Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (419)

Search Parameters:
Keywords = hydrological climate-impact projections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 343
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

20 pages, 4109 KiB  
Review
Hydrology and Climate Change in Africa: Contemporary Challenges, and Future Resilience Pathways
by Oluwafemi E. Adeyeri
Water 2025, 17(15), 2247; https://doi.org/10.3390/w17152247 - 28 Jul 2025
Viewed by 321
Abstract
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 [...] Read more.
African hydrological systems are incredibly complex and highly sensitive to climate variability. This review synthesizes observational data, remote sensing, and climate modeling to understand the interactions between fluvial processes, water cycle dynamics, and anthropogenic pressures. Currently, these systems are experiencing accelerating warming (+0.3 °C/decade), leading to more intense hydrological extremes and regionally varied responses. For example, East Africa has shown reversed temperature–moisture correlations since the Holocene onset, while West African rivers demonstrate nonlinear runoff sensitivity (a threefold reduction per unit decline in rainfall). Land-use and land-cover changes (LULCC) are as impactful as climate change, with analysis from 1959–2014 revealing extensive conversion of primary non-forest land and a more than sixfold increase in the intensity of pastureland expansion by the early 21st century. Future projections, exemplified by studies in basins like Ethiopia’s Gilgel Gibe and Ghana’s Vea, indicate escalating aridity with significant reductions in surface runoff and groundwater recharge, increasing aquifer stress. These findings underscore the need for integrated adaptation strategies that leverage remote sensing, nature-based solutions, and transboundary governance to build resilient water futures across Africa’s diverse basins. Full article
Show Figures

Figure 1

15 pages, 68949 KiB  
Article
Hydraulic Modeling of Extreme Flow Events in a Boreal Regulated River to Assess Impact on Grayling Habitat
by M. Lovisa Sjöstedt, J. Gunnar I. Hellström, Anders G. Andersson and Jani Ahonen
Water 2025, 17(15), 2230; https://doi.org/10.3390/w17152230 - 26 Jul 2025
Viewed by 306
Abstract
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during [...] Read more.
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during ecologically sensitive periods such as the grayling spawning season in late spring. This study examines the impact of extreme spring flow conditions on grayling spawning habitats by analyzing historical runoff data and simulating high-flow events using a 2D hydraulic model in Delft3D FM. Results show that previously suitable spawning areas became too deep or experienced flow velocities beyond ecological thresholds, rendering them unsuitable. These hydrodynamic shifts could have cascading effects on aquatic vegetation and food availability, ultimately threatening the survival and reproductive success of grayling populations. The findings underscore the importance of integrating ecological considerations into future water management and hydropower operation strategies in the face of climate-driven flow variability. Full article
Show Figures

Figure 1

21 pages, 3698 KiB  
Article
Forecasting Climate Change Impacts on Water Security Using HEC-HMS: A Case Study of Angat Dam in the Philippines
by Kevin Paolo V. Robles and Cris Edward F. Monjardin
Water 2025, 17(14), 2085; https://doi.org/10.3390/w17142085 - 12 Jul 2025
Viewed by 792
Abstract
The Angat Reservoir serves as a major water source for Metro Manila, providing most of the region’s domestic, agricultural, and hydropower needs. However, its dependence on rainfall makes it sensitive to climate variability and future climate change. This study assesses potential long-term impacts [...] Read more.
The Angat Reservoir serves as a major water source for Metro Manila, providing most of the region’s domestic, agricultural, and hydropower needs. However, its dependence on rainfall makes it sensitive to climate variability and future climate change. This study assesses potential long-term impacts of climate change on water availability in the Angat watershed using the Hydrologic Engineering Center–Hydrologic Modeling System (HEC-HMS). Historical rainfall data from 1994 to 2023 and projections under both RCP4.5 (moderate emissions) and RCP8.5 (high emissions) scenarios were analyzed to simulate future hydrologic responses. Results indicate projected reductions in wet-season rainfall and corresponding outflows, with declines of up to 18% under the high-emission scenario. Increased variability during dry-season flows suggests heightened risks of water scarcity. While these projections highlight possible changes in the watershed’s hydrologic regime, the study acknowledges limitations, including assumptions in rainfall downscaling and the absence of direct streamflow observations for model calibration. Overall, the findings underscore the need for further investigation and planning to manage potential climate-related impacts on water resources in Metro Manila. Full article
(This article belongs to the Special Issue Hydroclimate Extremes: Causes, Impacts, and Mitigation Plans)
Show Figures

