Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (484)

Search Parameters:
Keywords = hydraulic pressure experiments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4206 KiB  
Article
Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
by Yuhao Ai, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou and Yihang Yang
Water 2025, 17(14), 2115; https://doi.org/10.3390/w17142115 - 16 Jul 2025
Viewed by 204
Abstract
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by [...] Read more.
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by soil matrix particle size distribution. Changes in the DNE across porous media with discrete particle size fractions are investigated via stepwise drying experiments. Through quantification of saturation–capillary pressure hysteresis and DNE metrics, three critical signatures are identified: (1) the temporal lag between peak capillary pressure and minimum water saturation; (2) the pressure gap between transient and equilibrium states; and (3) residual water saturation. In the four experimental sets, with the finest material (Test 1), the peak capillary pressure consistently precedes the minimum water saturation by up to 60 s. Conversely, with the coarsest material (Test 4), peak capillary pressure does not consistently precede minimum saturation, with a maximum lag of only 30 s. The pressure gap between transient and equilibrium states reached 14.04 cm H2O in the finest sand, compared to only 2.65 cm H2O in the coarsest sand. Simultaneously, residual water saturation was significantly higher in the finest sand (0.364) than in the coarsest sand (0.086). The results further reveal that the intensity of the DNE scales inversely with particle size and linearly with wetting phase saturation (Sw), exhibiting systematic decay as Sw decreases. Coarse media exhibit negligible hysteresis due to suppressed capillary retention; this is in stark contrast with fine sands, in which the DNE is observed to persist in advanced drying stages. These results establish pore geometry and capillary dominance as fundamental factors controlling non-equilibrium fluid dynamics, providing a mechanistic framework for the refinement of multi-phase flow models in heterogeneous porous systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

37 pages, 9217 KiB  
Article
Permeability Jailbreak: A Deep Simulation Study of Hydraulic Fracture Cleanup in Heterogeneous Tight Gas Reservoirs
by Hamid Reza Nasriani and Mahmoud Jamiolahmady
Energies 2025, 18(14), 3618; https://doi.org/10.3390/en18143618 - 9 Jul 2025
Viewed by 220
Abstract
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. [...] Read more.
Ultra-tight gas reservoirs present severe flow constraints due to complex interactions between rock–fluid properties and hydraulic fracturing. This study investigates the impact of unconventional capillary pressure correlations and permeability jail effects on post-fracture cleanup in multiple-fractured horizontal wells (MFHWs) using high-resolution numerical simulations. A novel modelling approach is applied to represent both weak and strong permeability jail phenomena in heterogeneous rock systems. A comprehensive suite of parametric simulations evaluates gas production loss (GPL) and produced fracture fluid (PFF) across varying fracture fluid volumes, shut-in times, drawdown pressures, and matrix permeabilities. The analysis leverages statistically designed experiments and response surface models to isolate the influence of rock heterogeneity and saturation-dependent flow restrictions on cleanup efficiency. The results reveal that strong jail zones drastically hinder fracture fluid recovery, while weak jail configurations interact with heterogeneity to produce non-linear cleanup trends. Notably, reducing the pore size distribution index in Pc models improves predictive accuracy for ultra-tight conditions. These findings underscore the need to integrate unconventional Kr and Pc behaviour in hydraulic fracturing design to optimise flowback and long-term gas recovery. This work provides critical insights for improving reservoir performance and supports ambitions in energy resilience and net-zero transition strategies. Full article
Show Figures

