Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,624)

Search Parameters:
Keywords = hybrid-GA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1353 KiB  
Article
Hydrogen Cost and Carbon Analysis in Hollow Glass Manufacturing
by Dario Atzori, Claudia Bassano, Edoardo Rossi, Simone Tiozzo, Sandra Corasaniti and Angelo Spena
Energies 2025, 18(15), 4105; https://doi.org/10.3390/en18154105 (registering DOI) - 2 Aug 2025
Abstract
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated [...] Read more.
The European Union promotes decarbonization in energy-intensive industries like glass manufacturing. Collaboration between industry and researchers focuses on reducing CO2 emissions through hydrogen (H2) integration as a natural gas substitute. However, to the best of the authors’ knowledge, no updated real-world case studies are available in the literature that consider the on-site implementation of an electrolyzer for autonomous hydrogen production capable of meeting the needs of a glass manufacturing plant within current technological constraints. This study examines a representative hollow glass plant and develops various decarbonization scenarios through detailed process simulations in Aspen Plus. The models provide consistent mass and energy balances, enabling the quantification of energy demand and key cost drivers associated with H2 integration. These results form the basis for a scenario-specific techno-economic assessment, including both on-grid and off-grid configurations. Subsequently, the analysis estimates the levelized costs of hydrogen (LCOH) for each scenario and compares them to current and projected benchmarks. The study also highlights ongoing research projects and technological advancements in the transition from natural gas to H2 in the glass sector. Finally, potential barriers to large-scale implementation are discussed, along with policy and infrastructure recommendations to foster industrial adoption. These findings suggest that hybrid configurations represent the most promising path toward industrial H2 adoption in glass manufacturing. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Figure 1

26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 (registering DOI) - 1 Aug 2025
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

19 pages, 2547 KiB  
Article
Artificial Intelligence Optimization of Polyaluminum Chloride (PAC) Dosage in Drinking Water Treatment: A Hybrid Genetic Algorithm–Neural Network Approach
by Darío Fernando Guamán-Lozada, Lenin Santiago Orozco Cantos, Guido Patricio Santillán Lima and Fabian Arias Arias
Computation 2025, 13(8), 179; https://doi.org/10.3390/computation13080179 - 1 Aug 2025
Abstract
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural [...] Read more.
The accurate dosing of polyaluminum chloride (PAC) is essential for achieving effective coagulation in drinking water treatment, yet conventional methods such as jar tests are limited in their responsiveness and operational efficiency. This study proposes a hybrid modeling framework that integrates artificial neural networks (ANN) with genetic algorithms (GA) to optimize PAC dosage under variable raw water conditions. Operational data from 400 jar test experiments, collected between 2022 and 2024 at the Yanahurco water treatment plant (Ecuador), were used to train an ANN model capable of predicting six post-treatment water quality indicators, including turbidity, color, and pH. The ANN achieved excellent predictive accuracy (R2 > 0.95 for turbidity and color), supporting its use as a surrogate model within a GA-based optimization scheme. The genetic algorithm evaluated dosage strategies by minimizing treatment costs while enforcing compliance with national water quality standards. The results revealed a bimodal dosing pattern, favoring low PAC dosages (~4 ppm) during routine conditions and higher dosages (~12 ppm) when influent quality declined. Optimization yielded a 49% reduction in median chemical costs and improved color compliance from 52% to 63%, while maintaining pH compliance above 97%. Turbidity remained a challenge under some conditions, indicating the potential benefit of complementary coagulants. The proposed ANN–GA approach offers a scalable and adaptive solution for enhancing chemical dosing efficiency in water treatment operations. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 (registering DOI) - 31 Jul 2025
Viewed by 37
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

