Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells
Abstract
:1. Introduction
2. Mechanism of Temporary Plugging Fracturing
2.1. Temporary-Plugging-Material Optimization
2.2. Numerical Simulation Model of Temporary-Plugging Fracturing
- (1)
- Fluid-flow governing equation [32]:
- w: fracture width (m), t: time (s), : fluid viscosity (Pas), : fluid pressure (Pa),
- : injection rate (m3/s), : leak-off rate (Carter model, m3/(sm)),
- : Carter leak-off coefficient, : time when fluid reaches position x(s)
- (2)
- Fracture width–stress coupling [33]:
- : Poisson’s ratio, E: Young’s modulus (Pa), : minimum horizontal stress (Pa),
- : Green’s function for fracture deformation(m−1),
- : fracture length at time t(m).
- (3)
- Pressure jump across the plugged zone:
- : pressure jump across plugged zone (Pa),
- : dimensionless resistance factor,
- flow rate through plugged zone (m3/s),
- permeability of plugged zone (m2),
- cross-sectional area of plugged zone (m2).
- (4)
- Stress interference induced by temporary plugging:
- stress interference increment due to temporary plugging (MPa),
- temporary-plugging efficiency coefficient,
- net pressure (MPa),
- area of the fracture sealed by the temporary-plugging agent (m2),
- fracture volume (m3).
- (5)
- Fracture propagation model equation:
- dL/dt: fracture propagation velocity (m/s). This represents the rate of change in fracture length with respect to time.
- C: fracture propagation coefficient. L: fracture length at time t (m).
- : net pressure within the fracture (MPa). This represents the fluid pressure exceeding the minimum confining stress (P_net = p − σ_min).
- : stress interference increment due to temporary plugging (MPa), defined in the fourth equation.
- : mode I fracture toughness of the rock (MPa·m1/2): a material property representing resistance to tensile fracture propagation.
- : fracture propagation exponent (dimensionless): an empirical constant typically ranging between 1 and 2.
2.3. Optimization of the Dosage of Temporary-Plugging Knots
2.4. Optimization of Filling Time for Temporary-Plugging Knots
2.5. Optimization of Temporary-Plugging Frequency in Hydraulic Fracturing
3. Field Application
4. Conclusions
- (1)
- Field practice has proved that temporary-plugging fracturing technology can improve the problem of non-uniform fracture extension of various clusters of shale oil horizontal wells in the Sichuan Basin. The optimal solution for the temporary-plugging fracturing of shale oil horizontal wells in the Sichuan Basin is to inject 12 temporary-plugging knots at one time after 50% of the pumping fracturing has occurred.
- (2)
- Compared with the temporary plugging of fibers and particles, the temporary-plugging knot has a better plugging ability for perforating holes. Due to the good flexibility of the temporary-plugging knot, it has a stronger adaptability for plugging irregular perforating holes formed by proppant erosion.
- (3)
- To optimize the fracture network complexity and stimulated reservoir volume (SRV) in shale oil horizontal wells within the Sichuan Basin, this study recommends a systematic investigation of intra-fracture temporary plugging and diversion (TPD) technology. Particular emphasis should be placed on determining the optimal timing for diversion operations and characterizing the performance of temporary-plugging agents with respect to their composition, particle size distribution, and degradation behavior under downhole conditions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Fan, Y.; Wang, L.; Wang, Y.; Lv, Z.; He, R. A new fracturing method to improve stimulation effect of Marl tight oil reservoir in Sichuan basin. Processes 2023, 11, 3234. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Z. Composite stimulation technology for improving fracture length and conductivity of unconventional reservoirs. Front. Phys. 2023, 11, 1181302. [Google Scholar] [CrossRef]
- Guo, W.; Deng, S.; Sun, Y. Recent advances on shale oil and gas exploration and development technologies. Adv. Geo-Energy Res. 2024, 11, 81–87. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. A review of phase behavior simulation of hydrocarbons in confined space: Implications for shale oil and shale gas. J. Nat. Gas Sci. Eng. 2019, 68, 102901. [Google Scholar] [CrossRef]
- Jiang, X.M.; Han, X.X.; Cui, Z.G. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energy Combust. Sci. 2007, 33, 552–579. [Google Scholar] [CrossRef]
- Geng, S.; He, X.; Li, C.; Geng, S.; Zhu, R. A new permeability model for smooth fractures filled with spherical proppants. J. Hydrol. 2023, 626, 130220. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Zhang, W.; Chen, X.; Liu, H.; Liang, C. Basic characteristics and evaluation of shale oil reservoirs. Pet. Res. 2016, 1, 149–163. [Google Scholar] [CrossRef]