Figure 1

17 pages, 2390 KiB  
Article
Surrogate Model of Hydraulic Actuator for Active Motion Compensation Hydraulic Crane
by Lin Xu, Hongyu Nie, Xiangyang Cheng, Qi Wei, Hongyu Chen and Jianfeng Tao
Electronics 2025, 14(13), 2678; https://doi.org/10.3390/electronics14132678 - 2 Jul 2025
Viewed by 271
Abstract
Offshore cranes equipped with active motion compensation (AMC) systems play a vital role in marine engineering tasks such as offshore wind turbine maintenance, subsea operations, and dynamic load positioning under wave-induced disturbances. These systems rely on complex hydraulic actuators whose strongly nonlinear dynamics—often [...] Read more.
Offshore cranes equipped with active motion compensation (AMC) systems play a vital role in marine engineering tasks such as offshore wind turbine maintenance, subsea operations, and dynamic load positioning under wave-induced disturbances. These systems rely on complex hydraulic actuators whose strongly nonlinear dynamics—often described by differential-algebraic equations (DAEs)—impose significant computational burdens, particularly in real-time applications like hardware-in-the-loop (HIL) simulation, digital twins, and model predictive control. To address this bottleneck, we propose a neural network-based surrogate model that approximates the actuator dynamics with high accuracy and low computational cost. By approximately reducing the original DAE model, we obtain a lower-dimensional ordinary differential equations (ODEs) representation, which serves as the foundation for training. The surrogate model includes three hidden layers, demonstrating strong fitting capabilities for the highly nonlinear characteristics of hydraulic systems. Bayesian regularization is adopted to train the surrogate model, effectively preventing overfitting. Simulation experiments verify that the surrogate model reduces the solving time by 95.33%, and the absolute pressure errors for chambers p1 and p2 are controlled within 0.1001 MPa and 0.0093 MPa, respectively. This efficient and scalable surrogate modeling framework possesses significant potential for integrating high-fidelity hydraulic actuator models into real-time digital and control systems for offshore applications. Full article
Show Figures

Figure 1

27 pages, 11229 KiB  
Article
Hydraulic Scale Modeling of Pressurized Sediment Laden Flow
by Kalekirstos G. Gebrelibanos, Kaspar Vereide, Sirak A. Weldemariam, Asli Bor, Asfafaw H. Tesfay and Leif Lia
Water 2025, 17(13), 1970; https://doi.org/10.3390/w17131970 - 30 Jun 2025
Viewed by 316
Abstract
In hydropower tunnel systems, unlined pressurized tunnels in competent rock are commonly used for cost-effective construction. Incorporating pressurized sand traps at the downstream end of these tunnels can increase plant capacity and improve energy efficiency. The present work focuses on optimizing the performance [...] Read more.
In hydropower tunnel systems, unlined pressurized tunnels in competent rock are commonly used for cost-effective construction. Incorporating pressurized sand traps at the downstream end of these tunnels can increase plant capacity and improve energy efficiency. The present work focuses on optimizing the performance of existing pressurized sand traps. Hydraulic scale models were developed and tested at the Hydraulic Laboratory of NTNU, Within the 960 MW Tonstad Hydropower Plant in southern Norway as a case study. This study compares 1:1 velocity/sediment scaling with Froude scaling through physical experiments, analyzing velocity profiles via Particle Image Velocimetry (PIV) and sediment trap efficiency. Results show that Froude scaling, combined with geometric sediment scaling, provides superior accuracy in trap efficiency scaling across varying factors. However, in many practical hydropower applications, the large scaling factor required for laboratory models results in very small model sediments, leading to cohesion limitations. In such cases, Froude scaling may not be feasible. The 1:1 scaling method provides a conservative alternative. Hence, for practical applications, 1:1 scaling may be more cost-effective and sufficient for designing pressurized sand traps. This study emphasizes the importance of accounting for unscaled parameters and flow phenomena in hydraulic model design. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