Figure 1

22 pages, 4019 KiB  
Article
Quantitative Assessment of Climate Change, Land Conversion, and Management Measures on Key Ecosystem Services in Arid and Semi-Arid Regions: A Case Study of Inner Mongolia, China
by Jiayu Geng, Honglan Ji and Lei Hao
Sustainability 2025, 17(14), 6348; https://doi.org/10.3390/su17146348 - 10 Jul 2025
Viewed by 286
Abstract
Inner Mongolia, a typical arid and semi-arid region in northern China, has undergone significant ecological transformation over the past two decades through climate shifts and large-scale ecological restoration projects. However, the relative contributions of climate and anthropogenic drivers to these ecological changes have [...] Read more.
Inner Mongolia, a typical arid and semi-arid region in northern China, has undergone significant ecological transformation over the past two decades through climate shifts and large-scale ecological restoration projects. However, the relative contributions of climate and anthropogenic drivers to these ecological changes have not been sufficiently quantified. This study presents a comprehensive quantitative evaluation of the relative contributions of climate change, land conversion, and ecological management to changes in four critical ecosystem services—carbon sequestration, hydrological regulation, soil and water conservation, and windbreak and sand fixation—between 2001 and 2020. Using the residual trend method—a technique to separate climate-driven from human-induced effects—we further decomposed human influence into land conversion and management components. The results show that climate change was the primary driver, enhancing carbon sequestration and hydrological regulation but negatively impacting erosion control, with contributions often over 90%. In contrast, human activities had more spatially variable effects; while land conversion improved several services, it also heightened the vulnerability of sand fixation functions. The analysis further revealed ecosystem-type-specific responses, where grasslands and deserts responded better to management measures and forests and croplands showed greater improvements from land conversion. These findings offer crucial insights into the differentiated mechanisms and outcomes of ecological interventions, providing a scientific basis for optimizing restoration strategies and achieving sustainable ecosystem governance in climate-sensitive regions. Full article
Show Figures

Figure 1

24 pages, 4357 KiB  
Article
Attribution Analysis on Runoff Reduction in the Upper Han River Basin Based on Hydro-Meteorologic and Land Use/Cover Change Data Series
by Xiaoya Wang, Shenglian Guo, Menyue Wang, Xiaodong He and Wei Wang
Water 2025, 17(14), 2067; https://doi.org/10.3390/w17142067 - 10 Jul 2025
Viewed by 302
Abstract
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying [...] Read more.
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying evapotranspiration, infiltration and soil moisture content. Based on hydro-meteorological data from 1961 to 2023 and LUCC data series from 1985 to 2023, this study aimed to identify the temporal trend in hydro-meteorological variables, to quantify the impacts of underlying land surface and climate factors at different time scales and to clarify the effects of LUCCs and basin greening on the runoff generation process. The results showed that (1) inflow runoff declined at a rate of −1.71 mm/year from 1961 to 2023, with a marked shift around 1985, while potential evapotranspiration increased at a rate of 2.06 mm/year within the same time frame. (2) Annual climate factors accounted for 61.01% of the runoff reduction, while underlying land surface contributed 38.99%. Effective precipitation was the dominant climatic factor during the flood season, whereas potential evapotranspiration had a greater influence during the dry season. (3) From 1985 to 2023, the LUCC changed significantly, mainly manifested by the increasing forest area and decreasing crop land area. The NDVI also showed an upward trend over the years; the actual evapotranspiration increased by 1.163 billion m3 due to the LUCC. This study addresses the climate-driven and human-induced hydrological changes in the Danjiangkou Reservoir and provides an important reference for water resource management. Full article
Show Figures