14 pages, 6242 KiB  
Article
Characteristic Analysis of Ictalurus punctatus STING and Screening Validation of Interacting Proteins with Ictalurid herpesvirus 1
by Lihui Meng, Shuxin Li, Hongxun Chen, Sheng Yuan and Zhe Zhao
Microorganisms 2025, 13(8), 1780; https://doi.org/10.3390/microorganisms13081780 - 30 Jul 2025
Viewed by 110
Abstract
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function [...] Read more.
The innate immune response is an important defense against invading pathogens. Stimulator of interferon gene (STING) plays an important role in the cyclic GMP-AMP synthase (cGAS)-mediated activation of type I IFN responses. However, some viruses have evolved the ability to inhibit the function of STING and evade the host antiviral defenses. Understanding both the mechanism of action and the viruses targets of STING effector is important because of their importance to evade the host antiviral defenses. In this study, the STING (IpSTING) of Ictalurus punctatus was first identified and characterized. Subsequently, the yeast two-hybrid system (Y2HS) was used to screen for proteins from channel catfish virus (CCV, Ictalurid herpesvirus 1) that interact with IpSTING. The ORFs of the CCV were cloned into the pGBKT7 vector and expressed in the AH109 yeast strain. The bait protein expression was validated by autoactivation, and toxicity investigation compared with control (AH109 yeast strain transformed with empty pGBKT7 and pGADT7 vector). Two positive candidate proteins, ORF41 and ORF65, were identified through Y2HS screening as interacting with IpSTING. Their interactions were further validated using co-immunoprecipitation (Co-IP). This represented the first identification of interactions between IpSTING and the CCV proteins ORF41 and ORF65. The data advanced our understanding of the functions of ORF41 and ORF65 and suggested that they might contribute to the evasion of host antiviral defenses. However, the interaction mechanism between IpSTING, and CCV proteins ORF41 and ORF65 still needs to be further explored. Full article
Show Figures

Figure 1

25 pages, 1583 KiB  
Article
Predicting China’s Provincial Carbon Peak: An Integrated Approach Using Extended STIRPAT and GA-BiLSTM Models
by Lian Chen, Hailan Chen and Yao Guo
Sustainability 2025, 17(15), 6819; https://doi.org/10.3390/su17156819 - 27 Jul 2025
Viewed by 380
Abstract
As China commits to reaching peak carbon emissions and achieving carbon neutrality, accurately predicting the provincial carbon peak year is vital for designing effective, region-specific policies. This study proposes an integrated approach based on extended STIRPAT and GA-BiLSTM models to predict China’s provincial [...] Read more.
As China commits to reaching peak carbon emissions and achieving carbon neutrality, accurately predicting the provincial carbon peak year is vital for designing effective, region-specific policies. This study proposes an integrated approach based on extended STIRPAT and GA-BiLSTM models to predict China’s provincial carbon peak year. First, based on panel data across 30 provinces in China from 2000 to 2023, we construct a multidimensional indicator system that encompasses socioeconomic factors, energy consumption dynamics, and technological innovation using the extended STIRPAT model, which explains 87.42% of the variation in carbon emissions. Second, to improve prediction accuracy, a hybrid model combining GA-optimized BiLSTM networks is proposed, capturing temporal dynamics and optimizing parameters to address issues like overfitting. The GA-BiLSTM model achieves an R2 of 0.9415, significantly outperforming benchmark models with lower error metrics. Third, based on the model constructed above, the peak years are projected for baseline, low-carbon, and high-carbon scenarios. In the low-carbon scenario, 19 provinces are projected to peak before 2030, which is 8 more than in the baseline scenario. Meanwhile, under the high-carbon scenario, some provinces such as Jiangsu and Hebei may fail to peak by 2040. Finally, based on the predicted carbon peak year, provinces are categorized into four pathways—early, recent, later, and non-peaking—to provide targeted policy recommendations. This integrated framework significantly enhances prediction precision and captures regional disparities, enabling tailored decarbonization strategies that support China’s dual carbon goals of balancing economic growth with environmental protection. The approach provides critical insights for region-specific low-carbon transitions and advances sustainable climate policy modeling. Full article
Show Figures

Figure 1

14 pages, 1607 KiB  
Article
Three-Dimensional Distribution of Titanium Hydrides After Degradation of Magnesium/Titanium Hybrid Implant Material—A Study by X-Ray Diffraction Contrast Tomography
by Vasil M. Garamus, D. C. Florian Wieland, Julian P. Moosmann, Felix Beckmann, Lars Lottermoser, Maria Serdechnova, Carsten Blawert, Mohammad Fazel, Eshwara P. S. Nidadavolu, Wolfgang Limberg, Thomas Ebel, Regine Willumeit-Römer and Berit Zeller-Plumhoff
J. Compos. Sci. 2025, 9(8), 396; https://doi.org/10.3390/jcs9080396 - 26 Jul 2025
Viewed by 243
Abstract
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can [...] Read more.
Hybrid implants composed of magnesium and titanium are a promising direction in orthopaedics, as these implants combine the stability of titanium with the biological activity of magnesium. These partly soluble implants require careful investigation, as the degradation of magnesium releases hydrogen, which can enter the Ti matrix and thus alter the mechanical properties. To investigate this scenario and quantify the hydrogen uptake along with its structural impacts, we employed inert gas fusion, scanning electron microscopy, X-ray diffraction, and a combination of synchrotron absorption and X-ray diffraction tomography. These techniques enabled us to investigate the concentration and distribution of hydrogen and the formation of hydrides in the samples. Titanium hydride formation was observed in a region approximately 120 µm away from the titanium surface and correlates with the amount of absorbed hydrogen. We speculate that the degradation of magnesium at the magnesium/titanium implant interface leads to the penetration of hydrogen due to a combination of electrochemical and gaseous charging. Full article
Show Figures

