Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (904)

Search Parameters:
Keywords = hydrologic forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4973 KiB  
Article
LSTM-Based River Discharge Forecasting Using Spatially Gridded Input Data
by Kamilla Rakhymbek, Balgaisha Mukanova, Andrey Bondarovich, Dmitry Chernykh, Almas Alzhanov, Dauren Nurekenov, Anatoliy Pavlenko and Aliya Nugumanova
Data 2025, 10(8), 122; https://doi.org/10.3390/data10080122 - 27 Jul 2025
Abstract
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using [...] Read more.
Accurate river discharge forecasting remains a critical challenge in hydrology, particularly in data-scarce mountainous regions where in situ observations are limited. This study investigated the potential of long short-term memory (LSTM) networks to improve discharge prediction by leveraging spatially distributed reanalysis data. Using the ERA5-Land dataset, we developed an LSTM model that integrates grid-based meteorological inputs and assesses their relative importance. We conducted experiments on two snow-dominated basins with contrasting physiographic characteristics, the Uba River basin in Kazakhstan and the Flathead River basin in the USA, to answer three research questions: (1) whether full-grid input outperforms reduced configurations and models trained on Caravan, (2) the impact of spatial resolution on accuracy and efficiency, and (3) the effect of partial spatial coverage on prediction reliability. Specifically, we compared the full-grid LSTM with a single-cell LSTM, a basin-average LSTM, a Caravan-trained LSTM, and coarser cell aggregations. The results demonstrate that the full-grid LSTM consistently yields the highest forecasting performance, achieving a median Nash–Sutcliffe efficiency of 0.905 for Uba and 0.93 for Middle Fork Flathead, while using coarser grids and random subsets reduces performance. Our findings highlight the critical importance of spatial input richness and provide a reproducible framework for grid selection in flood-prone basins lacking dense observation networks. Full article
(This article belongs to the Special Issue New Progress in Big Earth Data)
Show Figures

Figure 1

22 pages, 4836 KiB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Viewed by 195
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

11 pages, 332 KiB  
Proceeding Paper
Water-Level Forecasting Based on an Ensemble Kalman Filter with a NARX Neural Network Model
by Jackson B. Renteria-Mena, Douglas Plaza and Eduardo Giraldo
Eng. Proc. 2025, 101(1), 2; https://doi.org/10.3390/engproc2025101002 - 21 Jul 2025
Viewed by 109
Abstract
It is fundamental, yet challenging, to accurately predict water levels at hydrological stations located along the banks of an open channel river due to the complex interactions between different hydraulic structures. This paper presents a novel application for short-term multivariate prediction applied to [...] Read more.
It is fundamental, yet challenging, to accurately predict water levels at hydrological stations located along the banks of an open channel river due to the complex interactions between different hydraulic structures. This paper presents a novel application for short-term multivariate prediction applied to hydrological variables based on a multivariate NARX model coupled to a nonlinear recursive Ensemble Kalman Filter (EnKF). The proposed approach is designed for two hydrological stations of the Atrato river in Colombia, where the variables, water level, water flow, and water precipitation, are correlated using a NARX model based on neural networks. The NARX model is designed to consider the complex dynamics of the hydrological variables and their corresponding cross-correlations. The short-term two-day water-level forecast is designed with a fourth-order NARX model. It is observed that the NARX model coupled with EnKF improves the robustness of the proposed approach in terms of external disturbances. Furthermore, the proposed approach is validated by subjecting the NARX–EnKF coupled model to five levels of additive white noise. The proposed approach employs metric regressions to evaluate the proposed model by means of the Root Mean Squared Error (RMSE) and the Nash–Sutcliffe model efficiency (NSE) coefficient. Full article
Show Figures