Figure 1

33 pages, 8525 KiB  
Article
Assessment of Run-of-River and Hydropower Plants in Peru: Current and Potential Sites, Historical Variability (1981–2020), and Climate Change Projections (2035–2100)
by Leonardo Gutierrez, Adrian Huerta, Harold Llauca, Luc Bourrel and Waldo Lavado-Casimiro
Climate 2025, 13(6), 125; https://doi.org/10.3390/cli13060125 - 12 Jun 2025
Viewed by 2147
Abstract
Hydropower is the main source of renewable energy and the most feasible for implementation in remote areas without access to conventional energy grids. Therefore, knowledge of actual, potential, and future perspectives of sustainable hydropower projects is decisive for their viability. This study aims [...] Read more.
Hydropower is the main source of renewable energy and the most feasible for implementation in remote areas without access to conventional energy grids. Therefore, knowledge of actual, potential, and future perspectives of sustainable hydropower projects is decisive for their viability. This study aims to estimate the present and future potential capacity of Peru’s hydropower system and from the potential small hydroelectric plants, specifically Run-of-River class. First, we employed geospatial databases and hydroclimatological products to describe the current hydropower system and potential sites for Run-of-River projects. The findings identified 11,965 potential sites for Run-of-River plants. Second, we executed and validated a hydrological model to estimate historical daily streamflows (1981–2020) and hydropower parameters for actual and potential sites. It was determined there is an installed capacity of 5.2 GW in the current hydropower system and a total potential capacity of 29.1 GW for Run-of-River plants, mainly distributed in the northern and central Andes. Finally, we evaluated future changes driven by ten global climate models under three emission scenarios (SSP1-2.6, SSP3-7.0, and SSP5-8.5), compared with the baseline period of 1981–2010 with two future time slices. The main results about capacity indicated that operational hydroelectric plants (Run-of-River plants) are projected to decrease by 0.5 to −5.4% (−7.2 to −2.2%) during 2036–2065 and by −9.2 to 3.8% (1.8 to −11.9%) during 2071–2100. These outcomes provide relevant information to support policymakers in addressing sustainable development gaps in the coming decades and stakeholders involved in the implementation and mitigation of climate change impacts on hydropower projects in Peru. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

19 pages, 1734 KiB  
Article
Future Dynamics of Drought in Areas at Risk: An Interpretation of RCP Projections on a Regional Scale
by Pietro Monforte and Sebastiano Imposa
Hydrology 2025, 12(6), 143; https://doi.org/10.3390/hydrology12060143 - 9 Jun 2025
Viewed by 1126
Abstract
The Mediterranean region is currently experiencing the effects of a climate crisis, marked by an increase in the frequency and intensity of drought events. Climate variability has led to prolonged periods of drought, even in areas not traditionally classified as arid. These events [...] Read more.
The Mediterranean region is currently experiencing the effects of a climate crisis, marked by an increase in the frequency and intensity of drought events. Climate variability has led to prolonged periods of drought, even in areas not traditionally classified as arid. These events have significant impacts on water resources, agricultural productivity, and socioeconomic systems. This study investigates the evolution of meteorological, hydrological, and socioeconomic droughts using the Standardized Precipitation Index (SPI) at time scales of 3, 12, and 24 months in a Mediterranean region identified as particularly vulnerable to climate change. Observational data from local meteorological stations were used for the 1991–2020 baseline period. Future climate projections were derived from the MPI-ESM model under the RCP 4.5 and RCP 8.5 scenarios, extending to the year 2080. Data were aggregated on a 0.50° × 0.50° spatial grid and bias-corrected using linear scaling. The Kolmogorov–Smirnov test was applied to assess the statistical compatibility between observed and projected precipitation data. Results indicate a substantial decline in annual precipitation, with reductions of up to 20% under the RCP 8.5 scenario for the period 2051–2080, compared to the reference period. The frequency of severe and extreme drought events is projected to increase by 30–50% in several grid meshes, especially during summer. Conversely, altered weather patterns in other areas may increase the likelihood of flood events. This study identifies the grid meshes most vulnerable to drought, highlighting the urgent need for adaptive water management strategies to ensure agricultural sustainability and reduce the socioeconomic impacts of climate-induced drought. Full article
Show Figures