Figure 1

42 pages, 10454 KiB  
Article
State-of-Charge Estimation of Medium- and High-Voltage Batteries Using LSTM Neural Networks Optimized with Genetic Algorithms
by Romel Carrera, Leonidas Quiroz, Cesar Guevara and Patricia Acosta-Vargas
Sensors 2025, 25(15), 4632; https://doi.org/10.3390/s25154632 - 26 Jul 2025
Viewed by 424
Abstract
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under [...] Read more.
This study presents a hybrid method for state-of-charge (SOC) estimation of lithium-ion batteries using LSTM neural networks optimized with genetic algorithms (GA), combined with Coulomb Counting (CC) as an initial estimator. Experimental tests were conducted using medium-voltage (48–72 V) lithium-ion battery packs under standardized driving cycles (NEDC and WLTP). The proposed method enhances prediction accuracy under dynamic conditions by recalibrating the LSTM output with CC estimates through a dynamic fusion parameter α. The novelty of this approach lies in the integration of machine learning and physical modeling, optimized via evolutionary algorithms, to address limitations of standalone methods in real-time applications. The hybrid model achieved a mean absolute error (MAE) of 0.181%, outperforming conventional estimation strategies. These findings contribute to more reliable battery management systems (BMS) for electric vehicles and second-life applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 1870 KiB  
Review
Recent Advances in the Development and Industrial Applications of Wax Inhibitors: A Comprehensive Review of Nano, Green, and Classic Materials Approaches
by Parham Joolaei Ahranjani, Hamed Sadatfaraji, Kamine Dehghan, Vaibhav A. Edlabadkar, Prasant Khadka, Ifeanyi Nwobodo, VN Ramachander Turaga, Justin Disney and Hamid Rashidi Nodeh
J. Compos. Sci. 2025, 9(8), 395; https://doi.org/10.3390/jcs9080395 - 26 Jul 2025
Viewed by 277
Abstract
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to [...] Read more.
Wax deposition, driven by the crystallization of long-chain n-alkanes, poses severe challenges across industries such as petroleum, oil and natural gas, food processing, and chemical manufacturing. This phenomenon compromises flow efficiency, increases energy demands, and necessitates costly maintenance interventions. Wax inhibitors, designed to mitigate these issues, operate by altering wax crystallization, aggregation, and adhesion over the pipelines. Classic wax inhibitors, comprising synthetic polymers and natural compounds, have been widely utilized due to their established efficiency and scalability. However, synthetic inhibitors face environmental concerns, while natural inhibitors exhibit reduced performance under extreme conditions. The advent of nano-based wax inhibitors has revolutionized wax management strategies. These advanced materials, including nanoparticles, nanoemulsions, and nanocomposites, leverage their high surface area and tunable interfacial properties to enhance efficiency, particularly in harsh environments. While offering superior performance, nano-based inhibitors are constrained by high production costs, scalability challenges, and potential environmental risks. In parallel, the development of “green” wax inhibitors derived from renewable resources such as vegetable oils addresses sustainability demands. These eco-friendly formulations introduce functionalities that reinforce inhibitory interactions with wax crystals, enabling effective deposition control while reducing reliance on synthetic components. This review provides a comprehensive analysis of the mechanisms, applications, and comparative performance of classic and nano-based wax inhibitors. It highlights the growing integration of sustainable and hybrid approaches that combine the reliability of classic inhibitors with the advanced capabilities of nano-based systems. Future directions emphasize the need for cost-effective, eco-friendly solutions through innovations in material science, computational modeling, and biotechnology. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

