Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (386)

Search Parameters:
Keywords = hydrodynamic sensitivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 68949 KiB  
Article
Hydraulic Modeling of Extreme Flow Events in a Boreal Regulated River to Assess Impact on Grayling Habitat
by M. Lovisa Sjöstedt, J. Gunnar I. Hellström, Anders G. Andersson and Jani Ahonen
Water 2025, 17(15), 2230; https://doi.org/10.3390/w17152230 - 26 Jul 2025
Viewed by 76
Abstract
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during [...] Read more.
Climate change is projected to significantly alter hydrological conditions across the Northern Hemisphere, with increased precipitation variability, more intense rainfall events, and earlier, rain-driven spring floods in regions like northern Sweden. These changes will affect both natural ecosystems and hydropower-regulated rivers, particularly during ecologically sensitive periods such as the grayling spawning season in late spring. This study examines the impact of extreme spring flow conditions on grayling spawning habitats by analyzing historical runoff data and simulating high-flow events using a 2D hydraulic model in Delft3D FM. Results show that previously suitable spawning areas became too deep or experienced flow velocities beyond ecological thresholds, rendering them unsuitable. These hydrodynamic shifts could have cascading effects on aquatic vegetation and food availability, ultimately threatening the survival and reproductive success of grayling populations. The findings underscore the importance of integrating ecological considerations into future water management and hydropower operation strategies in the face of climate-driven flow variability. Full article
Show Figures

Figure 1

14 pages, 2100 KiB  
Article
Response of Han River Estuary Discharge to Hydrological Process Changes in the Tributary–Mainstem Confluence Zone
by Shuo Ouyang, Changjiang Xu, Weifeng Xu, Junhong Zhang, Weiya Huang, Cuiping Yang and Yao Yue
Sustainability 2025, 17(14), 6507; https://doi.org/10.3390/su17146507 - 16 Jul 2025
Viewed by 231
Abstract
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of [...] Read more.
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of riverbed scouring (mean annual incision rate: 0.12 m) and Three Gorges Dam (TGD) operation through four orthogonal scenarios. Key findings reveal: (1) Riverbed incision dominates discharge variation (annual mean contribution >84%), enhancing flood conveyance efficiency with a peak flow increase of 21.3 m3/s during July–September; (2) TGD regulation exhibits spatiotemporal intermittency, contributing 25–36% during impoundment periods (September–October) by reducing Yangtze backwater effects; (3) Nonlinear interactions between drivers reconfigure flow paths—antagonism occurs at low confluence ratios (R < 0.15, e.g., Cd increases to 45 under TGD but decreases to 8 under incision), while synergy at high ratios (R > 0.25) reduces Hanchuan Station flow by 13.84 m3/s; (4) The 180–265 km confluence-proximal zone is identified as a sensitive area, where coupled drivers amplify water surface gradients to −1.41 × 10−3 m/km (2.3× upstream) and velocity increments to 0.0027 m/s. The proposed “Natural/Anthropogenic Dual-Stressor Framework” elucidates estuary discharge mechanisms under intensive human interference, providing critical insights for flood control and trans-basin water resource management in tide-free estuaries globally. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

