Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction
Abstract
1. Introduction
2. Methodology
2.1. Literature Search Strategy
- Uncertainty components: uncertainty analysis, forecast uncertainty, error analysis
- Hydrological focus: hydrological forecasting, streamflow prediction, ensemble forecasts
- Methodological scope: probabilistic forecasts, machine learning, Bayesian frameworks
2.2. Inclusion/Exclusion Criteria
2.2.1. Inclusion Criteria
- Forecasting from days to seasonal;
- Research focused on predictive uncertainty in hydrological or meteorological forecasting;
- Research that identifies Uncertainty sources;
- Quantitative methods;
- Models with multiple realizations from different inputs, such as ensemble members;
- Application of Statistical, Probabilistic, Stochastic, or ML/AI methodologies that include analyzing or evaluating, or reducing the predictive uncertainty;
- Postprocessing methodologies;
- Hydrological variables (e.g., streamflow, precipitation, temperature…);
- Research with performance probabilistic metrics;
- Error models;
- Research with clear data sources or access to validating.
2.2.2. Exclusion Criteria
- Long-term climate projections (>1 year horizon);
- Real-time forecast (sub-daily);
- Parametric Uncertainty;
- Research that does not identify uncertainty sources;
- Qualitative or descriptive methods;
- Deterministic simulation models;
- Non-hydrological variables or domains (water quality, sediment without nexus with forecast, hydropower engineering…);
- Research without (or not standardized) quantitative validation (performance metrics);
- Research without data sources or access to validating.
2.3. Documents Referenced by Colleagues or Other Researchers
2.4. Document Selection
3. Results
3.1. Referent Methodologies Prior to 2017
3.1.1. Bayesian Forecasting System
3.1.2. Bayesian Model Averaging
3.1.3. Model Conditional Processor
3.1.4. Generalized Likelihood Uncertainty Estimation
3.2. Selected Bibliography from Search Strategies
3.3. Prevalent Methodologies Found
4. Discussion
4.1. Statistical Methods
4.2. AI-Driven Approaches
4.3. AI-Driven Plus Statistical Frameworks
4.4. Final Remarks
4.5. Limitations
4.6. On Future Research Directions
- Choosing the primary source of uncertainty remains a challenge. Therefore, it is necessary to develop clear guidelines for selecting an ideal approach, depending on the situation.
- Postprocessing techniques have great potential for refining forecasts; however, their large-scale operational implementation remains limited. Further studies are required for the medium- and long-term horizons.
- Most advances have concentrated on forecasting streamflow and precipitation. However, there is a lack of research on reducing uncertainty in the forecasts of other key hydrological variables, such as water quality, soil moisture, and water tables.
- The reviewed studies revealed the development of predictors based on remotely sensed data. Integrating sources, such as radar, satellites, and global climate indices, is an underexploited opportunity to reduce uncertainty.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeChant, C.M.; Moradkhani, H. Toward a reliable prediction of seasonal forecast uncertainty: Addressing model and initial condition uncertainty with ensemble data assimilation and Sequential Bayesian Combination. J. Hydrol. 2014, 519, 2967–2977. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Efstratiadis, A.; Georgakakos, K.P. Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches. J. Hydrometeorol. 2007, 8, 261–281. [Google Scholar] [CrossRef]
- Papacharalampous, G.; Tyralis, H. A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting. Front. Water 2022, 4, 961954. [Google Scholar] [CrossRef]
- Ghobadi, F.; Kang, D. Application of Machine Learning in Water Resources Management: A Systematic Literature Review. Water 2023, 15, 620. [Google Scholar] [CrossRef]
- Han, S.; Coulibaly, P. Bayesian flood forecasting methods: A review. J. Hydrol. 2017, 551, 340–351. [Google Scholar] [CrossRef]
- Troin, M.; Arsenault, R.; Wood, A.W.; Brissette, F.; Martel, J.L. Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. Water Resour. Res. 2021, 57, e2020WR028392. [Google Scholar] [CrossRef]
- McMillan, H.K.; Westerberg, I.K.; Krueger, T. Hydrological data uncertainty and its implications. Wiley Interdiscip. Rev. Water 2018, 5, e1319. [Google Scholar] [CrossRef]
- De León Pérez, D.; Acosta Vega, R.; Salazar Galán, S.; Aranda, J.Á.; Francés García, F. Toward Systematic Literature Reviews in Hydrological Sciences. Water 2024, 16, 436. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. Br. Med. J. 2021, 372, n160. [Google Scholar] [CrossRef]
- Elsevier B.V. Scopus® Scopus Preview. Available online: https://www.scopus.com (accessed on 7 January 2025).
- Clarivate Analytics. Web Of Science®. Available online: https://www.webofscience.com/wos (accessed on 7 January 2025).
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; van Eck, N.J.; Waltman, L. Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quant. Sci. Stud. 2021, 2, 20–41. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Centre for Science and Technology Studies VOSviewer 1.6.20. Available online: https://www.vosviewer.com/ (accessed on 31 January 2025).