17 pages, 1778 KiB  
Article
Stomatal–Hydraulic Coordination Mechanisms of Wheat in Response to Atmospheric–Soil Drought and Rewatering
by Lijuan Wang, Yanqun Zhang, Hao Li, Xinlong Hu, Pancen Feng, Yan Mo and Shihong Gong
Agriculture 2025, 15(13), 1375; https://doi.org/10.3390/agriculture15131375 - 27 Jun 2025
Viewed by 297
Abstract
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. [...] Read more.
Drought stress severely limits agricultural productivity, with atmospheric and soil water deficits often occurring simultaneously in field conditions. While plant responses to individual drought factors are well-documented, recovery mechanisms following combined atmospheric–soil drought remain poorly understood, hindering drought resistance strategies and irrigation optimization. We set up two VPD treatments (low and high vapor pressure deficit) and two soil moisture treatments (CK: control soil moisture with sufficient irrigation, 85–95% field capacity; drought: soil moisture with deficit irrigation, 50–60% field capacity) in the pot experiment. We investigated wheat’s hydraulic transport (leaf hydraulic conductance, Kleaf) and gas exchange (stomatal conductance, gs; photosynthetic rate, An) responses to combined drought stress from atmospheric and soil conditions at the heading stage, as well as rewatering 55 days after treatment initiation. The results revealed that: (1) high VPD and soil drought significantly reduced leaf hydraulic conductance (Kleaf), with a high VPD decreasing Kleaf by 31.6% and soil drought reducing Kleaf by 33.2%; The high VPD decreased stomatal conductance (gs) by 43.6% but the photosynthetic rate (An) by only 12.3%; (2) After rewatering, gs and An of atmospheric and soil drought recovered relatively rapidly, while Kleaf did not; (3) Atmospheric and soil drought stress led to adaptive changes in wheat’s stomatal regulation strategies, with an increasing severity of drought stress characterized by a shift from non-conservative to conservative water regulation behavior. These findings elucidate wheat’s hydraulic–stomatal coordination mechanisms under drought stress and their differential recovery patterns, providing theoretical foundation for improved irrigation management practices. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

17 pages, 3979 KiB  
Article
Sugar Alcohols as Crosslinking Delay Additives for Fracturing Fluids
by Tariq Almubarak, Mohammed I. Alabdrabalnabi, Abdualilah Albaiz and Mohammed Yami
Gels 2025, 11(6), 457; https://doi.org/10.3390/gels11060457 - 15 Jun 2025
Viewed by 468
Abstract
The development of thermally stable fracturing fluids is essential for the effective stimulation of deep and low-permeability reservoirs. The stabilizing additives used in these fluids typically fall into three categories: crosslinking delay molecules, oxygen scavengers, and pH buffers. However, many conventional additives raise [...] Read more.
The development of thermally stable fracturing fluids is essential for the effective stimulation of deep and low-permeability reservoirs. The stabilizing additives used in these fluids typically fall into three categories: crosslinking delay molecules, oxygen scavengers, and pH buffers. However, many conventional additives raise toxicity and environmental concerns, prompting the search for safer alternatives. This study investigates the use of sugar alcohols, commonly used as low-calorie sweeteners, as environmentally responsible additives for high-temperature fracturing fluids. A guar-based fluid system was formulated at a pH of 10 and evaluated using a high-pressure high-temperature (HPHT) rheometer under simulated field pumping conditions at 300 °F for a 90 min period. The viscosity was measured at a shear rate of 100 s−1, with intermittent low-shear rates introduced to assess the structural recovery and fluid integrity. The effect of sugar alcohol concentration on crosslinking delay was examined across systems containing varying amounts of a zirconium-based crosslinker ranging from 1 to 4 gpt. The results demonstrated that sugar alcohols effectively delayed crosslinking, allowing for controlled viscosity development and improved stability at elevated temperatures. When optimized at concentrations of 2 ppt of the sugar alcohol with 4 gpt of the crosslinker, the fluid generated a peak viscosity of 600 cP after 2.5 min and maintained a viscosity above 300 cP throughout the 90 min test. Breaker results showed a controlled viscosity reduction, with final viscosity values reaching 10 cP. The proppant settling experiments confirmed the suspension of more than 95% of the proppant during the treatment window. These findings highlight the potential of sugar alcohols as effective and environmentally safer crosslinking delay additives for hydraulic fracturing applications. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Graphical abstract

