood risk management. Full article
19 pages, 5541 KB  
Article
Hybrid LSTM-ARIMA Model for Improving Multi-Step Inflow Forecasting in a Reservoir
by Angela Neagoe, Eliza-Isabela Tică, Liana-Ioana Vuță, Otilia Nedelcu, Gabriela-Elena Dumitran and Bogdan Popa
Water 2025, 17(21), 3051; https://doi.org/10.3390/w17213051 (registering DOI) - 24 Oct 2025
Abstract
In the hydropower sector, accurate estimation of short-term reservoir inflows is an essential element to ensure efficient and safe management of water resources. Short-term forecasting supports the optimization of energy production, prevention of uncontrolled water discharges, planning of equipment maintenance, and adaption of [...] Read more.
In the hydropower sector, accurate estimation of short-term reservoir inflows is an essential element to ensure efficient and safe management of water resources. Short-term forecasting supports the optimization of energy production, prevention of uncontrolled water discharges, planning of equipment maintenance, and adaption of operational strategies. In the absence of data on topography, vegetation, and basin characteristics (required in distributed or semi-distributed models), data-driven approaches can serve as effective alternatives for inflow prediction. This study proposes a novel hybrid approach that reverses the conventional LSTM (Long Short-Term Memory)—ARIMA (Autoregressive Integrated Moving Average) sequence: LSTM is first used to capture nonlinear hydrological patterns, followed by ARIMA to model residual linear trends.The model was calibrated using daily inflow data in the Izvorul Muntelui–Bicaz reservoir in Romania from 2012 to 2020, tested for prediction on the day ahead in a repetitive loop of 365 days corresponding to 2021 and further evaluated through multiple seven-day forecasts randomly selected to cover all 12 months of 2021. For the tested period, the proposed model significantly outperforms the standalone LSTM, increasing the R2 from 0.93 to 0.96 and reducing RMSE from 9.74 m3/s to 6.94 m3/s for one-day-ahead forecasting. For multistep forecasting (84 values, randomly selected, 7 per month), the model improves R2 from 0.75 to 0.89 and lowers RMSE from 18.56 m3/s to 12.74 m3/s. Thus, the hybrid model offers notable improvements in multi-step forecasting by capturing both seasonal patterns and nonlinear variations in hydrological data. The approach offers a replicable data-driven solution for inflow prediction in reservoirs with limited physical data. Full article
Show Figures

Figure 1

25 pages, 8578 KB  
Article
Water Consumption Prediction Based on Improved Fractional-Order Reverse Accumulation Grey Prediction Model
by Yuntao Zhu, Binglin Zhang and Jun Li
Sustainability 2025, 17(21), 9417; https://doi.org/10.3390/su17219417 - 23 Oct 2025
Abstract
Predicting urban water consumption helps managers allocate, reserve, and schedule water resources in advance, avoiding supply–demand imbalances. In practical terms, the improved forecasting model can assist urban water managers in planning supply schedules, optimizing reservoir operations, and allocating resources efficiently, thereby supporting sustainable [...] Read more.
Predicting urban water consumption helps managers allocate, reserve, and schedule water resources in advance, avoiding supply–demand imbalances. In practical terms, the improved forecasting model can assist urban water managers in planning supply schedules, optimizing reservoir operations, and allocating resources efficiently, thereby supporting sustainable water management in rapidly developing tropical island tourist cities. Traditional forecasting models typically assume that the statistical properties of the data remain stable, an assumption often violated under changing environmental conditions. In addition, tropical island tourist cities have unique hydrological characteristics and frequently fluctuating tourist populations, making water consumption forecasting even more complex in these settings. To address the aforementioned problems, this study develops an improved fractional-order reverse accumulation grey model. Based on the principle of new information priority, the weighted processing of historical data enhances the model’s learning capability for new data. The optimal fractional order is determined using the Greater Cane Rat Algorithm, and the optimized fractional-order reverse accumulation grey model is then applied to forecast water consumption in Sanya City. The results demonstrate that the proposed model achieves a relative error of 4.28% for Sanya’s water consumption forecast, outperforming the traditional grey model (relative error 5.24%), the equally weighted fractional-order reverse accumulation model (relative error 4.37%), and the ARIMA model (relative error 6.92%). The Diebold–Mariano (DM) test further confirmed the statistically significant superiority of the proposed model over the traditional model. Full article
Show Figures