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Soo, A. Measuring Observer Agreement on Categorical Data. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2015. [Google Scholar]
- Krzysztofowicz, R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour. Res. 1999, 35, 2739–2750. [Google Scholar] [CrossRef]
- Krzysztofowicz, R. Bayesian Models of Forecasted Time Series. J. Am. Water Resour. Assoc. 1985, 21, 805–814. [Google Scholar] [CrossRef]
- Winkler, R.L. A Bayesian Approach to Nonstationary Processes; Technical Report; Stanford University: Stanford, CA, USA, 1975; OLK_NSF_94, 1–32. [Google Scholar]
- Kelly, K.S.; Krzysztofowicz, R. Precipitation uncertainty processor for probabilistic river stage forecasting. Water Resour. Res. 2000, 36, 2643–2653. [Google Scholar] [CrossRef]
- Krzysztofowicz, R.; Kelly, K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour. Res. 2000, 36, 3265–3277. [Google Scholar] [CrossRef]
- Krzysztofowicz, R. Integrator of uncertainties for probabilistic river stage forecasting: Precipitation-dependent model. J. Hydrol. 2001, 249, 69–85. [Google Scholar] [CrossRef]
- Krzysztofowicz, R.; Herr, H.D. Hydrologic uncertainty processor for probabilistic river stage forecasting: Precipitation-dependent model. J. Hydrol. 2001, 241, 46–48. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Am. Meteorol. Soc. 2005, 133, 1155–1174. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes Factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Raftery, A.E.; Madigan, D.; Hoeting, J.A. Bayesian Model Averaging for Linear Regression Models. J. Am. Stat. Assoc. 1997, 92, 179–191. [Google Scholar] [CrossRef]
- Raftery, A.E. Bayesian Model Selection in Structural Equation Models. Sociol. Methodol. 1995, 25, 111–163. [Google Scholar] [CrossRef]
- Hoeting Jennifer, A.; Madigan, D.; Raftery Adrian, E.; Volinsky Chris, T. Bayesian Model Averaging: A Tutorial. Stat. Sci. 1999, 14, 382–417. [Google Scholar] [CrossRef]
- Vrugt, J.A.; Robinson, B.A. Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res. 2007, 43, W01411. [Google Scholar] [CrossRef]
- Fragoso, T.M.; Neto, F.L. Bayesian model averaging: A systematic review and conceptual classification. arXiv 2015. [Google Scholar] [CrossRef]
- Fragoso, T.M.; Bertoli, W.; Louzada, F. Bayesian Model Averaging: A Systematic Review and Conceptual Classification. Int. Stat. Rev. 2018, 86, 1–28. [Google Scholar] [CrossRef]
- Todini, E. A model conditional processor to assess predictive uncertainty in flood forecasting. Int. J. River Basin Manag. 2008, 6, 123–137. [Google Scholar] [CrossRef]
- Van der Waerden, B.L. Order tests for the two-sample problem and their power. Indag. Math. Proc. 1952, 55, 453–458. [Google Scholar] [CrossRef]
- Van der Waerden, B.L. Order Tests for the Two-Sample Problem (second communication). Indag. Math. Proc. 1953, 56, 303–310. [Google Scholar] [CrossRef]
- Van der Waerden, B.L. Order Tests for the Two-Sample Problem (third communication). Indag. Math. Proc. 1953, 56, 311–316. [Google Scholar] [CrossRef]
- Romero-Cuellar, J.; Abbruzzo, A.; Adelfio, G.; Francés, F. Hydrological post-processing based on approximate Bayesian computation (ABC). Stoch. Environ. Res. Risk Assess. 2019, 33, 1361–1373. [Google Scholar] [CrossRef]
- Berthet, L.; Bourgin, F.; Perrin, C.; Viatgé, J.; Marty, R.; Piotte, O. A crash-testing framework for predictive uncertainty assessment when forecasting high flows in an extrapolation context. Hydrol. Earth Syst. Sci. 2020, 24, 2017–2041. [Google Scholar] [CrossRef]
- Coccia, G.; Todini, E. Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol. Earth Syst. Sci. 2011, 15, 3253–3274. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Beven, K. Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Todini, E.; Mantovan, P. Comment on: “On undermining the science?” by Keith Beven. Hydrol. Process. 2007, 21, 1633–1638. [Google Scholar] [CrossRef]
- Mantovan, P.; Todini, E. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. J. Hydrol. 2006, 330, 368–381. [Google Scholar] [CrossRef]
- Beven, K.J.; Smith, P.J.; Freer, J.E. So just why would a modeller choose to be incoherent? J. Hydrol. 2008, 354, 15–32. [Google Scholar] [CrossRef]
- Beven, K. Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrol. Sci. J. 2016, 61, 1652–1665. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. GLUE: 20 years on. Hydrol. Process. 2014, 28, 5897–5918. [Google Scholar] [CrossRef]
- Wen, J.; Wan, C.; Ye, Q.; Yan, J.; Li, W. Disaster Risk Reduction, Climate Change Adaptation and Their Linkages with Sustainable Development over the Past 30 Years: A Review. Int. J. Disaster Risk Sci. 2023, 14, 1–13. [Google Scholar] [CrossRef]
- Beevers, L.; Popescu, I.; Pregnolato, M.; Liu, Y.; Wright, N. Identifying hotspots of hydro-hazards under global change: A worldwide review. Front. Water 2022, 4, 879536. [Google Scholar] [CrossRef]