22 pages, 4926 KiB  
Article
Study on Air Injection to Enhance Coalbed Gas Extraction
by Yongpeng Fan, Longyong Shu, Xin Song and Haoran Gong
Processes 2025, 13(6), 1882; https://doi.org/10.3390/pr13061882 - 13 Jun 2025
Viewed by 277
Abstract
Gas extraction is an important means to reduce coalbed gas and ensure safe coal production. Injecting N2/CO2 into a coalbed can enhance coal seam gas extraction, but problems with N2/CO2 sources underground have prevented the wide application [...] Read more.
Gas extraction is an important means to reduce coalbed gas and ensure safe coal production. Injecting N2/CO2 into a coalbed can enhance coal seam gas extraction, but problems with N2/CO2 sources underground have prevented the wide application of this technology in coal mines. The air contains a large amount of N2, but only a few studies have investigated the injection of air into coalbeds to facilitate gas extraction. In this study, a thermal–hydraulic–solid coupling model for air-enhanced coalbed gas extraction (Air-ECGE) was established. Additionally, the impact of air injection on coalbed methane extraction was simulated, and field experiments were conducted on air injection to enhance gas extraction. The results showed that injecting high-pressure air into a coalbed can effectively facilitate gas desorption and gas migration within the coalbed, greatly improving the efficiency of gas extraction in the coalbed. In addition, owing to the large pressure gradient that can lead to fast coalbed gas seepage, the gas production rate of the extraction borehole is directly proportional to the gas injection pressure. Further, the spacing of the boreholes limits the influence range of the gas injection: the larger the spacing, the larger the influence range, and the higher the gas extraction rate of the extraction borehole. After injecting air into the coalbed of the Liuzhuang coal mine, the extraction flow rate and concentration of gas from the extraction boreholes both increased significantly. A certain delay effect was also observed in the gas injection effect, and the gas extraction flow rate only decreased after a period of time after the gas injection had stopped. Full article
Show Figures

Figure 1

15 pages, 2841 KiB  
Article
Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells
by Yang Wang, Qingyun Yuan, Weihua Chen, Jie Yan, Xiangfei Zhang and Song Li
Processes 2025, 13(6), 1846; https://doi.org/10.3390/pr13061846 - 11 Jun 2025
Viewed by 356
Abstract
The shale oil reservoirs in the Liang Gaoshan area of the Sichuan Basin exhibit extremely low porosity and permeability, as well as significant heterogeneity. Consequently, hydraulic fracturing of horizontal wells is critical for achieving effective production enhancement. Early diagnostic monitoring revealed substantial variations [...] Read more.
The shale oil reservoirs in the Liang Gaoshan area of the Sichuan Basin exhibit extremely low porosity and permeability, as well as significant heterogeneity. Consequently, hydraulic fracturing of horizontal wells is critical for achieving effective production enhancement. Early diagnostic monitoring revealed substantial variations in fracture propagation. Some hydraulic fractures extended beyond the target layer into adjacent river sandstone, leading to increased fracturing costs and reduced reserve utilization rates. To address these challenges, temporary plugging fracturing (TPF) was implemented to optimize fluid distribution among fracture clusters. However, previous TPF operations in this basin relied heavily on empirical methods, resulting in a relatively low sealing success rate of approximately 70%. This study proposes a fracture propagation model that incorporates stress interference dynamics induced by temporary plugging fracturing agents. Additionally, through laboratory experiments, a high-pressure (30.2 MPa) degradable temporary-plugging agent was selected for use in horizontal well fracturing. Key process parameters, including the insertion timing, dosage, and distribution strategy of the temporary-plugging agent, were optimized using a numerical simulation system. The results indicate that injecting 50% of the fracturing fluid followed by the simultaneous deployment of 12 temporary blocking nodes ensures uniform fracture cluster extension while maximizing the reconstruction volume. Furthermore, deploying all temporary blocking nodes at once reduces the fracturing operation time by approximately 20%. These findings were validated via field applications at Well NC1. Microseismic monitoring during fracturing confirmed the accuracy of the research outcomes presented in this paper. After temporary plugging, the extension uniformity of each fracture cluster significantly improved, with the stimulated reservoir volume (SRV) of a single section reaching 530,000 cubic meters. These results provide a foundation for optimizing horizontal well fracturing in Liang Gaoshan shale oil reservoirs within the Sichuan Basin, facilitating efficient and economical fracturing operations. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