Figure 1

22 pages, 3247 KB  
Article
Quantifying Field Soil Moisture, Temperature, and Heat Flux Using an Informer–LSTM Deep Learning Model
by Na Li, Xiaoxiao Sun, Peng Wang, Wenke Wang and Zhitong Ma
Agronomy 2025, 15(11), 2453; https://doi.org/10.3390/agronomy15112453 - 22 Oct 2025
Abstract
Understanding water and heat transport through soils is vital for managing soil and groundwater resources, agricultural irrigation, and ecosystem protection. This paper aims to explore the potential application of deep learning methods in simulating water and heat transport processes within soils. It also [...] Read more.
Understanding water and heat transport through soils is vital for managing soil and groundwater resources, agricultural irrigation, and ecosystem protection. This paper aims to explore the potential application of deep learning methods in simulating water and heat transport processes within soils. It also examines the interactions between soil hydrological processes and environmental factors, including meteorological conditions and groundwater levels. To achieve these, we develop a hybrid model Informer–LSTM by combining two powerful architectures: Informer, a Transformer-based model essentially designed for long-sequence time-series forecasting, and Long Short-Term Memory (LSTM), a neural network that is great at learning short-term patterns in sequential data. The model is applied to field measurements from Henan Township in Ordos, Inner Mongolia, China, for training and testing, to simulate three key variables: soil water content, temperature, and heat flux at different depths in two soil columns with different groundwater levels. Our results confirm that Informer–LSTM is highly effective at simulating the soil water and heat transport. Simultaneously, we evaluate its performance by incorporating various combinations of input data including meteorological data, soil hydrothermal dynamics, and groundwater level. This reveals the relationship between soil hydrothermal processes and meteorological data, as well as coupled processes of soil water and heat transport. Moreover, employing SHapley Additive exPlanations (SHAP) analysis, we identify the most influential factors for predicting heat flux in shallow soils. This research demonstrates that deep learning models are a viable and valuable tool for simulating soil hydrothermal processes in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Agroclimatology and Crop Production: Adapting to Climate Change)
Show Figures

Figure 1

37 pages, 55843 KB  
Article
A Data-Driven Framework for Flood Mitigation: Transformer-Based Damage Prediction and Reinforcement Learning for Reservoir Operations
by Soheyla Tofighi, Faruk Gurbuz, Ricardo Mantilla and Shaoping Xiao
Water 2025, 17(20), 3024; https://doi.org/10.3390/w17203024 - 21 Oct 2025
Viewed by 223
Abstract
Floods are among the most destructive natural hazards, with damages expected to intensify under climate change and socio-economic pressures. Effective reservoir operation remains a critical yet challenging strategy for mitigating downstream impacts, as operators must navigate nonlinear system dynamics, uncertain inflow forecasts, and [...] Read more.
Floods are among the most destructive natural hazards, with damages expected to intensify under climate change and socio-economic pressures. Effective reservoir operation remains a critical yet challenging strategy for mitigating downstream impacts, as operators must navigate nonlinear system dynamics, uncertain inflow forecasts, and trade-offs between competing objectives. This study proposes a novel end-to-end data-driven framework that integrates process-based hydraulic simulations, a Transformer-based surrogate model for flood damage prediction, and reinforcement learning (RL) for reservoir gate operation optimization. The framework is demonstrated using the Coralville Reservoir (Iowa, USA) and two major historical flood events (2008 and 2013). Hydraulic and impact simulations with HEC-RAS and HEC-FIA were used to generate training data, enabling the development of a Transformer model that accurately predicts time-varying flood damages. This surrogate is coupled with a Transformer-enhanced Deep Q-Network (DQN) to derive adaptive gate operation strategies. Results show that the RL-derived optimal policy reduces both peak and time-integrated damages compared to expert and zero-opening benchmarks, while maintaining smooth and feasible operations. Comparative analysis with a genetic algorithm (GA) highlights the robustness of the RL framework, particularly its ability to generalize across uncertain inflows and varying initial storage conditions. Importantly, the adaptive RL policy trained on perturbed synthetic inflows transferred effectively to the hydrologically distinct 2013 event, and fine-tuning achieved near-identical performance to the event-specific optimal policy. These findings highlight the capability of the proposed framework to provide adaptive, transferable, and computationally efficient tools for flood-resilient reservoir operation. Full article
Show Figures