- Fox, S.; Agyemang, F.; Hawker, L.; Neal, J. Integrating social vulnerability into high-resolution global flood risk mapping. Nat. Commun. 2024, 15, 3155. [Google Scholar] [CrossRef]
- Han, S.; Coulibaly, P. Probabilistic flood forecasting using hydrologic uncertainty processor with ensemble weather forecasts. J. Hydrometeorol. 2019, 20, 1379–1398. [Google Scholar] [CrossRef]
- Barbetta, S.; Sahoo, B.; Bonaccorsi, B.; Nanda, T.; Chatterjee, C.; Moramarco, T.; Todini, E. Addressing effective real-time forecasting inflows to dams through predictive uncertainty estimate. J. Hydrol. 2023, 620, 129512. [Google Scholar] [CrossRef]
- Acharya, S.C.; Babel, M.S.; Madsen, H.; Sisomphon, P.; Shrestha, S. Comparison of different quantile regression methods to estimate predictive hydrological uncertainty in the Upper Chao Phraya River Basin, Thailand. J. Flood Risk Manag. 2020, 13, e12585. [Google Scholar] [CrossRef]
- Bai, H.; Li, G.; Liu, C.; Li, B.; Zhang, Z.; Qin, H. Hydrological probabilistic forecasting based on deep learning and Bayesian optimization algorithm. Hydrol. Res. 2021, 52, 927–943. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Valdés, J.B.; Wi, S.; Serrat-Capdevila, A.; Roy, T. Improving operational short-to medium-range (Sr2mr) streamflow forecasts in the upper zambezi basin and its sub-basins using variational ensemble forecasting. Hydrology 2021, 8, 188. [Google Scholar] [CrossRef]
- Xu, J.; Anctil, F.; Boucher, M.A. Exploring hydrologic post-processing of ensemble streamflow forecasts based on affine kernel dressing and non-dominated sorting genetic algorithm II. Hydrol. Earth Syst. Sci. 2022, 26, 1001–1017. [Google Scholar] [CrossRef]
- Zhang, X.; Song, S.; Guo, T. Nonlinear Segmental Runoff Ensemble Prediction Model Using BMA. Water Resour. Manag. 2024, 38, 3429–3446. [Google Scholar] [CrossRef]
- Zhong, Y.; Guo, S.; Ba, H.; Xiong, F.; Chang, F.J.; Lin, K. Evaluation of the BMA probabilistic inflow forecasts using TIGGE numeric precipitation predictions based on artificial neural network. Hydrol. Res. 2018, 49, 1417–1433. [Google Scholar] [CrossRef]
- Zhou, J.; Feng, K.; Liu, Y.; Zhou, C.; He, F.; Liu, G.; He, Z. A Hydrologic Uncertainty Processor Using Linear Derivation in the Normal Quantile Transform Space. Water Resour. Manag. 2020, 34, 3649–3665. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. HUP-BMA: An Integration of Hydrologic Uncertainty Processor and Bayesian Model Averaging for Streamflow Forecasting. Water Resour. Res. 2021, 57, e2020WR029433. [Google Scholar] [CrossRef]
- Cui, Z.; Guo, S.; Chen, H.; Liu, D.; Zhou, Y.; Xu, C.Y. Quantifying and reducing flood forecast uncertainty by the CHUP-BMA method. Hydrol. Earth Syst. Sci. 2024, 28, 2809–2829. [Google Scholar] [CrossRef]
- Barbetta, S.; Coccia, G.; Moramarco, T.; Brocca, L.; Todini, E. The multi temporal/multi-model approach to predictive uncertainty assessment in real-time flood forecasting. J. Hydrol. 2017, 551, 555–576. [Google Scholar] [CrossRef]
- Anele, A.O.; Todini, E.; Hamam, Y.; Abu-Mahfouz, A.M. Predictive uncertainty estimation in water demand forecasting using the model conditional processor. Water 2018, 10, 475. [Google Scholar] [CrossRef]
- Romero-Cuellar, J.; Gastulo-Tapia, C.J.; Hernández-López, M.R.; Sierra, C.P.; Francés, F. Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters. Water 2022, 14, 1261. [Google Scholar] [CrossRef]
- Beneyto, C.; Vignes, G.; Aranda, J.Á.; Francés, F. Sample Uncertainty Analysis of Daily Flood Quantiles Using a Weather Generator. Water 2023, 15, 3489. [Google Scholar] [CrossRef]
- Ghobadi, F.; Kang, D. Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study. Water 2022, 14, 3672. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; Sudheer, K.P. Methods used for quantifying the prediction uncertainty of artificial neural network based hydrologic models. Stoch. Environ. Res. Risk Assess. 2017, 31, 1659–1670. [Google Scholar] [CrossRef]
- Fan, M.; Liu, S.; Lu, D.; Gangrade, S.; Kao, S.C. Explainable machine learning model for multi-step forecasting of reservoir inflow with uncertainty quantification. Environ. Model. Softw. 2023, 170, 105849. [Google Scholar] [CrossRef]
- Sun, N.; Zhang, S.; Peng, T.; Zhang, N.; Zhou, J.; Zhang, H. Multi-Variables-Driven Model Based on Random Forest and Gaussian Process Regression for Monthly Streamflow Forecasting. Water 2022, 14, 1828. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Zhang, J.; Han, H.; Shu, Z. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Sci. Total Environ. 2024, 906, 167718. [Google Scholar] [CrossRef]
- Cui, Z.; Guo, S.; Zhou, Y.; Wang, J. Exploration of dual-attention mechanism-based deep learning for multi-step-ahead flood probabilistic forecasting. J. Hydrol. 2023, 622, 129688. [Google Scholar] [CrossRef]