21 pages, 4886 KiB  
Article
Field-Test-Driven Sensitivity Analysis and Model Updating of Aging Railroad Bridge Structures Using Genetic Algorithm Optimization Approach
by Rahul Anand, Sachin Tripathi, Celso Cruz De Oliveira and Ramesh B. Malla
Infrastructures 2025, 10(8), 195; https://doi.org/10.3390/infrastructures10080195 - 25 Jul 2025
Viewed by 249
Abstract
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. [...] Read more.
Aging railroad bridges present complex challenges due to advancing deterioration and outdated design assumptions. This study develops a comprehensive analytical approach for assessing an aging steel truss railroad bridge through finite element (FE) modeling, sensitivity analysis, and model updating, supported by field testing. An initial FE model of the bridge was created based on original drawings and field observations. Field testing using a laser Doppler vibrometer captured the bridge’s dynamic response (vibrations and deflections) under regular train traffic. Key structural parameters (material properties, section properties, support conditions) were identified and varied in a sensitivity analysis to determine their influence on model outputs. A hybrid sensitivity analysis combining log-normal sampling and a genetic algorithm (GA) was employed to explore the parameter space and calibrate the model. The GA optimization tuned the FE model parameters to minimize discrepancies between simulated results and field measurements, focusing on vertical deflections and natural frequencies. The updated FE model showed significantly improved agreement with observed behavior; for example, vertical deflections under a representative train were matched within a few percent, and natural frequencies were accurately reproduced. This validated model provides a more reliable tool for predicting structural performance and fatigue life under various loading scenarios. The results demonstrate that integrating field data, sensitivity analysis, and model updating can greatly enhance the accuracy of structural assessments for aging railroad bridges, supporting more informed maintenance and management decisions. Full article
Show Figures

Figure 1

12 pages, 1595 KiB  
Article
Vermicompost Tea in the Production, Gas Exchange and Quality of Strawberry Fruits
by Gabriel Lobo de Mendonça, Jader Galba Busato, Ernandes Rodrigues de Alencar and Alessandra Monteiro de Paula
Agriculture 2025, 15(15), 1607; https://doi.org/10.3390/agriculture15151607 - 25 Jul 2025
Viewed by 234
Abstract
The water-soluble extract from vermicompost, also known as vermicompost tea (VT), has attracted interest in sustainable production research due to its potential to increase crop yields. However, information regarding the influence of this bioinput on strawberry cultivation remains limited. This study aimed to [...] Read more.
The water-soluble extract from vermicompost, also known as vermicompost tea (VT), has attracted interest in sustainable production research due to its potential to increase crop yields. However, information regarding the influence of this bioinput on strawberry cultivation remains limited. This study aimed to evaluate the effects of different VT solution concentrations on the mass fruit, physiology, and fruit quality of the hybrid strawberry cultivar ‘Portola’. The experiment was conducted in a greenhouse, with foliar and substrate applications of VT solutions at varying concentrations (0%, 2%, 4%, 6% and 8%) over 150 days. Evaluations included the chemical composition of the VT, as well as the physiological and agronomic parameters of the strawberry plants, such as gas exchange, biometric data, the physicochemical quality of the fruit and the nutritional composition. Significant differences in gas exchange parameters, particularly intercellular CO2 concentration and stomatal conductance, were observed at the final growth stage. Of the quality and compositional parameters of the strawberries, only the soluble solids/titratable acidity (SS/TA) ratio was affected. The various VT dilutions induced physiological alterations in the strawberry plants, with energy being allocated towards mass fruit at the expense of fruit quality, specifically in terms of the SS/TA ratio. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

22 pages, 6221 KiB  
Article
Development and Experimental Validation of a Tubular Permanent Magnet Linear Alternator for Free-Piston Engine Applications
by Parviz Famouri, Jayaram Subramanian, Fereshteh Mahmudzadeh-Ghomi, Mehar Bade, Terence Musho and Nigel Clark
Machines 2025, 13(8), 651; https://doi.org/10.3390/machines13080651 - 25 Jul 2025
Viewed by 246
Abstract
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine [...] Read more.
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine system. Linear alternators offer a direct conversion of linear motion to electricity, eliminating the complexity and losses associated with rotary generators and enabling higher efficiency and simplified system architecture. The study combines analytical modeling, finite element simulations, and a sensitivity-based design optimization to guide alternator and engine integration. Two prototype systems, designated as alpha and beta, were developed, modeled, and tested. The beta prototype achieved a maximum electrical output of 550 W at 57% efficiency using natural gas fuel, demonstrating reliable performance at elevated reciprocating frequencies. The design and optimization of specialized flexure springs were essential in achieving stable, high-frequency operation and improved power density. These results validate the effectiveness of the proposed design approach and highlight the scalability and adaptability of PMLA technology for sustainable power generation. Ultimately, this study demonstrates the potential of free piston linear generator systems as efficient, robust, and environmentally friendly alternatives to traditional rotary generators, with applications spanning hybrid electric vehicles, distributed energy systems, and combined heat and power. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