Figure 1

18 pages, 3073 KiB  
Review
Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events
by José González-Cao, Helena Barreiro-Fonta, Diego Fernández-Nóvoa and Orlando García-Feal
Hydrology 2025, 12(6), 133; https://doi.org/10.3390/hydrology12060133 - 29 May 2025
Viewed by 963
Abstract
Recent scientific literature has consistently highlighted a significant increase in both the frequency and intensity of flood events, primarily attributed to the effects of climate change. Projections suggest that this trend will likely intensify in the coming decades. In this context, enhancing our [...] Read more.
Recent scientific literature has consistently highlighted a significant increase in both the frequency and intensity of flood events, primarily attributed to the effects of climate change. Projections suggest that this trend will likely intensify in the coming decades. In this context, enhancing our understanding of flooding dynamics becomes not only necessary but urgent. A critical component of this advancement lies in the numerical analysis of historical flood events, which provides valuable insights into flood behaviour across extended temporal and spatial scales. This approach enables two key outcomes: a significant improvement in conventional methods for estimating return periods and a reduction in the uncertainties associated with historical flood events by simulating multiple plausible scenarios to identify the most likely one. This paper presents a comprehensive review of the scientific literature focused on the numerical simulation and reconstruction of past flood events. Two main conclusions emerge from this review: First, the temporal scope of the studies is notably wide, covering events ranging from glacial periods to those occurring in the mid-20th century. Second, there exists a pronounced spatial imbalance in the geographical distribution of these studies, with certain regions significantly underrepresented. This review provides a valuable resource for researchers and practitioners working in flood risk assessment and hydrological modelling. By consolidating existing knowledge, it supports the development and refinement of decision-support tools aimed at improving mitigation strategies to reduce the impact of flooding on both populations and infrastructure. Full article
Show Figures

Figure 1

24 pages, 4948 KiB  
Article
The Evolution of Runoff Processes in the Source Region of the Yangtze River Under Future Climate Change
by Nana Zhang, Peng Jiang, Bin Yang, Changhai Tan, Wence Sun, Qin Ju, Simin Qu, Kunqi Ding, Jingjing Qin and Zhongbo Yu
Atmosphere 2025, 16(6), 640; https://doi.org/10.3390/atmos16060640 - 24 May 2025
Viewed by 393
Abstract
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional [...] Read more.
Climate change has intensified the melting of glaciers and permafrost in high-altitude cold regions, leading to more frequent extreme hydrological events. This has caused significant variations in the spatiotemporal distribution of meltwater runoff from the headwater cryosphere, posing a major challenge to regional water security. In this study, the HBV hydrological model was set up and driven by CMIP6 global climate model outputs to investigate the multi-scale temporal variations of runoff under different climate change scenarios in the Tuotuo River Basin (TRB) within the source region of the Yangtze River (SRYR). The results suggest that the TRB will undergo significant warming and wetting in the future, with increasing precipitation primarily occurring from May to October and a notable rise in annual temperature. Both temperature and precipitation trends intensify under more extreme climate scenarios. Under all climate scenarios, annual runoff generally exhibits an upward trend, except under the SSP1-2.6 scenario, where a slight decline in total runoff is projected for the late 21st century (2061–2090). The increase in total runoff is primarily concentrated between May and October, driven by enhanced rainfall and meltwater contributions, while snowmelt runoff also shows an increase, but accounts for a smaller percentage of the total runoff and has a smaller impact on the total runoff. Precipitation is the primary driver of annual runoff depth changes, with temperature effects varying by scenario and period. Under high emissions, intensified warming and glacier melt amplify runoff, while low emissions show stable warming with precipitation dominating runoff changes. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 5063 KiB  
Article
Can Forest Management Improve Water Retention Conservation Under Climate Change? A Case Study of the Republic of Korea
by Mina Hong, Youngjin Ko, Sujong Lee, Minkyung Song and Woo-Kyun Lee
Forests 2025, 16(5), 862; https://doi.org/10.3390/f16050862 - 21 May 2025
Viewed by 533
Abstract
This study aimed to analyze changes in water retention conservation in response to climate change and forest management strategies and to propose methods for securing sustainable water resources. The KO-G-Dynamic model, a Korean forest growth model, was utilized alongside aboveground and belowground water [...] Read more.
This study aimed to analyze changes in water retention conservation in response to climate change and forest management strategies and to propose methods for securing sustainable water resources. The KO-G-Dynamic model, a Korean forest growth model, was utilized alongside aboveground and belowground water resource prediction models to evaluate changes in water retention conservation under various climate change scenarios and forest management strategies. The analysis revealed that under climate change and current forest management levels, water retention conservation was projected to reach 37.553 billion tons per year in the 2030s, 38.274 billion tons per year in the 2050s, and 40.306 billion tons per year in the 2080s. Under optimal forest management policies, the water yield and storage were expected to increase to 37.863 billion tons per year in the 2030s, 38.877 billion tons per year in the 2050s, and 41.495 billion tons per year in the 2080s. Notably, watershed-based forest management offers a more practical management unit than conventional legal boundaries, as it reflects hydrological flow and the ecological characteristics of forest environments. Furthermore, the watershed-based forest management scenario demonstrated greater feasibility in securing water resources. This study provides foundational data for climate change adaptation and sustainable forest management and may aid national and local forest planning. The findings underscore the critical role of forest management in mitigating climate change impacts and ensuring long-term water sustainability. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