- Huang, Z.; Schepen, A.; Bennett, J.C.; Robertson, D.E.; Zhao, T.; Im, E.; Wang, Q.J. A Distributional Regression Network With Data Transformation for Calibrating Rainfall Forecasts. J. Geophys. Res. Mach. Learn. Comput. 2025, 2, e2025JH000635. [Google Scholar] [CrossRef]
- Uttarwar, S.B.; Lerch, S.; Avesani, D.; Majone, B. Performance assessment of neural network models for seasonal weather forecast postprocessing in the Alpine region. Adv. Water Resour. 2025, 204, 105061. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Li, W.; Duan, Q.; Miao, C.; Ye, A.; Gong, W.; Di, Z. A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdiscip. Rev. Water 2017, 4, e1246. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; She, D.; Chen, J.; Xia, J.; Chen, X.; Zhao, T. Postprocessing of hydrometeorological ensemble forecasts based on multisource precipitation in Ganjiang River basin, China. J. Hydrol. 2022, 605, 127323. [Google Scholar] [CrossRef]
- Biondi, D.; Todini, E. Comparing Hydrological Postprocessors Including Ensemble Predictions Into Full Predictive Probability Distribution of Streamflow. Water Resour. Res. 2018, 54, 9860–9882. [Google Scholar] [CrossRef]
- Panchanathan, A.; Ahrari, A.; Ghag, K.S.; Mustafa, S.; Haghighi, A.T.; Kløve, B.; Oussalah, M. An overview of approaches for reducing uncertainties in hydrological forecasting: Progress and challenges. Earth Sci. Rev. 2024, 258, 104956. [Google Scholar] [CrossRef]
- Sharma, S.; Raj Ghimire, G.; Siddique, R. Machine learning for postprocessing ensemble streamflow forecasts. J. Hydroinformatics 2023, 25, 126–139. [Google Scholar] [CrossRef]
- Esha, R.I.; Imteaz, M.A. Seasonal streamflow prediction using large scale climate drivers for NSW region. In Proceedings of the 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3–8 December 2017; pp. 1593–1599. [Google Scholar]
- Liu, L.; Xie, J.; Gu, H.; Xu, Y.P. Estimating the added value of GRACE total water storage and uncertainty quantification in seasonal streamflow forecasting. Hydrol. Sci. J. 2022, 67, 304–318. [Google Scholar] [CrossRef]
- The National Aeronautics and Space Administration GRACE—NASA Science. Available online: https://science.nasa.gov/mission/grace (accessed on 28 September 2025).
- Mo, R.; Xu, B.; Zhong, P.A.; Zhu, F.; Huang, X.; Liu, W.; Xu, S.; Wang, G.; Zhang, J. Dynamic long-term streamflow probabilistic forecasting model for a multisite system considering real-time forecast updating through spatio-temporal dependent error correction. J. Hydrol. 2021, 601, 126666. [Google Scholar] [CrossRef]
- Patel, A.; Yadav, S.M. Improving the reservoir inflow prediction using TIGGE ensemble data and hydrological model for Dharoi Dam, India. Water Supply 2023, 23, 4489–4509. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, J.; Fang, W.; Wang, Y. An ensemble flow forecast method based on autoregressive model and hydrological uncertainty processer. Water 2020, 12, 3138. [Google Scholar] [CrossRef]
- Bennett, J.C.; Wang, Q.J.; Robertson, D.E.; Schepen, A.; Li, M.; Michael, K. Assessment of an ensemble seasonal streamflow forecasting system for Australia. Hydrol. Earth Syst. Sci. 2017, 21, 6007–6030. [Google Scholar] [CrossRef]
- Hapuarachchi, H.A.P.; Bari, M.A.; Kabir, A.; Hasan, M.M.; Woldemeskel, F.M.; Gamage, N.; Sunter, P.D.; Zhang, X.S.; Robertson, D.E.; Bennett, J.C.; et al. Development of a national 7-day ensemble streamflow forecasting service for Australia. Hydrol. Earth Syst. Sci. 2022, 26, 4801–4821. [Google Scholar] [CrossRef]
- Bennett, J.C.; Robertson, D.E.; Wang, Q.J.; Li, M.; Perraud, J.M. Propagating reliable estimates of hydrological forecast uncertainty to many lead times. J. Hydrol. 2021, 603, 126798. [Google Scholar] [CrossRef]
- Ba, H.; Guo, S.; Zhong, Y.; He, S.; Wu, X. Quantification of the forecast uncertainty using conditional probability and updating models. Hydrol. Res. 2019, 50, 1751–1771. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Montanari, A. Bluecat: A Local Uncertainty Estimator for Deterministic Simulations and Predictions. Water Resour. Res. 2022, 58, e2021WR031215. [Google Scholar] [CrossRef]
- Yadav, R.; Yadav, S.M. Review on Statistical Post-processing of Ensemble Forecasts. In Innovation in Smart and Sustainable Infraestructure, ISSI 2022; Patel, D., Kim, B., Han, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 469–476. [Google Scholar] [CrossRef]
- Valdez, E.S.; Anctil, F.; Ramos, M.H. Choosing between post-processing precipitation forecasts or chaining several uncertainty quantification tools in hydrological forecasting systems. Hydrol. Earth Syst. Sci. 2022, 26, 197–220. [Google Scholar] [CrossRef]
- Matthews, G.; Barnard, C.; Cloke, H.; Dance, S.L.; Jurlina, T.; Mazzetti, C.; Prudhomme, C. Evaluating the impact of post-processing medium-range ensemble streamflow forecasts from the European Flood Awareness System. Hydrol. Earth Syst. Sci. 2022, 26, 2939–2968. [Google Scholar] [CrossRef]