17 pages, 1149 KiB  
Article
The Relationship Between Smartphone and Game Addiction, Leisure Time Management, and the Enjoyment of Physical Activity: A Comparison of Regression Analysis and Machine Learning Models
by Sevinç Namlı, Bekir Çar, Ahmet Kurtoğlu, Eda Yılmaz, Gönül Tekkurşun Demir, Burcu Güvendi, Batuhan Batu and Monira I. Aldhahi
Healthcare 2025, 13(15), 1805; https://doi.org/10.3390/healthcare13151805 - 25 Jul 2025
Viewed by 284
Abstract
Background/Objectives: Smartphone addiction (SA) and gaming addiction (GA) have become risk factors for individuals of all ages in recent years. Especially during adolescence, it has become very difficult for parents to control this situation. Physical activity and the effective use of free time [...] Read more.
Background/Objectives: Smartphone addiction (SA) and gaming addiction (GA) have become risk factors for individuals of all ages in recent years. Especially during adolescence, it has become very difficult for parents to control this situation. Physical activity and the effective use of free time are the most important factors in eliminating such addictions. This study aimed to test a new machine learning method by combining routine regression analysis with the gradient-boosting machine (GBM) and random forest (RF) methods to analyze the relationship between SA and GA with leisure time management (LTM) and the enjoyment of physical activity (EPA) among adolescents. Methods: This study presents the results obtained using our developed GBM + RF hybrid model, which incorporates LTM and EPA scores as inputs for predicting SA and GA, following the preprocessing of data collected from 1107 high school students aged 15–19 years. The results were compared with those obtained using routine regression results and the lasso, ElasticNet, RF, GBM, AdaBoost, bagging, support vector regression (SVR), K-nearest neighbors (KNN), multi-layer perceptron (MLP), and light gradient-boosting machine (LightGBM) models. In the GBM + RF model, probability scores obtained from GBM were used as input to RF to produce final predictions. The performance of the models was evaluated using the R2, mean absolute error (MAE), and mean squared error (MSE) metrics. Results: Classical regression analyses revealed a significant negative relationship between SA scores and both LTM and EPA scores. Specifically, as LTM and EPA scores increased, SA scores decreased significantly. In contrast, GA scores showed a significant negative relationship only with LTM scores, whereas EPA was not a significant determinant of GA. In contrast to the relatively low explanatory power of classical regression models, ML algorithms have demonstrated significantly higher prediction accuracy. The best performance for SA prediction was achieved using the Hybrid GBM + RF model (MAE = 0.095, MSE = 0.010, R2 = 0.9299), whereas the SVR model showed the weakest performance (MAE = 0.310, MSE = 0.096, R2 = 0.8615). Similarly, the Hybrid GBM + RF model also showed the highest performance for GA prediction (MAE = 0.090, MSE = 0.014, R2 = 0.9699). Conclusions: These findings demonstrate that classical regression analyses have limited explanatory power in capturing complex relationships between variables, whereas ML algorithms, particularly our GBM + RF hybrid model, offer more robust and accurate modeling capabilities for multifactorial cognitive and performance-related predictions. Full article
Show Figures

Figure 1

27 pages, 6134 KiB  
Article
Research on BPNN-MDSG Hybrid Modeling Method for Full-Cycle Simulation of Surge in Altitude Test Facility Compressor System
by Yang Su, Xuejiang Chen and Xin Wang
Appl. Sci. 2025, 15(15), 8253; https://doi.org/10.3390/app15158253 - 24 Jul 2025
Viewed by 252
Abstract
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and [...] Read more.
Altitude Test Facility (ATF) compressor systems are widely used in aero-engine tests. These systems achieve the control of gas pressure and transport through complex operation processes. With advancements in the aviation industry, there is a growing demand for higher performance, greater safety, and more energy efficiency in digital ATF systems. Hybrid modeling is a technology that combines many methods and can meet these requirements. The Modular Dynamic System Greitzer (MDSG) compressor model, including mechanistic and data-driven modeling approaches, is combined with a neural network to obtain a BPNN-MDSG hybrid modeling method for the digital turbine system. The digital simulation is linked with the physical sensors of the ATF system to realize real-time simulation and monitoring. The steady and dynamic conditions of the actual system are simulated in virtual space. Compared with the actual results, the average error of steady mass flow is less than 3%, and the error of pressure is less than 1%. The average error of dynamic mass flow is less than 5%, and the error of pressure is less than 3%. The simulation and characteristic predictions are carried out in BPNN-MDSG virtual space. The anti-surge characteristics of the ATF system under start-up conditions are obtained. The full-condition anti-surge operation map of the system is obtained, which provides guidance for the actual operation of the ATF system. Full article
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 379
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

Back to TopTop