Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = hydro-pneumatic spring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 77314 KiB  
Article
A Multi-Mode Active Control Method for the Hydropneumatic Suspension of Auxiliary Transport Vehicles in Underground Mines
by Jianjian Yang, Kangshuai Chen, Zhen Ding, Cong Zhao, Teng Zhang and Zhixiang Jiao
Appl. Sci. 2025, 15(12), 6871; https://doi.org/10.3390/app15126871 - 18 Jun 2025
Cited by 1 | Viewed by 279
Abstract
Auxiliary transport vehicles are essential components of the underground mine auxiliary transportation system, primarily used for tasks such as personnel and material transportation. However, the underground environment is complex, and unstructured roads exhibit significant randomness. Traditional passive hydropneumatic suspension systems struggle to strike [...] Read more.
Auxiliary transport vehicles are essential components of the underground mine auxiliary transportation system, primarily used for tasks such as personnel and material transportation. However, the underground environment is complex, and unstructured roads exhibit significant randomness. Traditional passive hydropneumatic suspension systems struggle to strike a balance between ride comfort and stability, resulting in insufficient adaptability of auxiliary transport vehicles in such challenging underground conditions. To address this issue, this paper proposes a multi-mode hydropneumatic suspension control strategy based on the identification of road surface grades in underground mines. The strategy dynamically adjusts the controller’s parameters in real time according to the identified road surface grades, thereby enhancing vehicle adaptability in complex environments. First, the overall framework of the active suspension control system is constructed, and models of the hydropneumatic spring, vehicle dynamics, and road surface are developed. Then, a road surface grade identification method based on Long Short-Term Memory networks is proposed. Finally, a fuzzy-logic-based sliding mode controller is designed to dynamically map the road surface grade information to the controller’s parameters. Three control objectives are set for different road grades, and the multi-objective optimization of the sliding mode’s surface coefficients and fuzzy-logic-based rule parameters is performed using the Hiking Optimization Algorithm. This approach enables the adaptive adjustment of the suspension system under various road conditions. The simulations indicate that when contrasted with conventional inactive hydropneumatic suspensions, the proposed method reduces the sprung mass’s acceleration by 21.2%, 18.86%, and 17.44% on B-, D-, and F-grade roads, respectively, at a speed of 10 km/h. This significant reduction in the vibrational response validates the potential application of the proposed method in underground mine environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

19 pages, 7897 KiB  
Article
Dynamics Modeling and Analysis of a Vertical Landing Mechanism for Reusable Launch Vehicle
by Haiquan Li, Wenzhe Xu, Yun Zhao, Anzhu Hong, Mingjie Han, Haibo Ji and Chaoyang Sun
Aerospace 2025, 12(4), 280; https://doi.org/10.3390/aerospace12040280 - 27 Mar 2025
Viewed by 645
Abstract
In this work, a vertical landing mechanism of a reusable launch vehicle (RLV) is investigated using a flexible–rigid coupled dynamics model. The presented model takes into account the four-legged landing mechanism and the main body cabin. Flexibilities of the main components in the [...] Read more.
In this work, a vertical landing mechanism of a reusable launch vehicle (RLV) is investigated using a flexible–rigid coupled dynamics model. The presented model takes into account the four-legged landing mechanism and the main body cabin. Flexibilities of the main components in the vertical landing mechanism are considered. The hydro-pneumatic spring force and thrust aftereffect caused by the sequential deactivation of the engine are introduced separately. Several simulation cases are selected to analyze the loads acting on the landing mechanism and the dynamics behavior of the whole RLV system. Simulation results show that considering flexibility in the landing mechanism is critical for dynamics analysis under various initial conditions. The adopted RLV design is capable of achieving stable landings under specified initial velocity and attitude conditions, demonstrating its feasibility for engineering applications. Moreover, the hydro-pneumatic spring plays a crucial role in absorbing the impact of the initial landing leg, ensuring a smoother landing experience and minimizing potential damage to the vehicle. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