- Rao, C.R. R.A. Fisher: The Founder of Modern Statistics. Stat. Sci. 1992, 7, 34–48. [Google Scholar] [CrossRef]
- Tyralis, H.; Koutsoyiannis, D. On the prediction of persistent processes using the output of deterministic models. Hydrol. Sci. J. 2017, 62, 2083–2102. [Google Scholar] [CrossRef]
- Reynolds, D. Gaussian Mixture Models. In Encyclopedia of Biometrics; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Li, Y.; Hu, Y.; Li, B.; Wang, J. A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework. Theor. Appl. Clim. 2018, 133, 137–149. [Google Scholar] [CrossRef]
- Li, W.; Zhou, J.; Sun, H.; Feng, K.; Zhang, H.; Tayyab, M. Impact of Distribution Type in Bayes Probability Flood Forecasting. Water Resour. Manag. 2017, 31, 961–977. [Google Scholar] [CrossRef]
- Tavare, S.; Balding, D.J.; Griffiths, R.C.; Donneuyst, P. Inferring Coalescence Times From DNA Sequence Data. Genetics 1997, 145, 505–518. [Google Scholar] [CrossRef]
- Xiang, Y.; Peng, T.; Gao, Q.; Shen, T.; Qi, H. Evaluation of TIGGE Precipitation Forecast and Its Applicability in Streamflow Predictions over a Mountain River Basin, China. Water 2022, 14, 2432. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, Y.; Zou, X.; Peng, T.; Yin, Z.; Ren, Y. Post-Processing Ensemble Precipitation Forecasts and Their Applications in Summer Streamflow Prediction over a Mountain River Basin. Atmosphere 2023, 14, 1645. [Google Scholar] [CrossRef]
- Li, X.Q.; Chen, J.; Xu, C.Y.; Li, L.; Chen, H. Performance of Post-Processed Methods in Hydrological Predictions Evaluated by Deterministic and Probabilistic Criteria. Water Resour. Manag. 2019, 33, 3289–3302. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J.; Li, Z.; Shen, X.; Wen, J.; Wang, H.; Wu, C. A New Hybrid Framework for Error Correction and Uncertainty Analysis of Precipitation Forecasts with Combined Postprocessors. Water 2022, 14, 3072. [Google Scholar] [CrossRef]
- Cai, C.; Wang, J.; Li, Z. Assessment and modelling of uncertainty in precipitation forecasts from TIGGE using fuzzy probability and Bayesian theory. J. Hydrol. 2019, 577, 123995. [Google Scholar] [CrossRef]
- Jha, S.K.; Shrestha, D.L.; Stadnyk, T.A.; Coulibaly, P. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment. Hydrol. Earth Syst. Sci. 2018, 22, 1957–1969. [Google Scholar] [CrossRef]
- Huang, H.; Liang, Z.; Li, B.; Wang, D.; Hu, Y.; Li, Y. Combination of Multiple Data-Driven Models for Long-Term Monthly Runoff Predictions Based on Bayesian Model Averaging. Water Resour. Manag. 2019, 33, 3321–3338. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Studley, D. Algebra of Neural Nets. Math. Mag. 1949, 22, 125–128. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, L.; Lin, K.; Cai, H. A hybrid bayesian vine model for water level prediction. Environ. Model. Softw. 2021, 142, 105075. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Bai, S.; Kolter, J.Z.; Koltun, V. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv 2018, arXiv:1803.01271. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Introducing entropy-based Bayesian model averaging for streamflow forecast. J. Hydrol. 2020, 591, 125577. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Assessing Entropy-Based Bayesian Model Averaging Method for Probabilistic Precipitation Forecasting. J. Hydrometeorol. 2022, 23, 421–440. [Google Scholar] [CrossRef]
- Bellier, J.; Bontron, G.; Zin, I. Selecting components in a probabilistic hydrological forecasting chain: The benefits of an integrated evaluation. LHB Hydrosci. J. 2021, 107, 1938352. [Google Scholar] [CrossRef]
- Darbandsari, P.; Coulibaly, P. Inter-comparison of different bayesian model averaging modifications in streamflow simulation. Water 2019, 11, 1707. [Google Scholar] [CrossRef]
- Li, B.; He, Y.; Ren, L. Multisource hydrologic modeling uncertainty analysis using the IBUNE framework in a humid catchment. Stoch. Environ. Res. Risk Assess. 2018, 32, 37–50. [Google Scholar] [CrossRef]
- Shu, Z.; Zhang, J.; Wang, L.; Jin, J.; Cui, N.; Wang, G.; Sun, Z.; Liu, Y.; Bao, Z.; Liu, C. Evaluation of the Impact of Multi-Source Uncertainties on Meteorological and Hydrological Ensemble Forecasting. Engineering 2023, 24, 212–228. [Google Scholar] [CrossRef]
- Xu, J.; Anctil, F.; Boucher, M.A. Hydrological post-processing of streamflow forecasts issued from multimodel ensemble prediction systems. J. Hydrol. 2019, 578, 124002. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Li, X.; Chen, H.; Xie, P.; Li, W. Combining Postprocessed Ensemble Weather Forecasts and Multiple Hydrological Models for Ensemble Streamflow Predictions. J. Hydrol. Eng. 2020, 25, 04019060. [Google Scholar] [CrossRef]