28 pages, 13281 KiB  
Article
Salinity Gradients Override Hydraulic Connectivity in Shaping Bacterial Community Assembly and Network Stability at a Coastal Aquifer–Reservoir Interface
by Cuixia Zhang, Haiming Li, Mengdi Li, Qian Zhang, Sihui Su, Xiaodong Zhang and Han Xiao
Microorganisms 2025, 13(7), 1611; https://doi.org/10.3390/microorganisms13071611 - 8 Jul 2025
Viewed by 470
Abstract
The coastal zone presents complex hydrodynamic interactions among inland groundwater, reservoir water, and intruding seawater, with important implications for ecosystem functioning and water quality. However, the relative roles of hydraulic connectivity and seawater-driven salinity gradients in shaping microbial communities at the aquifer–reservoir interface [...] Read more.
The coastal zone presents complex hydrodynamic interactions among inland groundwater, reservoir water, and intruding seawater, with important implications for ecosystem functioning and water quality. However, the relative roles of hydraulic connectivity and seawater-driven salinity gradients in shaping microbial communities at the aquifer–reservoir interface remain unclear. Here, we integrated hydrochemical analyses with high-throughput 16S rRNA gene sequencing to investigate bacterial community composition, assembly processes, and co-occurrence network patterns across groundwater_in (entering the reservoir), groundwater_out (exiting the reservoir), and reservoir water in a coastal system. Our findings reveal that seawater intrusion exerts a stronger influence on groundwater_out, leading to distinct chemical profiles and salinity-driven environmental filtering, whereas hydraulic connectivity promotes greater microbial similarity between groundwater_in and reservoir water. Groundwater samples exhibited higher alpha and beta diversity compared to the reservoir, with dominant taxa such as Comamonadaceae, Flavobacteriaceae, and Rhodobacteraceae serving as indicators of seawater intrusion. Community assembly analyses showed that homogeneous selection predominated, especially under strong salinity gradients, while dispersal limitation and spatial distance also contributed in areas of reduced connectivity. Key chemical factors, including TDS, Na+, Cl, Mg2+, and K+, strongly shaped groundwater communities. Additionally, groundwater bacterial networks were more complex and robust than those in reservoir water, suggesting enhanced resilience to salinity stress. Collectively, this study demonstrates that salinity gradients can override the effects of hydraulic connectivity in structuring bacterial communities and their networks at coastal interfaces. Our findings provide novel microbial insights relevant for understanding biogeochemical processes and support the use of microbial indicators for more sensitive monitoring and management of coastal groundwater resources. Full article
(This article belongs to the Special Issue Microbial Communities in Aquatic Environments)
Show Figures

Figure 1

24 pages, 3945 KiB  
Article
A Parameter Sensitivity Analysis of Two-Body Wave Energy Converters Using the Monte Carlo Parametric Simulations Through Efficient Hydrodynamic Analytical Model
by Elie Al Shami and Xu Wang
Vibration 2025, 8(3), 39; https://doi.org/10.3390/vibration8030039 - 7 Jul 2025
Viewed by 255
Abstract
This paper introduces a novel approach by employing a Monte Carlo simulation to investigate the impact of various design parameters on the performance of two-body wave energy converters. The study uses a simplified analytical model that eliminates the need for complex simulations such [...] Read more.
This paper introduces a novel approach by employing a Monte Carlo simulation to investigate the impact of various design parameters on the performance of two-body wave energy converters. The study uses a simplified analytical model that eliminates the need for complex simulations such as boundary elements or computational fluid dynamics methods. Instead, this model offers an efficient means of predicting and calculating converter performance output. Rigorous validation has been conducted through ANSYS AQWA simulations, affirming the accuracy of the proposed analytical model. The parametric investigation reveals new insights into design optimization. These findings serve as a valuable guide for optimizing the design of two-body point absorbers based on specific performance requirements and prevailing sea state conditions. The results show that in the early design stages, device dimensions and hydrodynamics affect performance more than the PTO’s stiffness and damping. Furthermore, for lower frequencies, adjustments to the buoy’s height emerge as a favorable strategy, whereas augmenting the buoy radius proves more advantageous for enhancing performance at higher frequencies. Full article
Show Figures