19 pages, 21955 KiB  
Article
Research on Dynamic Modeling and Control of Magnetorheological Hydro-Pneumatic Suspension
by Yuansi Chen, Min Jiang, Fufeng Yang, Ruijing Qian, Rongjie Zhai, Hongliang Wang and Shaoqing Xv
Actuators 2025, 14(2), 73; https://doi.org/10.3390/act14020073 - 5 Feb 2025
Viewed by 970
Abstract
A novel magnetorheological semi-active hydro-pneumatic suspension system was proposed to overcome the shortcoming of the traditional hydro-pneumatic suspension without adaptive vibration damping function. It is based on the magnetorheological semi-active vibration reduction technology to effectively improve the ride performance of the vehicle. Firstly, [...] Read more.
A novel magnetorheological semi-active hydro-pneumatic suspension system was proposed to overcome the shortcoming of the traditional hydro-pneumatic suspension without adaptive vibration damping function. It is based on the magnetorheological semi-active vibration reduction technology to effectively improve the ride performance of the vehicle. Firstly, a nonlinear model was established with the Bouc–Wen model based on the mechanical property test results of magnetorheological hydro-pneumatic spring. Secondly, the dynamic model of the single-wheel magnetorheological hydro-pneumatic suspension system was established. Subsequently, the ON-OFF and PID-Fuzzy semi-active control strategies of the single-wheel magnetorheological hydro-pneumatic suspension were proposed based on the ON-OFF and PID-Fuzzy control methods. The simulation results demonstrate that the magnetorheological hydro-pneumatic suspension under PID-Fuzzy control has the best vibration reduction effect in comparison with the passive hydro-pneumatic suspension. The sprung mass acceleration, suspension working space, and dynamic tire deformation are reduced by 24.50%, 21.62%, and 21.01%, respectively. The bench test results verify that magnetorheological hydro-pneumatic suspension and its control methods can effectively improve the ride performance of the system. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

59 pages, 12466 KiB  
Review
Comprehensive Review Comparing the Development and Challenges in the Energy Performance of Pneumatic and Hydropneumatic Suspension Systems
by Ryszard Dindorf
Energies 2025, 18(2), 427; https://doi.org/10.3390/en18020427 - 19 Jan 2025
Cited by 3 | Viewed by 1886
Abstract
The purpose of this review is to comprehensively compare the developments and challenges in the energy performance of unconventional pneumatic suspension (PS) and hydropneumatic suspension (HPS), which have special applications in passenger cars, trucks, military vehicles and agricultural equipment. The main differences between [...] Read more.
The purpose of this review is to comprehensively compare the developments and challenges in the energy performance of unconventional pneumatic suspension (PS) and hydropneumatic suspension (HPS), which have special applications in passenger cars, trucks, military vehicles and agricultural equipment. The main differences between PS and HPS, as well as their advantages and disadvantages, are presented. The PS system is discussed along with its principle of operation, advances in development, principle of operation of air springs, their models, characteristics, vibration isolation, and simulation models. The HPS system is discussed, along with its operational principles, progress in development, models, and characteristics. This review also discusses new trends in HPS development, such as the effect of a pressure fluctuation damper (PFD) placed in a hydraulic cylinder on the damping performance index (DPI) of an HPS under off-road driving conditions. It highlights innovative solutions that can be expected in the future in PS and HPS systems, with the expectations of drivers and passengers. The review focused on trends and challenges in PS and HPS development, such as integration with electronics, smart solutions, customized solutions, emphasis on compliance with ecological and environmental requirements, and applications in electric vehicles (EVs) and autonomous vehicles (AVs). Full article
Show Figures

Figure 1

21 pages, 5339 KiB  
Article
Design and Stability Analysis of Six-Degree-of-Freedom Hydro-Pneumatic Spring Wheel-Leg
by Zhibo Wu, Bin Jiao, Chuanmeng Sun, Zezhou Xin, Yinzhi Jia and Heming Zhao
Appl. Sci. 2024, 14(21), 9815; https://doi.org/10.3390/app14219815 - 27 Oct 2024
Viewed by 1180
Abstract
Traditional hydro-pneumatic spring suspensions are limited to a single vertical degree of freedom, which cannot accommodate the significant technological changes introduced by the new in-wheel motor drive mode. Integrating the motor into the vehicle’s hub creates a direct motor drive mode, replacing the [...] Read more.
Traditional hydro-pneumatic spring suspensions are limited to a single vertical degree of freedom, which cannot accommodate the significant technological changes introduced by the new in-wheel motor drive mode. Integrating the motor into the vehicle’s hub creates a direct motor drive mode, replacing the traditional engine–transmission–drive shaft configuration. Together with the dual in-wheel motor wheelset structure, this setup can achieve both drive and differential steering functions. In this study, we designed a six-arm suspension wheel-leg device based on hydro-pneumatic springs, and its structural composition and functional characteristics are presented herein. The external single-chamber hydro-pneumatic springs used in the six-arm structure suspension were analyzed and mathematically modeled, and the nonlinear characteristic curves of the springs were derived. To overcome the instability caused by inconsistent extension lengths of the hydro-pneumatic springs during horizontal steering, the spring correction force, horizontal rotational torque, consistency, and stiffness of the six-degree-of-freedom hydro-pneumatic spring wheel-leg device were analyzed. Finally, with the auxiliary action of tension springs, the rotational torque of the hydro-pneumatic springs and the tension resistance torque of the tension spring counterbalanced each other, keeping the resultant torque on the wheelset at approximately 0 N∙m. The results suggest that the proposed device has excellent self-stabilizing performance and meets the requirements for straight-line driving and differential steering applications. This device provides a new approach for the drive mode and suspension design of the dual in-wheel motor wheelset. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