- Shen, Q.; Mo, L.; Liu, G.; Wang, Y.; Zhang, Y. Interpretable probabilistic modeling method for runoff prediction: A case study in Yangtze River basin, China. J. Hydrol. Reg. Stud. 2024, 52, 101684. [Google Scholar] [CrossRef]
- Jahangir, M.S.; Quilty, J. Generative deep learning for probabilistic streamflow forecasting: Conditional variational auto-encoder. J. Hydrol. 2024, 629, 130498. [Google Scholar] [CrossRef]
- Hu, W.; Ghazvinian, M.; Chapman, W.E.; Sengupta, A.; Ralph, F.M.; Luca, A.; Monache, D. Deep Learning Forecast Uncertainty for Precipitation over the Western United States. Mon. Weather. Rev. 2023, 151, 1367–1385. [Google Scholar] [CrossRef]
- Bogner, K.; Chang, A.Y.Y.; Bernhard, L.; Zappa, M.; Monhart, S.; Spirig, C. Tercile Forecasts for Extending the Horizon of Skillful Hydrological Predictions. J. Hydrometeorol. 2022, 23, 521–539. [Google Scholar] [CrossRef]
- Siqueira, V.A.; Weerts, A.; Klein, B.; Fan, F.M.; de Paiva, R.C.D.; Collischonn, W. Postprocessing continental-scale, medium-range ensemble streamflow forecasts in South America using Ensemble Model Output Statistics and Ensemble Copula Coupling. J. Hydrol. 2021, 600, 126520. [Google Scholar] [CrossRef]
- McInerney, D.; Thyer, M.; Kavetski, D.; Laugesen, R.; Woldemeskel, F.; Tuteja, N.; Kuczera, G. Improving sub-seasonal streamflow forecasts across flow regimes. In Proceedings of the 24th International Congress on Modelling and Simulation (Invited Paper), Sydney, Australia, 5–10 December 2021; pp. 616–622. [Google Scholar]
- He, S.; Guo, S.; Liu, Z.; Yin, J.; Chen, K.; Wu, X. Uncertainty analysis of hydrological multi-model ensembles based on CBP-BMA method. Hydrol. Res. 2018, 49, 1636–1651. [Google Scholar] [CrossRef]
- Wang, S.; Gong, J.; Gao, H.; Liu, W.; Feng, Z. Gaussian Process Regression and Cooperation Search Algorithm for Forecasting Nonstationary Runoff Time Series. Water 2023, 15, 2111. [Google Scholar] [CrossRef]
- Kopsiaftis, G.; Protopapadakis, E.; Voulodimos, A.; Doulamis, N.; Mantoglou, A. Gaussian Process Regression Tuned by Bayesian Optimization for Seawater Intrusion Prediction. Comput. Intell. Neurosci. 2019, 2019, 2859429. [Google Scholar] [CrossRef]
- Ghasemi, P.; Karbasi, M.; Zamani Nouri, A.; Sarai Tabrizi, M.; Azamathulla, H.M. Application of Gaussian process regression to forecast multi-step ahead SPEI drought index. Alex. Eng. J. 2021, 60, 5375–5392. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas, 2nd ed.; Bickel, P., Diggle, P., Fienberg, S., Gather, U., Olkin, I., Zeger, S., Eds.; Springer: New York, NY, USA, 2006; ISBN 978-0387-28659-4. [Google Scholar]
- Boldea, O.; Magnus, J.R. Maximum likelihood estimation of the multivariate normal mixture model. J. Am. Stat. Assoc. 2009, 104, 1539–1549. [Google Scholar] [CrossRef]
- McLachlan, G.J.; Lee, S.X.; Rathnayake, S.I. Annual Review of Statistics and Its Application Finite Mixture Models. Annu. Rev. Stat. Appl. 2024, 6, 355–378. [Google Scholar] [CrossRef]
- Evensen, G. Data Assimilation; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-38300-0. [Google Scholar]
- Huang, C.; Newman, A.J.; Clark, M.P.; Wood, A.W.; Zheng, X. Evaluation of snow data assimilation using the ensemble Kalman filter for seasonal streamflow prediction in the western United States. Hydrol. Earth Syst. Sci. 2017, 21, 635–650. [Google Scholar] [CrossRef]
- van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A simple introduction to Markov Chain Monte–Carlo sampling. Psychon. Bull. Rev. 2018, 25, 143–154. [Google Scholar] [CrossRef]
- Marjoram, P.; Molitor, J.; Plagnol, V.; Tavaré, S. Markov chain Monte Carlo without likelihoods. Proc. Natl. Acad. Sci. USA 2003, 100, 15324–15328. [Google Scholar] [CrossRef]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Ulam, S.M. Los Alamos National Laboratory Stanislaw Ulam 1909–1984; Los Alamos National Laboratory, Ed.; Los Alamos science; Los Alamos National Laboratory: Los Alamos, NM, USA, 1987. [Google Scholar]
- Billingsley, P. Statistical Methods in Markov Chains. Ann. Math. Stat. 1961, 32, 12–40. [Google Scholar] [CrossRef]
- Vrugt, J.A.; ter Braak, C.J.F.; Diks, C.G.H.; Schoups, G. Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications. Adv. Water Resour. 2013, 51, 457–478. [Google Scholar] [CrossRef]
- Woldemeskel, F.; McInerney, D.; Lerat, J.; Thyer, M.; Kavetski, D.; Shin, D.; Tuteja, N.; Kuczera, G. Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrol. Earth Syst. Sci. 2018, 22, 6257–6278. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Hernández-López, M.R.; Francés, F. Bayesian joint inference of hydrological and generalized error models with the enforcement of Total Laws. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–40, preprint. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Singh, V.P.; Shi, P. River flow modelling: Comparison of performance and evaluation of uncertainty using data-driven models and conceptual hydrological model. Stoch. Environ. Res. Risk Assess. 2018, 32, 2667–2682. [Google Scholar] [CrossRef]