Figure 1

16 pages, 855 KiB  
Article
Evaluating Time Series Models for Monthly Rainfall Forecasting in Arid Regions: Insights from Tamanghasset (1953–2021), Southern Algeria
by Ballah Abderrahmane, Morad Chahid, Mourad Aqnouy, Adam M. Milewski and Benaabidate Lahcen
Geosciences 2025, 15(7), 273; https://doi.org/10.3390/geosciences15070273 - 20 Jul 2025
Viewed by 225
Abstract
Accurate precipitation forecasting remains a critical challenge due to the nonlinear and multifactorial nature of rainfall dynamics. This is particularly important in arid regions like Tamanghasset, where precipitation is the primary driver of agricultural viability and water resource management. This study evaluates the [...] Read more.
Accurate precipitation forecasting remains a critical challenge due to the nonlinear and multifactorial nature of rainfall dynamics. This is particularly important in arid regions like Tamanghasset, where precipitation is the primary driver of agricultural viability and water resource management. This study evaluates the performance of several time series models for monthly rainfall prediction, including the autoregressive integrated moving average (ARIMA), Exponential Smoothing State Space Model (ETS), Seasonal and Trend decomposition using Loess with ETS (STL-ETS), Trigonometric Box–Cox transform with ARMA errors, Trend and Seasonal components (TBATS), and neural network autoregressive (NNAR) models. Historical monthly precipitation data from 1953 to 2020 were used to train and test the models, with lagged observations serving as input features. Among the approaches considered, the NNAR model exhibited superior performance, as indicated by uncorrelated residuals and enhanced forecast accuracy. This suggests that NNAR effectively captures the nonlinear temporal patterns inherent in the precipitation series. Based on the best-performing model, rainfall was projected for the year 2021, providing actionable insights for regional hydrological and agricultural planning. The results highlight the relevance of neural network-based time series models for climate forecasting in data-scarce, climate-sensitive regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

19 pages, 8978 KiB  
Article
Integration of Space and Hydrological Data into System of Monitoring Natural Emergencies (Flood Hazards)
by Natalya Denissova, Ruslan Chettykbayev, Irina Dyomina, Olga Petrova and Nurbek Saparkhojayev
Appl. Sci. 2025, 15(14), 8050; https://doi.org/10.3390/app15148050 - 19 Jul 2025
Viewed by 225
Abstract
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of [...] Read more.
Flood hazards have increasingly threatened the East Kazakhstan region in recent decades due to climate change and growing anthropogenic pressures, leading to more frequent and severe flooding events. This article considers an approach to modeling and forecasting river runoff using the example of the small Kurchum River in the East Kazakhstan region. The main objective of this study was to evaluate the numerical performance of the flood hazard model by comparing simulated flood extents with observed flood data. Two types of data were used as initial data: topographic data (digital elevation models and topographic maps) and hydrological data, including streamflow time series from stream gauges (hourly time steps) and lateral inflows along the river course. Spatially distributed rainfall forcing was not applied. To build the model, we used the software packages of HEC-RAS version 5.0.5 and MIKE version 11. Using retrospective data for 3 years (2019–2021), modeling was performed, the calculated boundaries of possible flooding were obtained, and the highest risk zones were identified. A dynamic map of depth changes in the river system is presented, showing the process of flood wave propagation, the dynamics of depth changes, and the expansion of the flood zone. Temporal flood inundation mapping and performance metrics were evaluated for each individual flood event (2019, 2020, and 2021). The simulation outcomes closely correlate with actual flood events. The assessment showed that the model data coincide with the real ones by 91.89% (2019), 89.09% (2020), and 95.91% (2021). The obtained results allow for a clarification of potential flood zones and can be used in planning measures to reduce flood risks. This study demonstrates the importance of an integrated approach to modeling, combining various software packages and data sources. Full article
Show Figures