Figure 1

19 pages, 11146 KiB  
Article
Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels
by Emanuela Cutuli, Lorena Saitta, Nunzio Tuccitto, Gianluca Cicala and Maide Bucolo
Polymers 2025, 17(13), 1864; https://doi.org/10.3390/polym17131864 - 3 Jul 2025
Viewed by 362
Abstract
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed [...] Read more.
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along XY (Dev-1) and across YX (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Hydrodynamic Cavitation-Assisted Hydrothermal Separation: A Pathway for Valorizing Lignocellulosic Biomass into Biopolymers and Extractives
by Md. Bayazid Ahmed and Souman Rudra
Processes 2025, 13(7), 2041; https://doi.org/10.3390/pr13072041 - 27 Jun 2025
Viewed by 672
Abstract
Lignocellulosic biomass is a sustainable renewable resource for producing biopolymers, chemicals, and high-value compounds. This study proposes a biomass valorization concept that combines hydrodynamic cavitation (HC) and hydrothermal separation (HTS) to produce high-value products. Aspen Plus software was used in this study to [...] Read more.
Lignocellulosic biomass is a sustainable renewable resource for producing biopolymers, chemicals, and high-value compounds. This study proposes a biomass valorization concept that combines hydrodynamic cavitation (HC) and hydrothermal separation (HTS) to produce high-value products. Aspen Plus software was used in this study to develop the first simulation-driven integration of HC and HTS for biomass valorization in the biorefinery concept. The overall separation efficiency and component yield for standalone HC and HTS processes agreed with the experimental data. The findings from the simulation results indicate that the coupled processes yielded a significant enhancement in overall separation efficiency. This coupling resulted in a 24.5% increase compared to a single HC process and 16.75% higher efficiency than a single HTS process for sugarcane bagasse. The sensitivity analysis showed that incrementing HTS temperature and reaction time results in higher component yield and overall separation efficiency. The increase in the S/L ratio demonstrated a higher component yield in the process downstream, whereas the efficiency remained approximately the same. The effect of the HTS pressure was negligible on component yield and overall separation efficiency. Moreover, this study identified the optimal process parameters of the coupled process. At the optimal condition, quadratic models showed an overall separation efficiency of 79.41 ± 2.71% for the HC-HTS coupled process. This approach promises superior biomass utilization over traditional processes, minimizing waste and environmental impact while expanding the potential applications of biomass. Full article
(This article belongs to the Special Issue Process Intensification towards Sustainable Biorefineries)
Show Figures

Figure 1

17 pages, 2031 KiB  
Article
Geochemical Characteristics and Paleoenvironmental Significance of the Xishanyao Formation Coal from the Xiheishan Mining Area, Zhundong Coalfield, Xinjiang, China
by Yongjie Hou, Kaixuan Zhang, Xiangcheng Jin, Yongjia Xu, Xiaotao Xu and Xiaoyun Yan
Minerals 2025, 15(7), 686; https://doi.org/10.3390/min15070686 - 27 Jun 2025
Viewed by 231
Abstract
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1 [...] Read more.
The eastern Junggar Basin in Xinjiang, China is a key coal-bearing region dominated by the Middle Jurassic Xishanyao Formation. Despite its significance as a major coal resource base, detailed paleoenvironmental reconstructions of its coal seams remain limited. This study investigates the B1, B2, B3, and B5 coal seams of the Xishanyao Formation using X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to assess geochemical indicators of the depositional environment during coal formation. The results show that the coal samples are characterized by high inertinite content and low vitrinite reflectance, indicative of low-rank coal. Slight enrichment of strontium (Sr) was observed in the B1, B2, and B5 seams, while cobalt (Co) showed minor enrichment in B3. Redox-sensitive elemental ratios (Ni/Co, V/Cr, and Mo) suggest that the peat-forming environment ranged from oxidizing to dysoxic conditions, with relatively high oxygen availability and strong hydrodynamic activity. A vertical trend of increasing paleosalinity and a shift from warm–humid to dry–hot paleoclimatic conditions was identified from the lower (B1) to upper (B5) coal seams. Additionally, the estimated atmospheric oxygen concentration during the Middle Jurassic was approximately 28.4%, well above the threshold for wildfire combustion. These findings provide new insights into the paleoenvironmental evolution of the Xishanyao Formation and offer a valuable geochemical framework for coal exploration and the assessment of coal-associated mineral resources in the eastern Junggar Basin. Full article
Show Figures