- Onyutha, C. Randomized block quasi-Monte Carlo sampling for generalized likelihood uncertainty estimation. Hydrol. Res. 2024, 55, 319–335. [Google Scholar] [CrossRef]
- Waheed, S.Q.; Alobaidy, M.N.; Grigg, N.S. Forcing Data Organization for the Lesser Zab River Basin in Iraq to Build a Coherent Hydrological Model. J. Hydrol. Eng. 2022, 27, 05022019. [Google Scholar] [CrossRef]
- Li, B.; Liang, Z.; He, Y.; Hu, L.; Zhao, W.; Acharya, K. Comparison of parameter uncertainty analysis techniques for a TOPMODEL application. Stoch. Environ. Res. Risk Assess. 2017, 31, 1045–1059. [Google Scholar] [CrossRef]
- Tongal, H.; Booij, M.J. Quantification of parametric uncertainty of ANN models with GLUE method for different streamflow dynamics. Stoch. Environ. Res. Risk Assess. 2017, 31, 993–1010. [Google Scholar] [CrossRef]
- Hamman, J.J.; Nijssen, B.; Bohn, T.J.; Gergel, D.R.; Mao, Y. The variable infiltration capacity model version 5 (VIC-5): Infrastructure improvements for new applications and reproducibility. Geosci. Model Dev. 2018, 11, 3481–3496. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 415–429. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, T.; Xu, W.; Cai, H.; Wang, J.; Zhang, Y.; Liu, Z.; Tian, Y.; Yan, D.; Chen, X. A seven-parameter Bernoulli-Gamma-Gaussian model to calibrate subseasonal to seasonal precipitation forecasts. J. Hydrol. 2022, 610, 127896. [Google Scholar] [CrossRef]
- Hamitouche, M.; Molina, J.L. A Review of AI Methods for the Prediction of High-Flow Extremal Hydrology. Water Resour. Manag. 2022, 36, 3859–3876. [Google Scholar] [CrossRef]
- Roushangar, K.; Ghasempour, R.; Alizadeh, F. Uncertainty Assessment of the Integrated Hybrid Data Processing Techniques for Short to Long Term Drought Forecasting in Different Climate Regions. Water Resour. Manag. 2022, 36, 273–296. [Google Scholar] [CrossRef]
- Tennant, C.; Larsen, L.; Bellugi, D.; Moges, E.; Zhang, L.; Ma, H. The Utility of Information Flow in Formulating Discharge Forecast Models: A Case Study From an Arid Snow-Dominated Catchment. Water Resour. Res. 2020, 56, e2019WR024908. [Google Scholar] [CrossRef]
- Ren, W.W.; Yang, T.; Huang, C.S.; Xu, C.Y.; Shao, Q.X. Improving monthly streamflow prediction in alpine regions: Integrating HBV model with Bayesian neural network. Stoch. Environ. Res. Risk Assess. 2018, 32, 3381–3396. [Google Scholar] [CrossRef]
- Bergström, S. Utveckling och tillämpning av en digital avrinningsmodell. Hydrol. Byran 1972, 22, 1–28. [Google Scholar]
- Quilty, J.; Jahangir, M.S.; You, J.; Hughes, H.; Hah, D.; Tzoganakis, I. Bayesian extreme learning machines for hydrological prediction uncertainty. J. Hydrol. 2023, 626, 130138. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- De León Pérez, D.; Domínguez, E. Determinación de áreas hidroclimáticamente homogéneas. Una propuesta técnica. Ing. del Agua 2021, 25, 97. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, X.; Xu, Z.; Ye, L. Seasonal streamflow forecasts using mixture-kernel GPR and advanced methods of input variable selection. Hydrol. Res. 2019, 50, 200–214. [Google Scholar] [CrossRef]
- Ngoc Tran, V.; Ivanov, V.Y.; Tien Nguyen, G.; Ngoc Anh, T.; Huy Nguyen, P.; Kim, D.H.; Kim, J. A deep learning modeling framework with uncertainty quantification for inflow-outflow predictions for cascade reservoirs. J. Hydrol. 2024, 629, 130608. [Google Scholar] [CrossRef]
- Tanhapour, M.; Soltani, J.; Malekmohammadi, B.; Hlavcova, K.; Kohnova, S.; Petrakova, Z.; Lotfi, S. Forecasting the Ensemble Hydrograph of the Reservoir Inflow based on Post-Processed TIGGE Precipitation Forecasts in a Coupled Atmospheric-Hydrological System. Water 2023, 15, 887. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Q.; Zhou, J.; Jiao, W.; Wang, X. Runoff Prediction Using a Novel Hybrid ANFIS Model Based on Variable Screening. Water Resour. Manag. 2021, 35, 2921–2940. [Google Scholar] [CrossRef]
- Wu, X.; Lu, G.; Wu, Z. Remote Sensing Technology in the Construction of Digital Twin Basins: Applications and Prospects. Water 2023, 15, 2040. [Google Scholar] [CrossRef]
- Peng, T.; Zhang, C.; Zhou, J.; Xia, X.; Xue, X. Multi-Objective Optimization for Flood Interval Prediction Based on Orthogonal Chaotic NSGA-II and Kernel Extreme Learning Machine. Water Resour. Manag. 2019, 33, 4731–4748. [Google Scholar] [CrossRef]
- Nourali, M. Improved Treatment of Model Prediction Uncertainty: Estimating Rainfall using Discrete Wavelet Transform and Principal Component Analysis. Water Resour. Manag. 2023, 37, 4211–4231. [Google Scholar] [CrossRef]
- Kasiviswanathan, K.S.; He, J.; Tay, J.H.; Sudheer, K.P. Enhancement of Model Reliability by Integrating Prediction Interval Optimization into Hydrogeological Modeling. Water Resour. Manag. 2019, 33, 229–243. [Google Scholar] [CrossRef]