Figure 1

27 pages, 9028 KiB  
Article
Quasi-Optimized LSTM Approach for River Water Level Forecasting
by Chung-Soo Kim, Kah-Hoong Kok and Cho-Rong Kim
Water 2025, 17(14), 2087; https://doi.org/10.3390/w17142087 - 12 Jul 2025
Viewed by 316
Abstract
This study explores the application of a Long Short-Term Memory (LSTM) model for river water level forecasting, emphasizing the critical role of hyper-parameters optimization. Similar to physical and numerical rainfall-runoff models, LSTM relies on parameters to drive its data-driven modeling process. The performance [...] Read more.
This study explores the application of a Long Short-Term Memory (LSTM) model for river water level forecasting, emphasizing the critical role of hyper-parameters optimization. Similar to physical and numerical rainfall-runoff models, LSTM relies on parameters to drive its data-driven modeling process. The performance of such models is highly sensitive to the chosen hyper-parameters, making their optimization essential. To address this, three algorithms—Grid Search, Random Search, and Bayesian Search—were applied to identify the most effective hyper-parameter combinations. Cross-correlation analysis revealed that average rainfall had a stronger influence on river water levels than upstream point rainfall, leading to its selection as the model input. The optimization focused on five key hyper-parameters: neuron units, learning rate, dropout rate, number of epochs, and batch size. Results showed that, while Grid Search required the most computational time, both Random and Bayesian Search were more efficient. Notably, Bayesian Search yielded the best predictive performance with minimal time cost, making it the preferred optimization method. Additionally, reproducible LSTM simulations were conducted to ensure the consistency and practical applicability of the forecasting in real-world scenarios. Overall, Bayesian Search is recommended for optimizing LSTM models due to its balance of accuracy and computational efficiency in hydrological forecasting. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 4119 KiB  
Article
Cross-Scenario Interpretable Prediction of Coal Mine Water Inrush Probability: An Integrated Approach Driven by Gaussian Mixture Modeling with Manifold Learning and Metaheuristic Optimization
by Qiushuang Zheng and Changfeng Wang
Symmetry 2025, 17(7), 1111; https://doi.org/10.3390/sym17071111 - 10 Jul 2025
Viewed by 237
Abstract
Predicting water inrush in coal mines faces significant challenges due to limited data, model generalization, and a lack of interpretability. Current approaches often neglect the inherent geometrical symmetries and structured patterns within the complex hydrological parameter space, rely on local parameter optimization, and [...] Read more.
Predicting water inrush in coal mines faces significant challenges due to limited data, model generalization, and a lack of interpretability. Current approaches often neglect the inherent geometrical symmetries and structured patterns within the complex hydrological parameter space, rely on local parameter optimization, and struggle with interpretability, leading to insufficient predictive accuracy and engineering applicability under complex geological conditions. This study addresses these limitations by integrating Gaussian mixture modeling (GMM), manifold learning, and data augmentation to effectively capture multimodal hydrological data distributions and reveal their intrinsic symmetrical configurations and manifold structures, thereby reducing feature dimensionality. We then apply a whale optimization algorithm (WOA)-enhanced XGBoost model to forecast water inrush probabilities. Our model achieved an R2 of 0.92, demonstrating a greater than 60% error reduction across various metrics. Validation at the Yangcheng Coal Mine confirmed that this balanced approach significantly enhances predictive accuracy, interpretability, and cross-scenario applicability. The synergy between high accuracy and transparency provides decision makers with reliable risk insights, enabling bidirectional validation with geological mechanisms and supporting the implementation of targeted, proactive safety measures. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