- Yin, Q.; Zeng, B.; Zhao, J.; Ren, L.; Chen, X.; Lin, R.; Hu, Y.; Du, L.; Li, Z.; Hu, D.; et al. Ten years of gas shale fracturing in China: Review and prospect. Nat. Gas Ind. B 2022, 9, 158–175. [Google Scholar]
- Hou, B.; Chang, Z.; Wu, A.; Derek, E. Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar sag. Acta Pet. Sin. 2022, 43, 75. [Google Scholar]
- Feng, Q.; Wang, X.; Shu, C.; Yang, Y.; Cao, X.; Qin, Y.; Wang, S.; Zhong, A. Imbibition mechanisms of fracturing fluid in shale oil formation: A review from the multiscale perspective. Energy Fuels 2023, 37, 9822–9840. [Google Scholar]
- Li, G.; Liu, G.; Hou, Y.; Zhao, X.; Wu, J.; Li, S.; Xian, C.; Liu, H. Optimization method of favorable lithofacies and fracturing parameter for continental shale oil. Acta Pet. Sin. 2021, 42, 1405. [Google Scholar]
- Chen, W.-B.; Qu, Z.-Q.; Guo, T.-K.; Xue, X.-J.; Xu, R.-L.; Chen, M.; Hu, Z.-P. Numerical simulation of fracturing and imbibition in shale oil horizontal wells. Pet. Sci. 2023, 20, 2981–3001. [Google Scholar]
- Zhao, M. Field experiments and main understanding of shale oil hydraulic fracturing. Front. Earth Sci. 2024, 12, 1410524. [Google Scholar] [CrossRef]
- Zhu, J.; Forrest, J.; Hong, X.; Kianinejad, A. Cluster spacing and well spacing optimization using multi-well simulation for the lower Spraberry shale in Midland basin. In Proceedings of the SPE Liquids-Rich Basins Conference-North America, Midland, TX, USA, 13–14 September 2017; SPE: Richardson, TX, USA, 2017; p. D011S001R003. [Google Scholar]
- Zou, Y.; Ma, X.; Zhang, S. Numerical modeling of fracture propagation during temporary-plugging fracturing. SPE J. 2020, 25, 1503–1522. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Zou, Y.; Ma, X.; Li, N.; Liu, L. Experimental investigation into simultaneous and sequential propagation of multiple closely spaced fractures in a horizontal well. J. Pet. Sci. Eng. 2021, 202, 108531. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, Y.; Zhou, C.; Luo, Z.; Chen, W.; He, T.; Fang, H.; Fu, Y. Research and application of segmented acid fracturing by temporary plugging in ultradeep carbonate reservoirs. ACS Omega 2021, 6, 28620–28629. [Google Scholar] [CrossRef]
- Zhang, R.; Hou, B.; Tan, P.; Muhadasi, Y.; Fu, W.; Dong, X.; Chen, M. Hydraulic fracture propagation behavior and diversion characteristic in shale formation by temporary plugging fracturing. J. Pet. Sci. Eng. 2020, 190, 107063. [Google Scholar] [CrossRef]
- Yuan, L.; Zhou, F.; Li, B.; Gao, J.; Yang, X.; Cheng, J.; Wang, J. Experimental study on the effect of fracture surface morphology on plugging efficiency during temporary plugging and diverting fracturing. J. Nat. Gas Sci. Eng. 2020, 81, 103459. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.; Xu, H.; Gu, X.; Wang, J.; Zhou, F. Insights into the activation characteristics of natural fracture during in-fracture temporary plugging and diverting fracturing. Comput. Geotech. 2023, 162, 105655. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Z.; Huang, Z. Three-Dimensional hydraulic fracture simulation with hydromechanical coupled-element partition method. Int. J. Geomech. 2021, 21, 04021162. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Zhang, Z. Numerical study on hydraulic fracture-cavity interaction in fractured-vuggy carbonate reservoir. J. Pet. Sci. Eng. 2022, 213, 110426. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, M.; Deng, H.; Zhao, S.; Gluyas, J.G.; Ye, T.; Ruan, Y. River channel pattern controls on the quality of sandstone reservoirs: A case study from the Jurassic Shaximiao formation of western Sichuan Basin, China. J. Pet. Sci. Eng. 2021, 205, 108925. [Google Scholar] [CrossRef]
- Carrera, L.; Morales, O.; Sierra, F.; Teran, N.; Monge, A.; Alvarez, J. Abrasive Perforation Technique Optimize Production and Avoid Reservoir Damage in COCA Field Ecuador. In Proceedings of the SPE Latin America and Caribbean Petroleum Engineering Conference, Quito, Ecuador, 18–20 November 2015; SPE: Richardson, TX, USA, 2015; p. D031S028R004. [Google Scholar]
- Wu, B.; Shi, S.; Zhang, T.; Wang, J.; Wang, M.; Wang, J.; Wang, J.; Wang, Z. Study on field test and plugging simulation of the knot temporary plugging agent. Chem. Technol. Fuels Oils 2022, 58, 530–543. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, Q.; Yu, R.; Yang, H.; Liu, B.; Li, X.; Yang, Z.; Li, T.; Han, Z. Research of a Self-Adaptive High-Performance Re-Fracturing Technology with Knot Temporary Plugging in a Thin Reservoir with High Stress. Chem. Technol. Fuels Oils 2023, 58, 1027–1034. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Liu, P.; Du, J.; Liang, C.; Huang, Q.; Zhu, D.; Liu, F. A critical review of key points in temporary plugging fracturing: Materials, injection, temporary plugging, and design. Geoenergy Sci. Eng. 2024, 240, 212981. [Google Scholar] [CrossRef]