- Chu, H.; Wei, J.; Jiang, Y. Middle- and Long-Term Streamflow Forecasting and Uncertainty Analysis Using Lasso-DBN-Bootstrap Model. Water Resour. Manag. 2021, 35, 2617–2632. [Google Scholar] [CrossRef]
- Kilinc, H.C.; Haznedar, B.; Katipoğlu, O.M.; Ozkan, F. A comparative study of daily streamflow forecasting using firefly, artificial bee colony, and genetic algorithm-based artificial neural network. Acta Geophys. 2024, 72, 4575–4595. [Google Scholar] [CrossRef]
- Katipoğlu, O.M.; Ertugay, N.; Elshaboury, N.; Aktürk, G.; Kartal, V.; Pande, C.B. A novel metaheuristic optimization and soft computing techniques for improved hydrological drought forecasting. Phys. Chem. Earth Parts A/B/C 2024, 135, 103646. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S.K. Development of AI-based hybrid soft computing models for prediction of critical river water quality indicators. Environ. Sci. Pollut. Res. 2024, 31, 27829–27845. [Google Scholar] [CrossRef]
- Riahi-Madvar, H.; Dehghani, M.; Memarzadeh, R.; Gharabaghi, B. Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS. Water Resour. Manag. 2021, 35, 1149–1166. [Google Scholar] [CrossRef]
- He, Y.; Yan, Y.; Wang, X.; Wang, C. Uncertainty Forecasting for Streamflow based on Support Vector Regression Method with Fuzzy Information Granulation. Energy Procedia 2019, 158, 6189–6194. [Google Scholar] [CrossRef]
Database | Generic Search Equation |
---|---|
Scopus | (TITLE-ABS-KEY (uncertainty AND hydro* AND forecast) AND PUBYEAR >2016) + language filters + domain filters + Conceptual layers (search refine terms) |
WoS | TS = (uncertainty AND hydro* AND forecast) AND PY = (2017–2024) + language filters + domain filters + Conceptual layers (search refine terms) |
Kappa Statistic1 | Strength of Agreement |
---|---|
<0.00 | Poor |
0.00–0.20 | Slight |
0.21–0.40 | Fair |
0.41–0.60 | Moderate |
0.61–0.80 | Substantial |
0.81–1.00 | Almost Perfect |
Finding/Gap | Research Dir. | Operational Imp. | References * |
---|---|---|---|
Incomplete propagation of forcing uncertainty (precipitation) to flow. Sub/Over-dispersed and biased raw ensembles in events. | * Explicitly coupling meteorological-hydrological ensembles with probabilistic postprocessing | Better calibrated prediction bands and better control of false alarms | [6,55,58,59] |
* Estimate predictive densities conditional on horizon and report CRPS, calibration, and coverage by time frame | |||
Univariate post-processing by time frame ignores temporal correlations between sub-horizons and multivariate incoherences | * Extending hydrological postprocessing to multivariate/horizon-dependent approaches | Consistent exceedance probabilities over the entire forecast window and simultaneous improvement at operational thresholds | [6,37,55,65,78,79] |
* Compare multi and univariate approaches, maintaining time dependence in the predictive distribution | |||
Heterogeneity of probabilistic metrics and protocols; limited comparability between studies. | * Establish a minimum battery of probabilistic metrics (CRPS, CRPSS, PICP, BS, BSS, R-Factor…) and reproducible spatio-temporal validation by basin and horizon. | Transparent comparison of methods and clear criteria for operational adoption. | [78,80] |
Poor validation in tails/ends and composite events; skill degradation at high percentiles. | * Tailor-made evaluation designs (q95-q99), multiple thresholds, and Threat Score | More reliable flood/drought alerts, reduction in false alarms at peaks. | [6,52,53,55,65,79,81] |
* Use of truncated families and/or copulas for asymmetries and extreme dependencies | |||
Research-operation disconnection and gap for computational cost and interpretability in AI + statistics hybrids. | * Parsimonious and explainable hybrids (e.g., multi-MCP with ML on residuals) | Robust implementation in real time with limited resources without losing calibration. | [80,82] |
* Explicit cost reporting and real-time deployment guidelines. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De León Pérez, D.; Salazar-Galán, S.; Francés, F. Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction. Water 2025, 17, 2932. https://doi.org/10.3390/w17202932
De León Pérez D, Salazar-Galán S, Francés F. Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction. Water. 2025; 17(20):2932. https://doi.org/10.3390/w17202932
Chicago/Turabian StyleDe León Pérez, David, Sergio Salazar-Galán, and Félix Francés. 2025. "Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction" Water 17, no. 20: 2932. https://doi.org/10.3390/w17202932
APA StyleDe León Pérez, D., Salazar-Galán, S., & Francés, F. (2025). Beyond Deterministic Forecasts: A Scoping Review of Probabilistic Uncertainty Quantification in Short-to-Seasonal Hydrological Prediction. Water, 17(20), 2932. https://doi.org/10.3390/w17202932