16 pages, 1919 KiB  
Review
Review of Utilisation Methods of Multi-Source Precipitation Products for Flood Forecasting in Areas with Insufficient Rainfall Gauges
by Yanhong Dou, Ke Shi, Hongwei Cai, Min Xie and Ronghua Liu
Atmosphere 2025, 16(7), 835; https://doi.org/10.3390/atmos16070835 - 9 Jul 2025
Viewed by 213
Abstract
The continuous release of global precipitation products offers a stable data source for flood forecasting in areas without rainfall gauges. However, due to constraints of forecast timeliness, only no/short-lag precipitation products can be utilised for flood forecasting, but these products are prone to [...] Read more.
The continuous release of global precipitation products offers a stable data source for flood forecasting in areas without rainfall gauges. However, due to constraints of forecast timeliness, only no/short-lag precipitation products can be utilised for flood forecasting, but these products are prone to significant errors. Therefore, the keys of flood forecasting in areas lacking rainfall gauges are selecting appropriate precipitation products, improving the accuracy of precipitation products, and reducing the errors of precipitation products by combination with hydrology models. This paper first presents the current no/short-lag precipitation products that are continuously updated online and for which the download of long series historical data is supported. Based on this, this paper reviews the utilisation methods of multi-source precipitation products for flood forecasting in areas with insufficient rainfall gauges from three perspectives: methods for precipitation product performance evaluation, multi-source precipitation fusion methods, and methods for coupling precipitation products with hydrological models. Finally, future research priorities are summarized: (i) to construct a quantitative evaluation system that can take into account both the accuracy and complementarity of precipitation products; (ii) to focus on the improvement of the areal precipitation fields interpolated by gauge-based precipitation in multi-source precipitation fusion; (iii) to couple real-time correction of flood forecasts and multi-source precipitation; and (iv) to enhance global sharing and utilization of rain gauge–radar data for improving the accuracy of satellite-based precipitation products. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 3719 KiB  
Article
Simulating the Impacts of Climate Change on the Hydrology of Doğancı Dam in Bursa, Turkey, Using Feed-Forward Neural Networks
by Aslıhan Katip and Asifa Anwar
Sustainability 2025, 17(14), 6273; https://doi.org/10.3390/su17146273 - 9 Jul 2025
Viewed by 393
Abstract
Climate change continues to pose significant challenges to global water security, with dams being particularly vulnerable to hydrological cycle alterations. This study investigated the climate-based impact on the hydrology of the Doğancı dam, located in Bursa, Turkey, using feed-forward neural networks (FNNs). The [...] Read more.
Climate change continues to pose significant challenges to global water security, with dams being particularly vulnerable to hydrological cycle alterations. This study investigated the climate-based impact on the hydrology of the Doğancı dam, located in Bursa, Turkey, using feed-forward neural networks (FNNs). The modeling used meteorological parameters as inputs. The employed FNN comprised one input, hidden, and output layer. The efficacy of the models was evaluated by comparing the correlation coefficients (R), mean squared errors (MSE), and mean absolute percentage errors (MAPE). Furthermore, two training algorithms, namely Levenberg-Marquardt and resilient backpropagation, were employed to determine the algorithm that yields more accurate output predictions. The findings of the study showed that the model using air temperature, solar radiation, solar intensity, evaporation, and evapotranspiration as predictors for the water budget and water level of the Doğancı dam exhibited the lowest MSE (0.59) and MAPE (1.31%) and the highest R (0.99) compared to other models under LM training. The statistical analysis determined no significant difference (p > 0.05) between the Levenberg and Marquardt and resilient backpropagation training algorithms. However, a visual interpretation revealed that the Levenberg-Marquardt algorithm outperformed the resilient backpropagation, yielding lower errors, higher correlation values, and faster convergence for the models tested in this study. The novelty of this study lies in the use of certain meteorological inputs, particularly snow depth, for dam inflow forecasting, which has seldom been explored. Moreover, this study compared two widely used ANN training algorithms and applied the modeling framework to a region of strategic importance for Turkey’s water security. This study highlights the effectiveness of ANN-based modeling for hydrological forecasting and determining climate-induced impacts on water bodies such as dams and reservoirs. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