17 pages, 2091 KiB  
Article
Weight-Based Numerical Study of Shale Brittleness Evaluation
by Yu Suo, Fenfen Li, Qiang Liang, Liuke Huang, Liangping Yi and Xu Dong
Symmetry 2025, 17(6), 927; https://doi.org/10.3390/sym17060927 - 11 Jun 2025
Viewed by 250
Abstract
The implementation of lean drilling and completion design techniques is a pivotal strategy for the petroleum and natural gas industry to achieve green, low-carbon, and intelligent transformation and innovation. These techniques significantly enhance oil and gas recovery rates. In shale gas development, the [...] Read more.
The implementation of lean drilling and completion design techniques is a pivotal strategy for the petroleum and natural gas industry to achieve green, low-carbon, and intelligent transformation and innovation. These techniques significantly enhance oil and gas recovery rates. In shale gas development, the shale brittleness index plays a crucial role in evaluating fracturing ability during hydraulic fracturing. Indoor experiments on Gulong shale oil were conducted under a confining pressure of 30 MPa. Based on Rickman’s brittleness evaluation method, this study performed numerical simulations of triaxial compression tests on shale using the finite discrete element method. The fractal dimensions of the fractures formed during shale fragmentation were calculated using the box-counting method. Utilizing the obtained data, a multiple linear regression equation was established with elastic modulus and Poisson’s ratio as the primary variables, and the coefficients were normalized to propose a new brittleness evaluation method. The research findings indicate that the finite discrete element method can effectively simulate the rock fragmentation process, and the established multiple linear regression equation demonstrates high reliability. The weights reassigned for brittleness evaluation based on Rickman’s method are as follows: the coefficient for elastic modulus is 0.43, and the coefficient for Poisson’s ratio is 0.57. Furthermore, the new brittleness evaluation method exhibits a stronger correlation with the brittleness mineral index. The fractal characteristics of crack networks and the relationship between symmetry response and mechanical parameters offer a new theoretical foundation for brittle weight distribution. Additionally, the scale symmetry characteristics inherent in fractal dimensions can serve as a significant indicator for assessing complex crack morphology. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

12 pages, 5507 KiB  
Article
Important Insights on Fracturing Interference in Tight Conglomerate Reservoirs
by Kun Liu, Yiping Ye, Kaixin Liu, Zhemin Zhou and Tao Wan
Processes 2025, 13(6), 1842; https://doi.org/10.3390/pr13061842 - 11 Jun 2025
Viewed by 348
Abstract
Accurate understanding of natural fractures, faults, in situ stress, and mechanical properties of reservoir rocks is a prerequisite for evaluating well interference. During hydraulic fracturing, hydraulic fractures may connect with natural fractures or fault zones, leading to communication with adjacent wells and resulting [...] Read more.
Accurate understanding of natural fractures, faults, in situ stress, and mechanical properties of reservoir rocks is a prerequisite for evaluating well interference. During hydraulic fracturing, hydraulic fractures may connect with natural fractures or fault zones, leading to communication with adjacent wells and resulting in cross-well interference. Additionally, horizontal well spacing is a critical factor influencing the occurrence and severity of interference. The Mahu tight oil reservoir experiences severe fracturing interference issues, presenting multiple challenges. This study employs numerical simulation methods to quantitatively assess the influence of geological and engineering factors, including reservoir depletion volume, well spacing, natural fractures, and fracturing operation parameters on fracturing interference intensity. By integrating geological data, engineering parameters, and production data with microseismic monitoring and pressure information, this research aims to clarify key influencing factors and elucidate the fundamental mechanisms governing fracturing-driven interference occurrences. Through production performance analysis and microseismic monitoring, it has been established that well spacing, fracturing intensity, and natural fracture networks are the primary factors affecting interference in hydraulically fractured horizontal wells. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4770 KiB  
Article
In-Depth Analysis of Shut-In Time Using Post-Fracturing Flowback Fluid Data—Shale of the Longmaxi Formation in the Luzhou Basin and Weiyuan Basin of China as an Example
by Lingdong Li, Xinqun Ye, Zehao Lyu, Xiaoning Zhang, Wenhua Yu, Tianhao Huang, Xinxin Yu and Wenhai Yu
Processes 2025, 13(6), 1832; https://doi.org/10.3390/pr13061832 - 10 Jun 2025
Viewed by 414
Abstract
The development of shale gas relies on hydraulic fracturing technology and requires the injection of a large amount of fracturing fluid. The well shut-off period after fracturing can promote water infiltration and suction. Optimizing the well shut-off time is crucial for enhancing the [...] Read more.
The development of shale gas relies on hydraulic fracturing technology and requires the injection of a large amount of fracturing fluid. The well shut-off period after fracturing can promote water infiltration and suction. Optimizing the well shut-off time is crucial for enhancing the recovery rate. Among existing methods, the dimensionless time model is widely used, but it has limitations because it does not represent the length of on-site scale features. In this study, we focused on the shut-in time for a deep shale gas well (Lu-A) in Luzhou and a medium-deep shale gas well (Wei-B) in Weiyuan. By integrating the spontaneous seepage and aspiration experiments in the laboratory and the post-pressure backflow data (including mineralization degree, liquid volume recovery rate, etc.), a multi-scale well shutdown time prediction model considering the characteristic length was established. The experimental results show that the spontaneous resorption characteristic times of Lu-A and Wei-B are 3 h and 22 h, respectively. Based on the inversion of crack monitoring data, the key parameters such as the weighted average crack width (1.73/1.30 mm) and crack spacing (0.20/0.32 m) of Lu-A and Wei-B were obtained. Through the scale upgrade calculation of the feature length (0.10/0.16 m), the system determined that the optimal well shutdown times for the two wells were 14.5 days and 16.7 days, respectively. The optimization method based on a multi-parameter analysis of backflow fluid proposed in this study not only solves the limitations of the traditional dimensionless time model in characterizing the feature length but also provides a theoretical basis for the formulation of the well shutdown system and nozzle control strategy of shale gas wells. Full article
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 480
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