- Ren, L.; Peng, S.; Zhao, J.; Lin, R.; Wu, J.; Wu, J. Optimization design of plugging agent dosage and application of deep shale gas inner-diversion fracturing. Geoenergy Sci. Eng. 2024, 239, 212908. [Google Scholar] [CrossRef]
- Kong, X.; Xu, H.; Shen, J.; Zhang, Y.; Sun, T. Study on the velocity of the temporary plugging agent along wellbore in a fracturing operation. Chem. Technol. Fuels Oils 2022, 58, 185–188. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Peng, J.; Han, H.; Wang, Y.; Lv, Z. Temporary Plugging Agent Evaluation Technology and Its Applications in Shale Reservoirs in the Sichuan Basin. Processes 2023, 11, 2799. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, S.; Wang, H.; Bian, X.; Zhong, G.; Wei, R.; Zhou, J.; Xiao, B.; Kao, J. Case Study: Dual Temporary Plugging & High Proppant Intensity Fracturing Stimulation Technique in Deep Shale Gas Play in Sichuan Basin, China. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, Santa Fe, NM, USA, 26–29 June 2022; ARMA: West Perth, WA, USA, 2022; p. ARMA-2022-0659. [Google Scholar]
- Wu, R.; Kresse, O.; Weng, X.; Cohen, C.; Gu, H. Modeling of interaction of hydraulic fractures in complex fracture networks. In Proceedings of the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, TX, USA, 6–8 February 2012; SPE: Richardson, TX, USA, 2012; p. SPE-152052-MS. [Google Scholar]
- Zhi, D.; Guo, X.; Wang, W.; Jin, Y.; Liu, C.; Chen, G.; Wang, Z. Fracturing and production analysis of the efficacy of hydraulic fracture stage reduction in the improvement of cost-effectiveness in shale oil development: A case study of Jimsar shale oil, China. Energy Sci. Eng. 2021, 9, 1337–1348. [Google Scholar] [CrossRef]
- Piersma, T.; Hoekstra, R.; Dekinga, A.; Koolhaas, A.; Wolf, P.; Battley, P.; Wiersma, P. Scale and intensity of intertidal habitat use by knots Calidris canutus in the western Wadden Sea in relation to food, friends and foes. Neth. J. Sea Res. 1993, 31, 331–357. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Wang, J.; Li, J.; Liu, L. Experimental validation and numerical analysis of temporary plugging ball transport dynamics in horizontal wellbore. Particuology 2025, 98, 271–288. [Google Scholar] [CrossRef]
- Zening, S.; Zhanglong, T.; Junwen, L.; Qi, A.; Yushi, Z.; Shikang, L.; Ziwen, Z. Investigation into hydraulic fracture propagation behavior during temporary plugging and diverting fracturing in deep coal seam. Front. Energy Res. 2024, 12, 1369428. [Google Scholar] [CrossRef]
Type of Temporary-Plugging Material | Perforation Plugging Efficiency, % |
---|---|
Plugging balls | 39.8~42.5 |
Combination of temporary-plugging balls and particles | 73.1~78.0 |
Temporary-plugging knot | 96.2~98.8 |
Type of Temporary-Plugging Material | Plugging Pressure, MPa |
---|---|
Plugging balls | 15.6 |
Combination of temporary-plugging balls and particles | 20.1 |
Temporary-plugging knot | 30.2 |
Porosity, % | 4.3 |
Permeability, mD | 0.487 |
Oil saturation, % | 45.1 |
Young’s modulus, 104 MPa | 4.0 |
Poisson’s ratio | 0.23 |
Compressive strength, MPa | 273 |
Horizontal maximum principal stress, MPa | 55.4 |
Horizontal minimum principal stress, MPa | 47.2 |
Fracturing fluid injection displacement, m3/min | 18 |
Reservoir thickness, m | 15 |
Compressive strength of rock, MPa | 410 |
Fracturing fluid viscosity, mPa·s | 15 |
Temporary-plugging-knot density, g/cm3 | 1.2 |
Injection rate, m3/min | 18 |
Fluid volume, m3 | 2400 |
Fracturing fluid viscosity, mPa·s | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yuan, Q.; Chen, W.; Yan, J.; Zhang, X.; Li, S. Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells. Processes 2025, 13, 1846. https://doi.org/10.3390/pr13061846
Wang Y, Yuan Q, Chen W, Yan J, Zhang X, Li S. Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells. Processes. 2025; 13(6):1846. https://doi.org/10.3390/pr13061846
Chicago/Turabian StyleWang, Yang, Qingyun Yuan, Weihua Chen, Jie Yan, Xiangfei Zhang, and Song Li. 2025. "Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells" Processes 13, no. 6: 1846. https://doi.org/10.3390/pr13061846
APA StyleWang, Y., Yuan, Q., Chen, W., Yan, J., Zhang, X., & Li, S. (2025). Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells. Processes, 13(6), 1846. https://doi.org/10.3390/pr13061846