20 pages, 11079 KiB  
Article
A Bayesian Ensemble Learning-Based Scheme for Real-Time Error Correction of Flood Forecasting
by Liyao Peng, Jiemin Fu, Yanbin Yuan, Xiang Wang, Yangyong Zhao and Jian Tong
Water 2025, 17(14), 2048; https://doi.org/10.3390/w17142048 - 8 Jul 2025
Viewed by 280
Abstract
To address the critical demand for high-precision forecasts in flood management, real-time error correction techniques are increasingly implemented to improve the accuracy and operational reliability of the hydrological prediction framework. However, developing a robust error correction scheme remains a significant challenge due to [...] Read more.
To address the critical demand for high-precision forecasts in flood management, real-time error correction techniques are increasingly implemented to improve the accuracy and operational reliability of the hydrological prediction framework. However, developing a robust error correction scheme remains a significant challenge due to the compounded errors inherent in hydrological modeling frameworks. In this study, a Bayesian ensemble learning-based correction (BELC) scheme is proposed which integrates hydrological modeling with multiple machine learning methods to enhance real-time error correction for flood forecasting. The Xin’anjiang (XAJ) model is selected as the hydrological model for this study, given its proven effectiveness in flood forecasting across humid and semi-humid regions, combining structural simplicity with demonstrated predictive accuracy. The BELC scheme straightforwardly post-processes the output of the XAJ model under the Bayesian ensemble learning framework. Four machine learning methods are implemented as base learners: long short-term memory (LSTM) networks, a light gradient-boosting machine (LGBM), temporal convolutional networks (TCN), and random forest (RF). Optimal weights for all base learners are determined by the K-means clustering technique and Bayesian optimization in the BELC scheme. Four baseline schemes constructed by base learners and three ensemble learning-based schemes are also built for comparison purposes. The performance of the BELC scheme is systematically evaluated in the Hengshan Reservoir watershed (Fenghua City, China). Results indicate the following: (1) The BELC scheme achieves better performance in both accuracy and robustness compared to the four baseline schemes and three ensemble learning-based schemes. The average performance metrics for 1–3 h lead times are 0.95 (NSE), 0.92 (KGE), 24.25 m3/s (RMSE), and 8.71% (RPE), with a PTE consistently below 1 h in advance. (2) The K-means clustering technique proves particularly effective with the ensemble learning framework for high flow ranges, where the correction performance exhibits an increment of 62%, 100%, and 100% for 1 h, 2 h, and 3 h lead hours, respectively. Overall, the BELC scheme demonstrates the potential of a Bayesian ensemble learning framework in improving real-time error correction of flood forecasting systems. Full article
(This article belongs to the Special Issue Innovations in Hydrology: Streamflow and Flood Prediction)
Show Figures

Figure 1

17 pages, 18340 KiB  
Article
Physics-Informed Deep Learning for Karst Spring Prediction: Integrating Variational Mode Decomposition and Long Short-Term Memory with Attention
by Liangjie Zhao, Stefano Fazi, Song Luan, Zhe Wang, Cheng Li, Yu Fan and Yang Yang
Water 2025, 17(14), 2043; https://doi.org/10.3390/w17142043 - 8 Jul 2025
Viewed by 449
Abstract
Accurately forecasting karst spring discharge remains a significant challenge due to the inherent nonstationarity and multi-scale hydrological dynamics of karst hydrological systems. This study presents a physics-informed variational mode decomposition long short-term memory (VMD-LSTM) model, enhanced with an attention mechanism and Monte Carlo [...] Read more.
Accurately forecasting karst spring discharge remains a significant challenge due to the inherent nonstationarity and multi-scale hydrological dynamics of karst hydrological systems. This study presents a physics-informed variational mode decomposition long short-term memory (VMD-LSTM) model, enhanced with an attention mechanism and Monte Carlo dropout for uncertainty quantification. Hourly discharge data (2013–2018) from the Zhaidi karst spring in southern China were decomposed using VMD to extract physically interpretable temporal modes. These decomposed modes, alongside precipitation data, were input into an attention-augmented LSTM incorporating physics-informed constraints. The model was rigorously evaluated against a baseline standalone LSTM using an 80% training, 15% validation, and 5% testing data partitioning strategy. The results demonstrate substantial improvements in prediction accuracy for the proposed framework compared to the standard LSTM model. Compared to the baseline LSTM, the RMSE during testing decreased dramatically from 0.726 to 0.220, and the NSE improved from 0.867 to 0.988. The performance gains were most significant during periods of rapid conduit flow (the peak RMSE decreased by 67%) and prolonged recession phases. Additionally, Monte Carlo dropout, using 100 stochastic realizations, effectively quantified predictive uncertainty, achieving over 96% coverage in the 95% confidence interval (CI). The developed framework provides robust, accurate, and reliable predictions under complex hydrological conditions, highlighting substantial potential for supporting karst groundwater resource management and enhancing flood early-warning capabilities. Full article
Show Figures