Figure 1

16 pages, 1699 KB  
Technical Note
Synthetic Hydrograph Estimation for Ungauged Basins: Exploring the Role of Statistical Distributions
by Dan Ianculescu and Cristian Gabriel Anghel
Stats 2025, 8(4), 100; https://doi.org/10.3390/stats8040100 - 17 Oct 2025
Viewed by 479
Abstract
The use of probability distribution functions in deriving synthetic hydrographs has become a robust method for modeling the response of watersheds to precipitation events. This approach leverages statistical distributions to capture the temporal structure of runoff processes, providing a flexible framework for estimating [...] Read more.
The use of probability distribution functions in deriving synthetic hydrographs has become a robust method for modeling the response of watersheds to precipitation events. This approach leverages statistical distributions to capture the temporal structure of runoff processes, providing a flexible framework for estimating peak discharge, time to peak, and hydrograph shape. The present study explores the application of various probability distributions in constructing synthetic hydrographs. The research evaluates parameter estimation techniques, analyzing their influence on hydrograph accuracy. The results highlight the strengths and limitations of each distribution in capturing key hydrological characteristics, offering insights into the suitability of certain probability distribution functions under varying watershed conditions. The study concludes that the approach based on the Cadariu rational function enhances the adaptability and precision of synthetic hydrograph models, thereby supporting flood forecasting and watershed management. Full article
(This article belongs to the Special Issue Robust Statistics in Action II)
Show Figures

Figure 1

10 pages, 936 KB  
Proceeding Paper
Machine Learning Techniques for Water Resources in Morocco
by Rachid El Ansari, Mohammed El Bouhadioui, Hicham Boutracheh, Jamal Elhassan, Rissouni Youssef, Jamil Hicham, Aboutafail Moulay Othman and Aniss Moumen
Eng. Proc. 2025, 112(1), 12; https://doi.org/10.3390/engproc2025112012 - 14 Oct 2025
Viewed by 249
Abstract
Machine learning is emerging as a powerful tool across many scientific fields, including water resource management. In Morocco, growing challenges such as climate change, population growth, and high water demand—especially in agriculture—have led researchers to apply these techniques to water-related issues. This study [...] Read more.
Machine learning is emerging as a powerful tool across many scientific fields, including water resource management. In Morocco, growing challenges such as climate change, population growth, and high water demand—especially in agriculture—have led researchers to apply these techniques to water-related issues. This study reviews recent research conducted in Morocco, highlighting major trends, scientific contributions, and progress in machine learning applications for hydrological challenges. Following the PRISMA framework, a systematic search was carried out in the Scopus database, resulting in 103 relevant publications affiliated with Moroccan institutions. Using NVIVO and SPSS software, key themes were identified, including water quality, groundwater management, and groundwater level prediction. The most frequently used models include Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Artificial Neural Networks (ANN). This article presents a comparative analysis of nine highly cited Moroccan studies, focusing on application areas, models, parameters, and performance. Findings show a clear rise in AI-related hydrological research in Morocco, especially in water quality monitoring, smart irrigation optimization, and groundwater level forecasting. Full article
Show Figures

Figure 1

18 pages, 4431 KB  
Article
Simulation and Parameter Law of HEC-HMS for Multi-Source Flood in Arid Region Based on Three-Dimensional Classification Criteria: A Case Study of Manas River Basin
by Jiaming Tu and Changlu Qiao
Water 2025, 17(20), 2952; https://doi.org/10.3390/w17202952 - 14 Oct 2025
Viewed by 266
Abstract
(1) Background: Aiming at low-accuracy and unclear parameter differentiation of snowmelt ice melting, rainstorm and mixed flood simulation in Northwest Chinese arid inland river basins, this study aimed to improve complex flood simulation ability and support arid area flood prediction via HEC-HMS model [...] Read more.
(1) Background: Aiming at low-accuracy and unclear parameter differentiation of snowmelt ice melting, rainstorm and mixed flood simulation in Northwest Chinese arid inland river basins, this study aimed to improve complex flood simulation ability and support arid area flood prediction via HEC-HMS model optimization and classification standard innovation. (2) Method: A distributed HEC-HMS model was built using topography, soil and land use data. A “meteorology, hydrology, underlying surface” flood classification method was developed, and runoff generation-concentration parameters were calibrated via trial-and-error and Latin hypercube sampling for 36 historical floods (12 each type) to verify model applicability. (3) Result: The classification accuracy reached 92%. All three flood types met simulation standards: flood peak and runoff depth error ≤ ±20%, peak time error < 3 h, average NSE = 0.76 (snowmelt: 0.82, rainstorm: 0.76, mixed: 0.70). Parameters showed gradient differences: snowmelt (CN = 65, Ia = 20 mm, k = 0.3), rainstorm (CN = 80, Ia = 10 mm, k = 0.5), mixed (parameters in between). (4) Conclusions: After parameter optimization, the HEC-HMS model is suitable for multi-source flood simulation in arid areas, and the revealed parameter laws provide a quantitative basis for flood forecasting in similar basins. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