Figure 1

29 pages, 9360 KiB  
Article
Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach
by Daniela Castillo, Ricardo Oyarzún, Pablo Pastén, Christopher D. Knightes, Denisse Duhalde, José Luis Arumí, Jorge Núñez and José Antonio Díaz
Water 2025, 17(13), 1905; https://doi.org/10.3390/w17131905 - 26 Jun 2025
Viewed by 328
Abstract
The occurrence of toxic metal(loid)s in surface freshwater is a global concern due to its impacts on human and ecosystem health. Conceptual and quantitative metal(loid) models are needed to assess the impact of metal(loid)s in watersheds affected by acid rock drainage. Few case [...] Read more.
The occurrence of toxic metal(loid)s in surface freshwater is a global concern due to its impacts on human and ecosystem health. Conceptual and quantitative metal(loid) models are needed to assess the impact of metal(loid)s in watersheds affected by acid rock drainage. Few case studies have focused on arid and semiarid headwaters, with scarce hydrological and hydrochemical information. This work reports the use of WASP8 (US EPA) to model Al, Fe, As, Cu, and SO42− concentrations in the Upper Elqui River watershed in north–central Chile. Calibrated model performance for total concentrations was “good” (25.9, RRMSE; 0.7, R2-d) to “very good” (0.8–0.9, R2-d). The dissolved concentrations ranged between “acceptable” (56.3, RRMSE), “good” (28.6, RRMSE; 0.7 d), and “very good” (0.9, R2-d). While the model validation achieved mainly “very good” (0.8–0.9, R2-d) predictions for total concentrations, the predicted dissolved concentrations were less accurate for all indicators. Sensitivity analysis showed that the partition coefficient is a sensitive constant for estimating dissolved concentrations, and that integrating sorption and sediment interaction reduces the model error. This work highlights the need for detailed and site-specific information on the reactive and hydrodynamic properties of suspended solids, which directly impact the partition coefficient, sedimentation, and resuspension velocity calibration. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Graphical abstract

21 pages, 4008 KiB  
Article
Assessing the Impact of Hydraulic Control Structures on Hydrodynamic Modelling in Shallow Waters
by Alfonso Arrieta-Pastrana, Edwin A. Martínez-Padilla, Modesto Pérez-Sánchez, Oscar E. Coronado-Hernández and Helena M. Ramos
J. Mar. Sci. Eng. 2025, 13(7), 1233; https://doi.org/10.3390/jmse13071233 - 26 Jun 2025
Viewed by 220
Abstract
Currently, hydrodynamic models for bay and estuarine systems involve many parameters that require proper calibration to design coastal structures effectively. However, in coastal regions with limited data availability, the implementation of such models becomes challenging. This research introduces a simplified hydrodynamic methodology designed [...] Read more.
Currently, hydrodynamic models for bay and estuarine systems involve many parameters that require proper calibration to design coastal structures effectively. However, in coastal regions with limited data availability, the implementation of such models becomes challenging. This research introduces a simplified hydrodynamic methodology designed to analyse the impact of hydraulic control structures in shallow waters. This approach offers a computationally efficient alternative that allows engineers to rapidly evaluate the impact of horizontal and vertical constrictions in shallow waters experiencing wave propagation. A practical application is demonstrated in a one-dimensional channel with a length of 200,000 m and an average depth of 5 m. The only parameter required for calibration in the proposed methodology is bed friction. The three analysed scenarios—longitudinal constriction, plan-view constriction, and the influence of bed friction—demonstrate the model’s sensitivity to these variations, highlighting its reliability as a decision-making tool for coastal engineering projects. Moreover, the comparison of the proposed hydrodynamic simulation methodology at the stabilised tidal inlet structure in Cartagena de Indias, Colombia, demonstrated its ability to reproduce observed water levels accurately, reinforcing its reliability and potential for broader application. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 3376 KiB  
Article
A Study of Ultra-Thin Surface-Mounted MEMS Fibre-Optic Fabry–Pérot Pressure Sensors for the In Situ Monitoring of Hydrodynamic Pressure on the Hull of Large Amphibious Aircraft
by Tianyi Feng, Xi Chen, Ye Chen, Bin Wu, Fei Xu and Lingcai Huang
Photonics 2025, 12(7), 627; https://doi.org/10.3390/photonics12070627 - 20 Jun 2025
Viewed by 273
Abstract
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their [...] Read more.
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their large size, fragility, intrusiveness, limited range, frequency response limitations, accuracy issues, and low sampling frequency. Fibre-optic sensors’ small size, immunity to electromagnetic interference, and reduced susceptibility to environmental disturbances have led to their progressive development in maritime and aeronautic fields. This research proposes a novel hydrodynamic profile encapsulation method using ultra-thin surface-mounted micro-electromechanical system (MEMS) fibre-optic Fabry–Pérot pressure sensors (total thickness of 1 mm). The proposed sensor exhibits an exceptional linear response and low-temperature sensitivity in hydrostatic calibration tests and shows superior response and detection accuracy in water-entry tests of wedge-shaped bodies. This work exhibits significant potential for the in situ monitoring of hydrodynamic loads during water landing, contributing to the research of large amphibious aircraft. Furthermore, this research demonstrates, for the first time, the proposed surface-mounted pressure sensor in conjunction with a high-speed acquisition system for the in situ monitoring of hydrodynamic pressure on the hull of a large amphibious prototype. Following flight tests, the sensors remained intact throughout multiple high-speed hydrodynamic taxiing events and 12 full water landings, successfully acquiring the complete dataset. The flight test results show that this proposed pressure sensor exhibits superior robustness in extreme environments compared to traditional invasive electrical sensors and can be used for full-scale hydrodynamic load flight tests. Full article
Show Figures