Figure 1

19 pages, 7486 KiB  
Article
Advancing GNOS-R Soil Moisture Estimation: A Multi-Angle Retrieval Algorithm for FY-3E
by Xuerui Wu, Junming Xia, Weihua Bai and Yueqiang Sun
Remote Sens. 2025, 17(13), 2325; https://doi.org/10.3390/rs17132325 - 7 Jul 2025
Viewed by 264
Abstract
Surface soil moisture (SM) is a critical factor in hydrological modeling, agricultural management, and numerical weather forecasting. This paper presents a highly effective soil moisture retrieval algorithm developed for the FY-3E (FengYun-3E) GNOS-R (GNSS Occultation Sounder II-Reflectometry) instrument. The algorithm incorporates a first-order [...] Read more.
Surface soil moisture (SM) is a critical factor in hydrological modeling, agricultural management, and numerical weather forecasting. This paper presents a highly effective soil moisture retrieval algorithm developed for the FY-3E (FengYun-3E) GNOS-R (GNSS Occultation Sounder II-Reflectometry) instrument. The algorithm incorporates a first-order vegetation model that considers vegetation density and volume scattering. Utilizing multi-angle GNOS-R observations, the algorithm derives surface reflectivity, which is combined with ancillary data on opacity, vegetation water content, and soil moisture from SMAP (Soil Moisture Active Passive) to optimize the retrieval process. The algorithm has been specifically tailored for different surface conditions, including bare soil, areas with low vegetation, and densely vegetated regions. The algorithm directly incorporates the angle-dependence of observations, leading to enhanced retrieval accuracy. Additionally, a new approach parameterizes surface roughness as a function of angle, allowing for refined corrections in reflectivity measurements. For vegetated areas, the algorithm effectively isolates the soil surface signal by eliminating volume scattering and vegetation effects, enabling the accurate estimation of soil moisture. By leveraging multi-angle data, the algorithm achieves significantly improved retrieval accuracy, with root mean square errors of 0.0235, 0.0264, and 0.0191 (g/cm3) for bare, low-vegetation, and dense-vegetation areas, respectively. This innovative methodology offers robust global soil moisture estimation capabilities using the GNOS-R instrument, surpassing the accuracy of previous techniques. Full article
Show Figures

Figure 1

23 pages, 3873 KiB  
Article
Coupling Machine Learning and Physically Based Hydrological Models for Reservoir-Based Streamflow Forecasting
by Benjun Jia and Wei Fang
Remote Sens. 2025, 17(13), 2314; https://doi.org/10.3390/rs17132314 - 5 Jul 2025
Viewed by 570
Abstract
High-accuracy streamflow forecasting with long lead times can help promote the efficient utilization of water resources. However, the construction of cascade reservoirs has allowed the evolution of natural continuous rivers into multi-block rivers. The existing streamflow forecasting methods fail to consider the impact [...] Read more.
High-accuracy streamflow forecasting with long lead times can help promote the efficient utilization of water resources. However, the construction of cascade reservoirs has allowed the evolution of natural continuous rivers into multi-block rivers. The existing streamflow forecasting methods fail to consider the impact of reservoir operation. Thus, a novel short-term streamflow forecasting method for multi-block watersheds was proposed by integrating machine learning and hydrological models. Firstly, based on IMERG precipitation, the forecast precipitation product’s error is corrected by the long short-term memory neural network (LSTM). Secondly, coupling convolutional LSTM (ConvLSTM) and LSTM, operation rules for cascade reservoirs are extracted. Thirdly, a short-term deterministic streamflow forecasting model was built for multi-block watersheds. Finally, according to the sources of forecasting errors, probabilistic streamflow forecasting models based on the Gaussian mixture model (GMM) were proposed, and their performances were compared. Taking the Yalong River as an example, the main results are as follows: (1) Deep learning models (ConvLSTM and LSTM) show good performance in forecast precipitation correction and reservoir operation rule extraction, contributing to streamflow forecasting accuracy. (2) The proposed streamflow deterministic forecasting method has good forecasting performance with NSE above 0.83 for the following 1–5 days. (3) The GMM model, using upstream evolutionary forecasted streamflow, interval forecasted streamflow, and downstream forecasted streamflow as the input–output combination, has good probabilistic forecasting performance and can adequately characterize the “non-normality” and “heteroskedasticity” of forecasting uncertainty. Full article
Show Figures