6 pages, 1156 KB  
Proceeding Paper
Summers in Greece—Climate Analysis
by Dimitrios Kampolis and Panagiotis Nastos
Environ. Earth Sci. Proc. 2025, 35(1), 70; https://doi.org/10.3390/eesp2025035070 - 14 Oct 2025
Viewed by 310
Abstract
Climate change is disrupting nature, human lives, and infrastructure worldwide. Its effects are becoming more evident in every region, with IPCC reports warning of a warming world and an increase in extreme weather events. The scale and severity of climate change’s impacts exceed [...] Read more.
Climate change is disrupting nature, human lives, and infrastructure worldwide. Its effects are becoming more evident in every region, with IPCC reports warning of a warming world and an increase in extreme weather events. The scale and severity of climate change’s impacts exceed earlier estimates, leading to widespread disruption of ecosystems and societies. It threatens food production, clean water availability, and ultimately, the health and well-being of billions. The primary driver of these changes is rising global temperatures, which significantly influence climate patterns and hydrological conditions. This study analyzes time series of summer air temperature (at 500 hPa and 850 hPa) and total precipitation from NOAA records across ten major administrative regions of Greece over a 35-year period (1989–2024). Using a machine learning approach, the analysis identifies climate trends and extreme weather patterns while providing climate forecasts to support water management improvements and public health initiatives. Full article
Show Figures

Figure 1

17 pages, 7770 KB  
Article
Long-Term Runoff Prediction Using Large-Scale Climatic Indices and Machine Learning Model in Wudongde and Three Gorges Reservoirs
by Feng Ma, Xiaoshan Sun and Zihang Han
Water 2025, 17(20), 2942; https://doi.org/10.3390/w17202942 - 12 Oct 2025
Viewed by 394
Abstract
Reliable long-term runoff prediction for Wudongde and Three Gorges reservoirs, two major reservoirs in the upper Yangtze River basin, is crucial for optimal operation of cascade reservoirs and hydropower generation planning. This study develops a data-driven model that integrates large-scale climate factors with [...] Read more.
Reliable long-term runoff prediction for Wudongde and Three Gorges reservoirs, two major reservoirs in the upper Yangtze River basin, is crucial for optimal operation of cascade reservoirs and hydropower generation planning. This study develops a data-driven model that integrates large-scale climate factors with a Gated Recurrent Unit (GRU) neural network to enhance runoff forecasting at lead times of 7–18 months. Key climate predictors were systematically selected using correlation analysis and stepwise regression before being fed into the GRU model. Evaluation results demonstrate that the proposed model can skillfully predict the variability and magnitude of reservoir inflow. For Wudongde Reservoir, the model achieved a mean correlation coefficient (CC) of 0.71 and Kling–Gupta Efficiency (KGE) of 0.57 during the training period, and values of 0.69 and 0.53 respectively during the testing period. For Three Gorges Reservoir, the CC was 0.67 (training) and 0.66 (testing), and the KGE was 0.52 and 0.49 respectively. The model exhibited robust forecasting capabilities across a range of lead times but showed distinct seasonal variations, with superior performance in summer and winter compared to transitional months (April and October). This framework provides a valuable tool for long-term runoff forecasting by effectively linking large-scale climate signals to local hydrological responses. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