13 pages, 5825 KiB  
Article
Investigating the Physical Mechanisms of Quicksand Using a Custom-Designed Experimental Apparatus
by Jianhui Long, Rui Dong, Kaixin Zhang, Hangyu Weng and Zhiqiang Yi
Appl. Sci. 2025, 15(12), 6415; https://doi.org/10.3390/app15126415 - 6 Jun 2025
Viewed by 440
Abstract
Quicksand initiation in saturated sandy soils represents a critical geohazard with significant implications for geotechnical infrastructure stability. Despite its importance, the granular-scale mechanisms driving the physical state transitions during quicksand remain insufficiently understood. This study employs a custom-designed hydrodynamic seepage testing system to [...] Read more.
Quicksand initiation in saturated sandy soils represents a critical geohazard with significant implications for geotechnical infrastructure stability. Despite its importance, the granular-scale mechanisms driving the physical state transitions during quicksand remain insufficiently understood. This study employs a custom-designed hydrodynamic seepage testing system to investigate these mechanisms, enabling precise regulation of hydrodynamic velocity and real-time monitoring of pressure variations. Through experiments on quartz sand specimens with varying particle gradations, we demonstrate that particle gradation primarily governs quicksand susceptibility, while hydrodynamic velocity controls its initiation timing and exhibits a linear correlation with seepage discharge. The quicksand process evolves through three distinct stages: self-consolidation, reorganization, and quicksand initiation, with the reorganization stage identified as the pivotal phase where particle rearrangement dictates system stability. These findings elucidate the intrinsic physical mechanisms of quicksand as a hydraulic failure phenomenon, offering valuable insights for predictive modeling and geohazard mitigation in granular media. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