Figure 1

18 pages, 3359 KiB  
Article
Integrating Hybrid Energy Solutions into Expressway Infrastructure
by Muqing Yao, Zunbiao Wang, Song Zhang, Zhufa Chu, Yufei Zhang, Shuo Zhang and Wenkai Han
Energies 2025, 18(12), 3186; https://doi.org/10.3390/en18123186 - 18 Jun 2025
Viewed by 336
Abstract
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, [...] Read more.
To explore the feasibility of renewable hybrid energy systems for expressway infrastructure, this study proposes a scenario-based design methodology integrating solar, wind, and hydropower resources within the expressway corridor. A case study was conducted on a highway service area located in southern China, where a solar/wind/hydro hybrid energy system was developed based on the proposed approach. Using the HOMER Pro 3.14 software platform, the system was simulated and optimized under off-grid conditions, and a sensitivity analysis was conducted to evaluate performance variability. The results demonstrate that the strategic integration of corridor-based natural resources—solar irradiance, wind energy, and hydrodynamic potential—enables the construction of a technically and economically viable hybrid energy system. The system includes 382 kW of PV, 210 kW of wind, 80 kW of hydrokinetic power, a 500 kW diesel generator, and 180 kWh of battery storage, forming a hybrid configuration for a stable and reliable energy supply. The optimized configuration can supply up to 1,095,920 kWh of electricity annually at a minimum levelized cost of energy of USD 0.22/kWh. This system reduces CO2 emissions by 23.2 tons/year and NOx emissions by 23 kg/year. demonstrating strong environmental performance and long-term sustainability potential. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