36 pages, 16427 KB  
Article
Large Dam Flood Risk Scenario: A Multidisciplinary Approach Analysis for Reduction in Damage Effects
by Laura Turconi, Fabio Luino, Anna Roccati, Gilberto Zaina and Barbara Bono
GeoHazards 2025, 6(4), 65; https://doi.org/10.3390/geohazards6040065 - 11 Oct 2025
Viewed by 491
Abstract
Dam collapse is a catastrophic event involving an artificial reservoir usually filled with water for hydropower or irrigation purposes. Several cases of dam collapses have overwhelmed entire valleys, reconfiguring their geomorphology, redesigning their landscape, and causing several thousand casualties. These episodes led to [...] Read more.
Dam collapse is a catastrophic event involving an artificial reservoir usually filled with water for hydropower or irrigation purposes. Several cases of dam collapses have overwhelmed entire valleys, reconfiguring their geomorphology, redesigning their landscape, and causing several thousand casualties. These episodes led to more careful regulations and the activation of more effective monitoring and mitigation strategies. A fundamental tool in defining appropriate procedures for alert and risk scenarios is the Dam Emergency Plan (PED), an operational document that establishes the actions and procedures required to manage potential hazards (e.g., geo-hydrological and seismic risk). The aim of this study is to describe a reference methodology for identifying geo-hydrological criticalities based on historical and geomorphological data, applied to civil protection activities. A further objective is to provide a structured inventory of Italian reservoirs, assigning each a potential risk index based on an analytical approach considering several factors (age and construction methodology of the dam, morphological and environmental settings, anthropized environment, and exposed population). The approach identifies that the most significant change in risk over time is not only the dam itself but also the transformation of the territory. This methodology does not incorporate probabilistic forecasting of flood or climate change; instead, it objectively characterizes the exposed territory, offering insights into existing vulnerabilities on which to base effective mitigation strategies. Full article
Show Figures

Figure 1

21 pages, 11986 KB  
Article
Advancing Water Resources Management Through Reservoir Release Optimization: A Study Case in Piracicaba River Basin in Brazil
by Raphael Ferreira Perez, João Rafael Bergamaschi Tercini, Dário Hachisu Hossoda, Veronica Lima Gonsalez Rabioglio and Joaquin Ignacio Bonnecarrère
Hydrology 2025, 12(10), 269; https://doi.org/10.3390/hydrology12100269 - 11 Oct 2025
Viewed by 344
Abstract
Given significant water scarcity events in the recent past, water resources management in the Piracicaba River Basin, São Paulo, Brazil, has intensified the adoption of complex measures to meet the population’s water supply demands. This study presents a methodology to optimize reservoir water [...] Read more.
Given significant water scarcity events in the recent past, water resources management in the Piracicaba River Basin, São Paulo, Brazil, has intensified the adoption of complex measures to meet the population’s water supply demands. This study presents a methodology to optimize reservoir water release while adhering to restrictive rules, aiming to also conserve water. A rainfall–runoff model was utilized alongside a hydrological routing model, incorporating meteorological forecasts for simulation over ten consecutive years. The results demonstrated significant water savings when comparing the optimization scenario with the actual reservoir operation during the same period. The applied methodology reduced water releases up to 66% in comparison to the observed scenario. Overall, the study introduces tools to improve reservoir operation with computational techniques, enriching local water resources management, water security, and decision-making processes, ensuring water security for the São Paulo Metropolitan Region, the most populous region in Brazil. Full article
Show Figures

Figure 1

28 pages, 3979 KB  
Review
Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction
by David De León Pérez, Sergio Salazar-Galán and Félix Francés
Water 2025, 17(20), 2932; https://doi.org/10.3390/w17202932 - 11 Oct 2025
Viewed by 761
Abstract
This Scoping Review methodically synthesizes methodological trends in predictive uncertainty (PU) quantification for short-to-seasonal hydrological modeling-based forecasting. The analysis encompasses 572 studies from 2017 to 2024, with the objective of addressing the central question: What are the emerging trends, best practices, and gaps [...] Read more.
This Scoping Review methodically synthesizes methodological trends in predictive uncertainty (PU) quantification for short-to-seasonal hydrological modeling-based forecasting. The analysis encompasses 572 studies from 2017 to 2024, with the objective of addressing the central question: What are the emerging trends, best practices, and gaps in this field? In accordance with the six-stage protocol that is aligned with PRISMA-ScR standards, 92 studies were selected for in-depth evaluation. The results of the study indicate the presence of three predominant patterns: (1) exponential growth in the applications of machine learning and artificial intelligence; (2) geographic concentration in Chinese, North American, and European watersheds; and (3) persistent operational barriers, particularly in data-scarce tropical regions with limited flood and streamflow forecasting validation. Hybrid statistical-AI modeling frameworks have been shown to enhance forecast accuracy and PU quantification; however, these frameworks are encumbered by constraints in computational demands and interpretability, with inadequate validation for extreme events highlighting critical gaps. The review emphasizes standardized metrics, broader validation, and adaptive postprocessing to enhance applicability, advocating robust frameworks integrating meteorological input to hydrological output postprocessing for minimizing uncertainty chains and supporting water management. This study provides an updated field mapping, identifies knowledge gaps, and prioritizes research for the operational integration of advanced PU quantification. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