25 pages, 8560 KiB  
Article
Research on a Variable Universe Control Method and the Performance of Large Sprayer Active Suspension Based on an Artificial Fish Swarm Algorithm–Back Propagation Fuzzy Neural Network
by Fan Yang, Lei Liu, Yanan Zhang, Yuefeng Du, Enrong Mao, Zhongxiang Zhu and Zhen Li
Agriculture 2024, 14(6), 811; https://doi.org/10.3390/agriculture14060811 - 23 May 2024
Cited by 3 | Viewed by 1126
Abstract
In view of the typical requirements of large high-clearance sprayers, such as those operating in poor road conditions for farmland plant protection and at high operation speeds, reducing the vibration of sprayer suspension systems has become a research hotspot. In this study, the [...] Read more.
In view of the typical requirements of large high-clearance sprayers, such as those operating in poor road conditions for farmland plant protection and at high operation speeds, reducing the vibration of sprayer suspension systems has become a research hotspot. In this study, the hydro-pneumatic suspension (HPS) of large high-clearance sprayers was taken as the object, and a variable universe T-S fuzzy controller with real vehicle vibration data as input was proposed to control suspension motion in real time. Different from traditional semi-active suspension, based on the characteristics of variable universe extension factors, a training method combining the artificial fish swarm algorithm and the back propagation algorithm was used to establish a fuzzy neural network controller with precise input to optimize the variable universe. Then, the time-domain and frequency-domain response characteristics of HPS were analyzed by simulating the special road conditions typical of farmland. Finally, the field performance of the sprayer equipped with the new controller was tested. The results show that the error rate of the AFSA-BP algorithm in training the FNN could be reduced to 3.9%, and compared with a passive suspension system, the T-S fuzzy controller improved the effects of spring mass acceleration, pitch angle acceleration, and roll angle acceleration by 18.3%, 23.3%, and 27.7%, respectively, verifying the effectiveness and engineering practicality of the active controller in this study. Full article
Show Figures

Figure 1

17 pages, 4981 KiB  
Article
Optimizing Hydro-Pneumatic Inerter Suspension for Improved Ride Comfort and Handling Stability in Engineering Vehicles Using Simulated Annealing Algorithm
by Rongnan Huang, Ao Yin, Yujie Shen, Fu Du and Xiaofeng Yang
World Electr. Veh. J. 2024, 15(2), 36; https://doi.org/10.3390/wevj15020036 - 23 Jan 2024
Cited by 3 | Viewed by 2847
Abstract
This study introduces a novel hydro-pneumatic inerter suspension (HPIS) system for engineering vehicles, aiming at enhancing ride comfort and handling stability. The research focuses on addressing the limitations of conventional suspension systems by incorporating an inerter element into the vehicle suspension. The unique [...] Read more.
This study introduces a novel hydro-pneumatic inerter suspension (HPIS) system for engineering vehicles, aiming at enhancing ride comfort and handling stability. The research focuses on addressing the limitations of conventional suspension systems by incorporating an inerter element into the vehicle suspension. The unique aspects of HPIS, such as nonlinear stiffness and nonlinear damping characteristics of the hydro-pneumatic spring, are explored. Firstly, a half-car dynamic model of the HPIS suspension is established, and an improved simulated annealing algorithm is applied to optimize the suspension parameters. Then, we compare the dynamic performance of different HPIS structures, specifically parallel and series layouts. For practical analysis, a simplified three-element HPIS suspension model is used, and the suspension parameters are optimized by a simulated annealing algorithm at speeds of 10 m/s, 15 m/s, and 20 m/s. Key findings reveal that compared to the traditional suspension system of S0, the front and rear suspension working space of S1 decreased by 40%, 40.1%, 40.2% and 30.7%, 30.8%, 30.9%, while with the body acceleration and pitch acceleration deteriorated by 3.1%, 3.2%, 3.3% and 63.4%, 63.8%, 64.0%. However, the S2 can improve all the dynamic performance and offer better ride comfort and handling stability. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Figure 1