30 pages, 8526 KiB  
Article
Water-Sensitive Urban Design (WSUD) Performance in Mitigating Urban Flooding in a Wet Tropical North Queensland Sub-Catchment
by Sher Bahadur Gurung, Robert J. Wasson, Michael Bird and Ben Jarihani
Hydrology 2025, 12(6), 151; https://doi.org/10.3390/hydrology12060151 - 15 Jun 2025
Viewed by 480
Abstract
Existing wet tropical urban drainage systems often fail to accommodate runoff generated during extreme rainfall. Water-sensitive urban design (WSUD) systems have the potential to retrofit the existing urban drainage system by enhancing infiltration and retention functions. However, studies supporting this assumption were based [...] Read more.
Existing wet tropical urban drainage systems often fail to accommodate runoff generated during extreme rainfall. Water-sensitive urban design (WSUD) systems have the potential to retrofit the existing urban drainage system by enhancing infiltration and retention functions. However, studies supporting this assumption were based on temperate or arid climatic conditions, raising questions about its relevance in wet tropical catchments. To answer these questions, in this study a comprehensive modelling study of WSUD effectiveness in a tropical environment was implemented. Engineers Park, a small sub-catchment of 0.27 km2 at Saltwater Creek, Cairns, Queensland, Australia was the study site in which the flood mitigation capabilities of grey and WSUD systems under major (1% Annual Exceedance Probability—AEP), moderate (20% AEP), and minor (63.2% AEP) magnitudes of rainfall were evaluated. A detailed one-dimensional (1D) and coupled 1D2D hydrodynamic model in MIKE+ were developed and deployed for this study. The results highlighted that the existing grey infrastructure within the catchment underperformed during major events resulting in high peak flows and overland flow, while minor rainfall events increased channel flow and shifted the location of flooding. However, the integration of WSUD with grey infrastructure reduced peak flow by 0% to 42%, total runoff volume by 0.9% to 46%, and the flood extent ratio to catchment area from 0.3% to 1.1%. Overall, the WSUD integration positively contributed to reduced flooding in this catchment, highlighting its potential applicability in tropical catchments subject to intense rainfall events. However, careful consideration is required before over-generalization of these results, since the study area is small. The results of this study can be used in similar study sites by decision-makers for planning and catchment management purposes, but with careful interpretation. Full article
Show Figures

Figure 1

40 pages, 4107 KiB  
Review
A Review of Soil Constitutive Models for Simulating Dynamic Soil–Structure Interaction Processes Under Impact Loading
by Tewodros Y. Yosef, Chen Fang, Ronald K. Faller, Seunghee Kim, Qusai A. Alomari, Mojtaba Atash Bahar and Gnyarienn Selva Kumar
Geotechnics 2025, 5(2), 40; https://doi.org/10.3390/geotechnics5020040 - 12 Jun 2025
Viewed by 1301
Abstract
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that [...] Read more.
The accurate modeling of dynamic soil–structure interaction processes under impact loading is critical for advancing the design of soil-embedded barrier systems. Full-scale crash testing remains the benchmark for evaluating barrier performance; however, such tests are costly, logistically demanding, and subject to variability that limits repeatability. Recent advancements in computational methods, particularly the development of large-deformation numerical schemes, such as the multi-material arbitrary Lagrangian–Eulerian (MM-ALE) and smoothed particle hydrodynamics (SPH) approaches, offer viable alternatives for simulating soil behavior under impact loading. These methods have enabled a more realistic representation of granular soil dynamics, particularly that of the Manual for Assessing Safety Hardware (MASH) strong soil, a well-graded gravelly soil commonly used in crash testing of soil-embedded barriers and safety features. This soil exhibits complex mechanical responses governed by inter-particle friction, dilatancy, confining pressure, and moisture content. Nonetheless, the predictive fidelity of these simulations is governed by the selection and implementation of soil constitutive models, which must capture the nonlinear, dilatant, and pressure-sensitive behavior of granular materials under high strain rate loading. This review critically examines the theoretical foundations and practical applications of a range of soil constitutive models embedded in the LS-DYNA hydrocode, including elastic, elastoplastic, elasto-viscoplastic, and multi-yield surface formulations. Emphasis is placed on the unique behaviors of MASH strong soil, such as confining-pressure dependence, limited elastic range, and strong dilatancy, which must be accurately represented to model the soil’s transition between solid-like and fluid-like states during impact loading. This paper addresses existing gaps in the literature by offering a structured basis for selecting and evaluating constitutive models in simulations of high-energy vehicular impact events involving soil–structure systems. This framework supports researchers working to improve the numerical analysis of impact-induced responses in soil-embedded structural systems. Full article
(This article belongs to the Special Issue Recent Advances in Soil–Structure Interaction)
Show Figures