20 pages, 6304 KiB  
Article
Projected Meteorological Drought in Mexico Under CMIP6 Scenarios: Insights into Future Trends and Severity
by Juan Alberto Velázquez-Zapata and Rodrigo Dávila-Ortiz
Geosciences 2025, 15(5), 186; https://doi.org/10.3390/geosciences15050186 - 21 May 2025
Viewed by 563
Abstract
Meteorological droughts are a complex and recurring phenomenon in Mexico, posing significant challenges for water availability, ecosystems, and socio-economic activities. Furthermore, several worldwide studies highlight that the impacts of droughts may intensify due to the potential effects of climate change. Using projections from [...] Read more.
Meteorological droughts are a complex and recurring phenomenon in Mexico, posing significant challenges for water availability, ecosystems, and socio-economic activities. Furthermore, several worldwide studies highlight that the impacts of droughts may intensify due to the potential effects of climate change. Using projections from global climate models in the Coupled Model Intercomparison Project Phase 6 (CMIP6), this study evaluates future trends in drought frequency and severity across the Mexican hydrological regions. We applied the Standardized Precipitation Index (SPI) to assess meteorological drought indicators under two Shared Socio-economic Pathway (SSP) scenarios (SSP2-4.5 and SSP5-8.5) for the periods 2040–2069 and 2070–2099. Climate models show high variability in projected precipitation changes between the reference and future periods. The SSP5-8.5 scenario indicates the greatest decrease, with reductions of at least 5 to 10%, and even larger declines projected for hydrological regions along the Pacific and Gulf of Mexico coasts, as well as the Yucatán Peninsula. Changes in drought indicators vary depending on the time horizon and scenario considered. For instance, projections for the period 2070–2099 under the high-emission scenario SSP5-8.5 suggest more frequent (three to four events) and prolonged (15 to 18 months) droughts in central and southern hydrological regions. These insights highlight the urgency of strengthening water management policies and adaptive strategies to mitigate the anticipated impacts of climate change on Mexico’s water resources. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

19 pages, 8687 KiB  
Article
Assessment of Coastal Zone Vulnerability in Context of Sea-Level Rise and Inundation Risk in Qatar
by Abdulaziz Ali M. Al-Mannai, Sarra Ouerghi and Mohamed Elhag
Atmosphere 2025, 16(5), 622; https://doi.org/10.3390/atmos16050622 - 19 May 2025
Viewed by 719
Abstract
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated [...] Read more.
Coastal zones represent the most active interfaces where natural processes and human activities converge, making them crucial for biodiversity and socioeconomic development. These zones are characterized by their fragility and susceptibility to frequent natural disasters, such as floods and erosion, which are exacerbated by high-intensity human activities and urban expansion. The ongoing challenges posed by rising sea levels and climate change necessitate robust scientific assessments of coastal vulnerability to ensure effective disaster prevention and environmental protection. This paper introduces a comprehensive evaluation system for assessing coastal zone vulnerability, utilizing multi-source data to address ecological vulnerabilities stemming from sea-level rise and climate change impacts. This system is applied to examine the specific case of Qatar, where rapid urban development and a high population density in coastal areas heighten the risk of flooding and inundation. Employing remote sensing data and Geographic Information Systems (GISs), this research leverages spatial interpolation techniques and high-resolution digital elevation models (DEMs) to identify and evaluate high-risk zones susceptible to sea-level rise. In this study, the hydrological connectivity model, bathtub technique, and CVI are interconnected tools that complement each other to assess future flooding risks under various climate change projections, highlighting the increased probability of coastal hazards. The findings underscore the urgent need for adaptive planning and regulatory frameworks to mitigate these risks, providing technical support for the sustainable development of coastal communities globally and in Qatar. This approach not only informs policy makers, but also aids in the strategic planning required to foster resilient coastal infrastructure capable of withstanding both current and future environmental challenges. Full article
Show Figures