18 pages, 6907 KiB  
Article
Simulation and Experimental Study on Sealing Characteristics of Hydro-Pneumatic Spring GS Seal Rings
by Shuai Wang, Pengyuan Liu, Donglin Li, Zhenle Dong and Geqiang Li
Appl. Sci. 2023, 13(21), 11703; https://doi.org/10.3390/app132111703 - 26 Oct 2023
Cited by 5 | Viewed by 2300
Abstract
Hydro-pneumatic springs often work under high pressure and alternating load conditions, which can easily cause seal damage, leakage, and serious failure. Relevant studies have shown that the dynamic seal failure of hydro-pneumatic springs is the main cause of hydro-pneumatic spring failure, and the [...] Read more.
Hydro-pneumatic springs often work under high pressure and alternating load conditions, which can easily cause seal damage, leakage, and serious failure. Relevant studies have shown that the dynamic seal failure of hydro-pneumatic springs is the main cause of hydro-pneumatic spring failure, and the sealing performance of GS sealing rings directly determines the service life of hydro-pneumatic springs. The influence of different sealing structure parameters on the sealing performance of GS sealing of hydro-pneumatic springs has been studied, which can provide effective theoretical guidance for the design of sealing structures related to hydro-pneumatic springs. However, the existing research on hydro-pneumatic springs mainly focuses on the characteristics of damping and stiffness; there is a relative lack of research on sealing performance and sealing structure, and the performance change law of GS seals under different working conditions is unclear. In this paper, a GS seal ring is selected as the main seal of the hydro-pneumatic spring, the material parameters of the GS seal ring are obtained via the single-axis compression test, and the finite element simulation method is used to establish the sealing model under different compression ratios of 10–30% and different pressure impacts of 5–30 MPa. By doing so, the stress nephogram, sealing ring shape, and sealing contact pressure of the GS sealing ring under different simulation parameters are obtained. From the test results, the decrease in compression ratio after the wear of the sealing ring is the main reason for the seal leakage of the hydro-pneumatic spring. The maximum contact stress of the sealing ring occurs at the lip of the step ring, and the maximum sealing pressure of the sealing ring is determined by the contact pressure of sealing surfaces II and III. The sealing performance of the GS-type combination sealing ring is affected by the compression ratio of the sealing ring and the impact pressure; when the compression ratio of the sealing ring is 15%, the sealing ring can meet the sealing work needs below 25 MPa. The research results provide a theoretical basis for the design of GS sealing of hydro-pneumatic springs and the effective improvement of the life and reliability of related equipment. Full article
Show Figures

Figure 1

16 pages, 4199 KiB  
Article
Computational Fluid Dynamics Simulation and Optimization of Hydropneumatic Spring Damper Valves for Heavy Vehicle Applications
by Wei Nie, Hongwen He, Luming Sha, Chao Wang and Fu Du
Machines 2023, 11(7), 680; https://doi.org/10.3390/machines11070680 - 25 Jun 2023
Cited by 4 | Viewed by 2345
Abstract
To satisfy the design requirements for a hydropneumatic spring damper valve, the inlet–outlet pressure drop (ΔP) and the axial force on the spool (FZ) of a valve were investigated using fluid–solid coupling simulations and multi-objective optimization, along with [...] Read more.
To satisfy the design requirements for a hydropneumatic spring damper valve, the inlet–outlet pressure drop (ΔP) and the axial force on the spool (FZ) of a valve were investigated using fluid–solid coupling simulations and multi-objective optimization, along with the effects of the diameters of three internal holes (DA, DB, and DC) in the valve on the ΔP and the FZ. First, a meshed computational fluid dynamics model of a damper valve was established based on its geometric structure. Next, the effects of the flow rate (Q) and the diameter of the damping hole in the internal structure on the ΔP and the FZ of the damper valve were investigated. The results showed that the ΔP and the FZ varied nonlinearly with Q. For a given Q, the ΔP decreased as DA, DB, and DC increased. For a given Q, the FZ was not related to DA and DC, but it decreased as DB increased. Finally, the structure of the damper valve was optimized by defining the ΔP and the FZ as the response variables and DA, DB, and DC as the explanatory variables. The results showed that the best configuration of the hole diameters was DA = 8.8 mm, DB = 5.55 mm, and DC = 6 mm. In this configuration, ΔP = 0.704 MPa and FZ = 110.005 N. The ΔP of the optimized valve was closer to the middle value of the target range than that of the initial valve design. The difference between the simulated and target values of the FZ decreased from 0.28% to 0.0045%, satisfying application requirements. Full article
(This article belongs to the Section Industrial Systems)
Show Figures