35 pages, 7887 KiB  
Article
Triaxial Experimental Study of Natural Gas Hydrate Sediment Fracturing and Its Initiation Mechanisms: A Simulation Using Large-Scale Ice-Saturated Synthetic Cubic Models
by Kaixiang Shen, Yanjiang Yu, Hao Zhang, Wenwei Xie, Jingan Lu, Jiawei Zhou, Xiaokang Wang and Zizhen Wang
J. Mar. Sci. Eng. 2025, 13(6), 1065; https://doi.org/10.3390/jmse13061065 - 28 May 2025
Viewed by 284
Abstract
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional [...] Read more.
The efficient extraction of natural gas from marine natural gas hydrate (NGH) reservoirs is challenging, due to their low permeability, high hydrate saturation, and fine-grained sediments. Hydraulic fracturing has been proven to be a promising technique for improving the permeability of these unconventional reservoirs. This study presents a comprehensive triaxial experimental investigation of the fracturing behavior and fracture initiation mechanisms of NGH-bearing sediments, using large-scale ice-saturated synthetic cubic models. The experiments systematically explore the effects of key parameters, including the injection rate, fluid viscosity, ice saturation, perforation patterns, and in situ stress, on fracture propagation and morphology. The results demonstrate that at low fluid viscosities and saturation levels, transverse and torsional fractures dominate, while longitudinal fractures are more prominent at higher viscosities. Increased injection rates enhance fracture propagation, generating more complex fracture patterns, including transverse, torsional, and secondary fractures. A detailed analysis reveals that the perforation design significantly influences the fracture direction, with 90° helical perforations inducing vertical fractures and fixed-plane perforations resulting in transverse fractures. Additionally, a plastic fracture model more accurately predicts fracture initiation pressures compared to traditional elastic models, highlighting a shift from shear to tensile failure modes as hydrate saturation increases. This research provides new insights into the fracture mechanisms of NGH-bearing sediments and offers valuable guidance for optimizing hydraulic fracturing strategies to enhance resource extraction in hydrate reservoirs. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
Show Figures

Figure 1

25 pages, 5915 KiB  
Article
Experimental Study on the Effect of Fractures on the Irreducible and Movable Water in Water-Bearing Tight Sandstone Gas Reservoirs
by Aiguo Hu, Li Su, Gang Cao, Zhuo Luo, Changhui Yan and Qing Chen
Processes 2025, 13(6), 1685; https://doi.org/10.3390/pr13061685 - 27 May 2025
Viewed by 422
Abstract
Hydraulic fracturing significantly impacts water production. This makes it crucial to determine whether its effects on formation water production are beneficial or detrimental in complex reservoir stimulations. This paper gives the influence that acts on pore structure variations and irreducible water transformation by [...] Read more.
Hydraulic fracturing significantly impacts water production. This makes it crucial to determine whether its effects on formation water production are beneficial or detrimental in complex reservoir stimulations. This paper gives the influence that acts on pore structure variations and irreducible water transformation by hydraulic fracturing; by using NMR and Micro-CT, pore-throat reconfiguration in core samples induced fracturing. Two main pore variation types were identified from CT images. To analyze the gas–water flow mechanisms in pre-fracturing and post-fracturing reservoir conditions, we tested quantifying changes in irreducible water transforms into movable water saturation by using a triaxial in situ flow system, thereby elucidating the impact of the hydraulic fracture on irreducible water saturation. The experiments demonstrate that pore structures are significantly modified in terms of connectivity and diameter through hydraulic fracturing. During damage zone formation, 12.4–19.2% of small pores coalesce into larger pores through integration of isolated spaces. This variation enhances fluid mobility, transforms 1.38–11.61% of irreducible water, and decreases starting pressure gradients by 1 MPa/100 m to 0.1 MPa/100 m. Modified pore structure leads to the iso-permeability point shifting toward higher water saturation. The gas-phase relative permeability at irreducible water saturation is two times as high as that of the matrix sample. Fractured zones show a 20–23% conversion efficiency of irreducible to movable water. In addition, based on the results of experimental data, hydraulic fracturing increased water production by 3607 to 9163 m3. However, this effect is only maintained during the first 3 to 6 months post-fracture. These results quantify the transformation of irreducible water into movable water in hydraulic fracturing. This study provides key performance indicators for gas reservoir applications. Full article
(This article belongs to the Special Issue Advances in Unconventional Reservoir Development and CO2 Storage)
Show Figures

Figure 1

Back to TopTop