Figure 1

16 pages, 11515 KiB  
Article
Real-Time Detection of Critical Moisture Levels in Fluidized Bed Drying Using Spectral Analysis
by Matheus Boeira Braga, Carlos Adriano Moreira da Silva, Kaciane Andreola, José Junior Butzge, Osvaldir Pereira Taranto and Carlos Alexandre Moreira da Silva
Powders 2025, 4(2), 16; https://doi.org/10.3390/powders4020016 - 6 Jun 2025
Viewed by 440
Abstract
The drying process of microcrystalline cellulose and adipic acid particles in a cylindrical fluidized bed was investigated using the Gaussian spectral technique to monitor fluid–dynamic regime transitions associated with surface moisture loss. Pressure fluctuation signals were recorded and analyzed to assess hydrodynamic behavior. [...] Read more.
The drying process of microcrystalline cellulose and adipic acid particles in a cylindrical fluidized bed was investigated using the Gaussian spectral technique to monitor fluid–dynamic regime transitions associated with surface moisture loss. Pressure fluctuation signals were recorded and analyzed to assess hydrodynamic behavior. Excess moisture significantly alters the bubbling characteristics of the bed, leading to instability in the fluidization regime. The results demonstrated that the Gaussian spectral technique effectively captured these hydrodynamic changes, particularly at the critical moisture content threshold, when compared with the drying rate curves of the materials. For microcrystalline cellulose and adipic acid particles, it is reasonable to conclude that a mean central frequency above 5.75–6.0 Hz and a standard deviation exceeding 3.7–3.8 Hz correspond to a bubbling regime, indicating that the critical drying point has been reached. This approach provides a non-intrusive and sensitive method for identifying transitions in the drying process, offering a valuable tool for real-time monitoring and control. The ability to track fluidization regime changes with high precision reinforces the potential of this technique for optimizing drying operations in the pharmaceutical, food, and chemical industries. Full article
Show Figures

Graphical abstract

18 pages, 16697 KiB  
Article
Analysis of Abnormal Sea Level Rise in Offshore Waters of Bohai Sea in 2024
by Song Pan, Lu Liu, Yuyi Hu, Jie Zhang, Yongjun Jia and Weizeng Shao
J. Mar. Sci. Eng. 2025, 13(6), 1134; https://doi.org/10.3390/jmse13061134 - 5 Jun 2025
Viewed by 452
Abstract
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated [...] Read more.
The primary contribution of this study lies in analyzing the dynamic drivers during two anomalous sea level rise events in the Bohai Sea through coupled numeric modeling using the Weather Research and Forecasting (WRF) model and the Finite-Volume Community Ocean Model (FVCOM) integrated with the Simulating Waves Nearshore (SWAN) module (hereafter referred to as FVCOM-SWAVE). WRF-derived wind speeds (0.05° grid resolution) were validated against Haiyang-2 (HY-2) scatterometer observations, yielding a root mean square error (RMSE) of 1.88 m/s and a correlation coefficient (Cor) of 0.85. Similarly, comparisons of significant wave height (SWH) simulated by FVCOM-SWAVE (0.05° triangular mesh) with HY-2 altimeter data showed an RMSE of 0.67 m and a Cor of 0.84. Four FVCOM sensitivity experiments were conducted to assess drivers of sea level rise, validated against tide gauge observations. The results identified tides as the primary driver of sea level rise, with wind stress and elevation forcing (e.g., storm surge) amplifying variability, while currents exhibited negligible influence. During the two events, i.e., 20–21 October and 25–26 August 2024, elevation forcing contributed to localized sea level rises of 0.6 m in the northern and southern Bohai Sea and 1.1 m in the southern Bohai Sea. A 1 m surge in the northern region correlated with intense Yellow Sea winds (20 m/s) and waves (5 m SWH), which drove water masses into the Bohai Sea. Stokes transport (wave-driven circulation) significantly amplified water levels during the 21 October and 26 August peak, underscoring critical wave–tide interactions. This study highlights the necessity of incorporating tides, wind, elevation forcing, and wave effects into coastal hydrodynamic models to improve predictions of extreme sea level rise events. In contrast, the role of imposed boundary current can be marginalized in such scenarios. Full article
Show Figures

Figure 1

Back to TopTop