Figure 1

15 pages, 2823 KiB  
Article
The Spatio-Temporal Impact of Land Use Changes on Runoff in the Yiluo River Basin Based on the SWAT and PLUS Model
by Na Zhao, Feilong Gao, Kun Ma, Yanzhen Teng, Hanli Wan and Junbo Wang
Water 2025, 17(10), 1516; https://doi.org/10.3390/w17101516 - 17 May 2025
Viewed by 1935
Abstract
As a major tributary of the Yellow River, the Yiluo River holds vital importance for regional water resource management and ecological sustainability. In this study, the SWAT (version 2012) and PLUS models were used in combination to simulate the hydrological responses of the [...] Read more.
As a major tributary of the Yellow River, the Yiluo River holds vital importance for regional water resource management and ecological sustainability. In this study, the SWAT (version 2012) and PLUS models were used in combination to simulate the hydrological responses of the basin and to analyze how land use changes have influenced runoff dynamics over time. During the calibration and validation periods, the Nash–Sutcliffe efficiency coefficient (NS) and coefficient of determination (R2) for the SWAT model both exceeded 0.8, while the Kappa coefficient for the PLUS model indicated an overall accuracy of 0.91, confirming the applicability of both models to the Yiluo River Basin. However, despite strong annual performance, potential monthly or seasonal simulation uncertainties should be acknowledged and warrant further analysis. From 2000 to 2020, the areas of forest land, water, urban land, and unused land in the Yiluo River Basin increased by 795.15 km2, 29.33 km2, 573.67 km2, and 0.25 km2, respectively, while cultivated land and grassland decreased by 814.50 km2 and 583.89 km2. The spatial distribution of the annual average runoff depth generally exhibited a pattern of “higher in the upstream and lower in the downstream”. An increase in the forestland and grassland areas was found to suppress runoff generation, whereas the expansion of urban land promoted runoff production. Implementing water-sensitive land use strategies—such as expanding forest cover and conserving grasslands—is crucial for reducing the negative hydrological impacts of urban land expansion. Such measures can improve runoff regulation, enhance groundwater recharge, and support the sustainable management of water resources within the basin. Assuming climate conditions remain constant, land use in the Yiluo River Basin in 2025 and 2030 is expected to remain dominated by cultivated land and forestland. Under this scenario, the annual average runoff is projected to increase by 0.42% and 0.51% compared to in 2020, respectively. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

29 pages, 28377 KiB  
Article
Assessment of Future Drought Characteristics Using Various Temporal Scales and Multiple Drought Indices over Mekong Basin Under Climate Changes
by Vo Quang Tuong, Bui Anh Kiet and Thu T. Pham
Water 2025, 17(10), 1507; https://doi.org/10.3390/w17101507 - 16 May 2025
Viewed by 552
Abstract
This study evaluates the performance of CMIP6 models in simulating drought characteristics in the Mekong region, including drought duration, intensity, and severity, using the SPI and SPEI indices. The results show that CMIP6 models are capable of accurately reproducing past drought conditions, with [...] Read more.
This study evaluates the performance of CMIP6 models in simulating drought characteristics in the Mekong region, including drought duration, intensity, and severity, using the SPI and SPEI indices. The results show that CMIP6 models are capable of accurately reproducing past drought conditions, with a high agreement between model data and actual data from ERA5. This study projects that future droughts will become more prolonged and severe which could lead to long-term agricultural and hydrological droughts tending to increase. In the SSP585 scenario, drought intensity will increase sharply in the southern and central regions by the end of the century. The SSP245 and SSP585 climate scenarios have distinct differences in drought trends, with SSP245 showing a strong drought trend, while SSP585 indicates a potential increase in precipitation. The SPEI indices show a clear improvement in wet conditions, with the highest drought variability in zone 2 and stable trends across scenarios. Ecosystems influence drought impacts and management needs. These results highlight the importance of accurately assessing drought characteristics to develop effective water resource and agricultural management measures, especially in the context of climate change. However, this study also points out some limitations, including the imperfect accuracy in future projections and the use of only SPI and SPEI indices without combining them with other indices which may reduce the comprehensiveness of drought impact assessment. This requires future studies to improve and expand to overcome the above limitations, thereby enhancing the reliability of drought forecasts and water resource management strategies. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

Back to TopTop