Figure 1

20 pages, 20508 KiB  
Article
MSRGAN: A Multi-Scale Residual GAN for High-Resolution Precipitation Downscaling
by Yida Liu, Zhuang Li, Guangzhen Cao, Qiong Wang, Yizhe Li and Zhenyu Lu
Remote Sens. 2025, 17(13), 2281; https://doi.org/10.3390/rs17132281 - 3 Jul 2025
Viewed by 309
Abstract
To address the challenge of insufficient spatial resolution in remote sensing precipitation data, this paper proposes a novel Multi-Scale Residual Generative Adversarial Network (MSRGAN) for reconstructing high-resolution precipitation images. The model integrates multi-source meteorological information and topographic priors, and it employs a Deep [...] Read more.
To address the challenge of insufficient spatial resolution in remote sensing precipitation data, this paper proposes a novel Multi-Scale Residual Generative Adversarial Network (MSRGAN) for reconstructing high-resolution precipitation images. The model integrates multi-source meteorological information and topographic priors, and it employs a Deep Multi-Scale Perception Module (DeepInception), a Multi-Scale Feature Modulation Module (MSFM), and a Spatial-Channel Attention Network (SCAN) to achieve high-fidelity restoration of complex precipitation structures. Experiments conducted using Weather Research and Forecasting (WRF) simulation data over the continental United States demonstrate that MSRGAN outperforms traditional interpolation methods and state-of-the-art deep learning models across various metrics, including Critical Success Index (CSI), Heidke Skill Score (HSS), False Alarm Rate (FAR), and Jensen–Shannon divergence. Notably, it exhibits significant advantages in detecting heavy precipitation events. Ablation studies further validate the effectiveness of each module. The results indicate that MSRGAN not only improves the accuracy of precipitation downscaling but also preserves spatial structural consistency and physical plausibility, offering a novel technological approach for urban flood warning, weather forecasting, and regional hydrological modeling. Full article
Show Figures

Figure 1

18 pages, 8570 KiB  
Article
Exploring Urban Water Management Solutions for Mitigating Water Cycle Issues: Application to Bogotá, Colombia
by Yoonkyung Park, Inkyeong Sim, Changyeon Won, Jongpyo Park and Reeho Kim
Water 2025, 17(13), 1992; https://doi.org/10.3390/w17131992 - 2 Jul 2025
Viewed by 330
Abstract
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities [...] Read more.
Urbanization and climate change have disrupted natural water circulation by increasing impervious surfaces and altering rainfall patterns, leading to reduced groundwater infiltration, deteriorating water quality, and heightened flood risks. This study investigates the application of Low Impact Development (LID) and flood control facilities as structural measures to address these challenges in the upper watershed of the Fucha River in Bogotá, Colombia. The methodology involved analyzing watershed characteristics, defining circulation problems, setting hydrological targets, selecting facility types and locations, evaluating performance, and conducting an economic analysis. To manage the target rainfall of 26.5mm under normal conditions, LID facilities such as vegetated swales, rain gardens, infiltration channels, and porous pavements were applied, managing approximately 2362 m3 of runoff. For flood control, five detention tanks were proposed, resulting in a 31.8% reduction in peak flow and a 7.3% decrease in total runoff volume. The flooded area downstream was reduced by 46.8ha, and the benefit–cost ratio was calculated at 1.02. These findings confirm that strategic application of LID and detention facilities can contribute to effective urban water cycle management and disaster risk reduction. While the current disaster management approach in Bogotá primarily focuses on post-event response, this study highlights the necessity of transitioning toward proactive disaster preparedness. In particular, the introduction and expansion of flood forecasting and warning systems are recommended as non-structural measures, especially in urban areas with complex infrastructure and climate-sensitive hydrology. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

Back to TopTop