24 pages, 7261 KB  
Article
Coupling Rainfall Intensity and Satellite-Derived Soil Moisture for Time of Concentration Prediction: A Data-Driven Hydrological Approach to Enhance Climate Responsiveness
by Kasun Bandara, Kavini Pabasara, Luminda Gunawardhana, Janaka Bamunawala, Jeewanthi Sirisena and Lalith Rajapakse
Hydrology 2025, 12(10), 264; https://doi.org/10.3390/hydrology12100264 - 6 Oct 2025
Viewed by 576
Abstract
Accurately estimating the time of concentration (Tc) is critical for hydrological modelling, flood forecasting, and hydraulic infrastructure design. However, conventional methods often overlook the combined effects of rainfall intensity and antecedent soil moisture, thereby limiting their applicability under changing climates. This [...] Read more.
Accurately estimating the time of concentration (Tc) is critical for hydrological modelling, flood forecasting, and hydraulic infrastructure design. However, conventional methods often overlook the combined effects of rainfall intensity and antecedent soil moisture, thereby limiting their applicability under changing climates. This study presents a novel approach that integrates data-driven techniques with remote sensing data to improve Tc estimation. This method was successfully applied in the Kalu River Basin, Sri Lanka, demonstrating its performance in a tropical catchment. While an overall inverse relationship between rainfall intensity and Tc was observed, deviations in several events underscored the influence of initial soil moisture conditions on catchment response times. To address this, a modified kinematic wave-based equation incorporating both rainfall intensity and soil moisture was developed and calibrated, achieving high predictive accuracy (calibration: R2 = 0.97, RMSE = 1.1 h; validation: R2 = 0.96, RMSE = 0.01 h). A hydrological model was developed to assess the impacts of Tc uncertainties on design hydrographs. Results revealed that underestimating Tc led to substantially shorter lag times and significantly increased peak flows, highlighting the sensitivity of flood simulations to Tc variability. This study highlights the need for improved TC estimation and presents a robust, transferable methodology for enhancing hydrological predictions and climate-resilient infrastructure planning. Full article
Show Figures

Figure 1

26 pages, 6665 KB  
Article
Using Entity-Aware LSTM to Enhance Streamflow Predictions in Transboundary and Large Lake Basins
by Yunsu Park, Xiaofeng Liu, Yuyue Zhu and Yi Hong
Hydrology 2025, 12(10), 261; https://doi.org/10.3390/hydrology12100261 - 2 Oct 2025
Viewed by 571
Abstract
Hydrological simulation of large, transboundary water systems like the Laurentian Great Lakes remains challenging. Although deep learning has advanced hydrologic forecasting, prior efforts are fragmented, lacking a unified basin-wide model for daily streamflow. We address this gap by developing a single Entity-Aware Long [...] Read more.
Hydrological simulation of large, transboundary water systems like the Laurentian Great Lakes remains challenging. Although deep learning has advanced hydrologic forecasting, prior efforts are fragmented, lacking a unified basin-wide model for daily streamflow. We address this gap by developing a single Entity-Aware Long Short-Term Memory (EA-LSTM) model, an architecture that distinctly processes static catchment attributes and dynamic meteorological forcings, trained without basin-specific calibration. We compile a cross-border dataset integrating daily meteorological forcings, static catchment attributes, and observed streamflow for 975 sub-basins across the United States and Canada (1980–2023). With a temporal training/testing split, the unified EA-LSTM attains a median Nash–Sutcliffe Efficiency (NSE) of 0.685 and a median Kling–Gupta Efficiency (KGE) of 0.678 in validation, substantially exceeding a standard LSTM (median NSE 0.567, KGE 0.555) and the operational NOAA National Water Model (median NSE 0.209, KGE 0.440). Although skill is reduced in the smallest basins (median NSE 0.554) and during high-flow events (median PBIAS −29.6%), the performance is robust across diverse hydroclimatic settings. These results demonstrate that a single, calibration-free deep learning model can provide accurate, scalable streamflow prediction across an international basin, offering a practical path toward unified forecasting for the Great Lakes and a transferable framework for other large, data-sparse watersheds. Full article
Show Figures

Figure 1

Back to TopTop