Figure 1

18 pages, 7457 KiB  
Article
Frequency Response Function and Design Parameter Effects of Hydro-Pneumatic Tensioner for Top-Tensioned Riser
by Wuchao Wang, Haixia Gong, Liquan Wang and Feihong Yun
Processes 2021, 9(12), 2239; https://doi.org/10.3390/pr9122239 - 13 Dec 2021
Cited by 2 | Viewed by 2930
Abstract
The top-tensioned riser is an important equipment in offshore oil and gas development. The hydro-pneumatic tensioner is an essential device to ensure the safety of the top-tensioned riser. To investigate the dynamic performance of the marine platform hydro-pneumatic tensioner, this paper proposed a [...] Read more.
The top-tensioned riser is an important equipment in offshore oil and gas development. The hydro-pneumatic tensioner is an essential device to ensure the safety of the top-tensioned riser. To investigate the dynamic performance of the marine platform hydro-pneumatic tensioner, this paper proposed a first-order Taylor approximation method and created the frequency response function of the hydro-pneumatic tensioner. According to the frequency response function, the hydro-pneumatic tensioner is a first-order spring-mass system. With the given parameters, the system stiffness coefficient is 66.1 kN/m, the natural annular frequency is 20.99 rad/s and the damping ratio is 2.23 × 10−4. The effects of the high-pressure accumulator, low-pressure accumulator, hydraulic cylinder and pipeline design parameters on the stiffness coefficient, natural annular frequency and damping ratio are analyzed. The stiffness coefficient can be increased by (1) increasing the high-pressure accumulator pressure and reducing the high-pressure accumulator volume; (2) increasing the pressure of the low-pressure accumulator and reducing the low-pressure accumulator volume; (3) increasing the piston diameter; and vice versa. The natural annular frequency can be increased by: (1) increasing the high-pressure accumulator pressure and reducing the high-pressure accumulator volume; (2) increasing the pressure of the low-pressure accumulator and reducing the low-pressure accumulator volume; (3) increasing the piston diameter; and vice versa. The damping ratio can be increased by increasing the pipeline length and reducing the pipeline inner diameter. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

15 pages, 8355 KiB  
Article
Experimental Study on the Dynamic Characteristics of Hydro-Pneumatic Semi-Active Suspensions for Agricultural Tractor Cabins
by Kyujeong Choi, Jooseon Oh, Heung-Sub Kim, Hyun-Woo Han, Jung-Ho Park, Geun-Ho Lee, Jaho Seo and Young-Jun Park
Appl. Sci. 2020, 10(24), 8992; https://doi.org/10.3390/app10248992 - 16 Dec 2020
Cited by 14 | Viewed by 3453
Abstract
This study aims to establish a test method to obtain the dynamic characteristics of hydraulic-pneumatic semi-active suspensions used in tractor cabins. Because dynamic characteristics are utilized in simulation models for developing suspension control logic and must be secured to improve control performance, an [...] Read more.
This study aims to establish a test method to obtain the dynamic characteristics of hydraulic-pneumatic semi-active suspensions used in tractor cabins. Because dynamic characteristics are utilized in simulation models for developing suspension control logic and must be secured to improve control performance, an accurate test method must be established. The dynamic characteristics of the suspension, i.e., the spring constant and damping coefficient, were obtained by changing the current and velocity conditions. An exciter was used as a test device to control the displacement and velocity of the hydraulic cylinder. In order to derive the spring constant of the suspension, a low-speed reciprocating motion test was performed to obtain the force-displacement diagram and to derive the damping coefficient; 48 tests were performed under 6 velocity conditions and 8 current conditions to obtain a force-velocity diagram for each result. The spring constant of the suspension was confirmed using the slope of the trend line in the force-displacement diagram obtained through the low-speed reciprocating motion test of the suspension. In addition, the damping coefficient was calculated using the force-velocity diagram obtained through the reciprocating motion test of the suspension under various current and velocity conditions. Full article
(This article belongs to the Special Issue Noise Reduction and Vibration Isolation)
Show Figures

Figure 1

Back to TopTop