Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = hybrid steel–basalt fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3203 KiB  
Article
Axial Compression Behavior of Square RC Columns Confined by Rectangular BFRP and Hybrid Ties
by Amr M. A. Moussa, Arafa M. A. Ibrahim, Ahmed Elsayed, Zhishen Wu and Ahmed Monier
Infrastructures 2025, 10(8), 206; https://doi.org/10.3390/infrastructures10080206 - 8 Aug 2025
Viewed by 233
Abstract
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to [...] Read more.
This study investigates the axial compression behavior of square reinforced concrete (RC) columns confined by a novel type of rectangular closed basalt fiber-reinforced polymer (BFRP) tie fabricated using a continuous filament winding method, and hybrid steel–BFRP configurations. The proposed ties were developed to overcome common limitations of conventional FRP stirrups, such as reduced tensile strength at bent regions and premature rupture. A total of five RC column specimens were tested under monotonic axial loading: one reference specimen with conventional steel ties, two specimens with BFRP ties spaced at 45 mm and 90 mm, and two hybrid specimens combining steel and BFRP ties. Experimental results showed that the steel-confined column achieved the highest peak axial load of 1793.2 kN and an ultimate strain value of 1.12. The specimen with closely spaced BFRP ties (45 mm) reached 94.7% of the peak load of the steel-confined specimen and exhibited over 137% higher axial strain capacity. The hybrid specimen with two interleaved BFRP ties achieved the highest confinement effectiveness ratio of 1.306. The findings demonstrate that the proposed BFRP ties offer a structurally viable and corrosion-resistant alternative to steel ties, particularly when used in hybrid systems. This research contributes to the development of durable, high-performance confinement strategies for RC columns in seismic and aggressive environmental conditions. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

33 pages, 13337 KiB  
Article
Machinability of Basalt and Glass Fiber Hybrid Composites in Dry Drilling Using TiN/TiAlN-Coated Drill Bits
by Mehmet İskender Özsoy, Satılmış Ürgün, Sinan Fidan, Eser Yarar, Erman Güleç and Mustafa Özgür Bora
Polymers 2025, 17(16), 2172; https://doi.org/10.3390/polym17162172 - 8 Aug 2025
Viewed by 318
Abstract
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm [...] Read more.
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm twist drills at 1520 revolutions per minute and 0.10 mm rev−1 under dry running with an uncoated high-speed steel (HSS-R), grind-coated high-speed steel (HSS-G) or physical vapor deposition-coated (high-speed steel coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN)) drill bits. The hybrid sheets were deliberately incorporated to clarify how alternating basalt–glass architectures redistribute interlaminar stresses during drilling, while the hard, low-friction TiN and TiAlN ceramic coatings enhance cutting performance by forming a heat-resistant tribological barrier that lowers tool–workpiece adhesion, reduces interface temperature, and thereby suppresses thrust-induced delamination. Replacement of an uncoated, grind-coated, high-speed-steel drill (HSS-G) with the latter coats lowered the mechanical and thermal loads substantially: mean thrust fell from 79–94 N to 24–30 N, and peak workpiece temperatures from 112 °C to 74 °C. Accordingly, entry/exit oversize fell from 2.5–4.7% to under 0.6% and, from the surface, the SEM image displayed clean fiber severance rather than pull-out and matrix smear. By analysis of variance (ANOVA), 92.7% of the variance of thrust and 86.6% of that of temperature could be accounted for by the drill-bit factor, thus confirming that the coatings overwhelm the laminate structure and hybrid stacking simply redistribute, but cannot overcome, the former influence. Regression models and an artificial neural network optimized via meta-heuristic optimization foretold thrust, temperature and delamination with an R2 value of 0.94 or higher, providing an instant-screening device with which to explore industrial application. The work reveals TiAlN- and TiN-coated drills as financially competitive alternatives with which to achieve ±1% dimensional accuracy and minimum subsurface damage during multi-material composite machining. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 3232 KiB  
Article
Residual Flexural Behavior of Hybrid Fiber-Reinforced Geopolymer After High Temperature Exposure
by Yiyang Xiong, Ruiwen Jiang, Yi Li and Peipeng Li
Materials 2025, 18(15), 3572; https://doi.org/10.3390/ma18153572 - 30 Jul 2025
Viewed by 298
Abstract
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using [...] Read more.
Cement-based building materials usually exhibit weak flexural behavior under high temperature or fire conditions. This paper develops a novel geopolymer with enhanced residual flexural strength, incorporating fly ash/metakaolin precursors and corundum aggregates based on our previous study, and further improves flexural performance using hybrid fibers. The flexural load–deflection response, strength, deformation capacity, toughness and microstructure are investigated by a thermal exposure test, bending test and microstructure observation. The results indicate that the plain geopolymer exhibits a continuously increasing flexural strength from 10 MPa at 20 °C to 25.9 MPa after 1000 °C exposure, attributed to thermally induced further geopolymerization and ceramic-like crystalline phase formation. Incorporating 5% wollastonite fibers results in slightly increased initial and residual flexural strength but comparable peak deflection, toughness and brittle failure. The binary 5% wollastonite and 1% basalt fibers in geopolymer obviously improve residual flexural strength exposed to 400–800 °C. The steel fibers show remarkable reinforcement on flexural behavior at 20–800 °C exposure; however, excessive steel fiber content such as 2% weakens flexural properties after 1000 °C exposure due to severe oxidation deterioration and thermal incompatibility. The wollastonite/basalt/steel fibers exhibit a positive synergistic effect on flexural strength and toughness of geopolymers at 20–600 °C. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 477
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

36 pages, 23108 KiB  
Article
Research on Mechanical Properties of Steel Tube Concrete Columns Reinforced with Steel–Basalt Hybrid Fibers Based on Experiment and Machine Learning
by Bohao Zhang, Xiao Xu and Wenxiu Hao
Buildings 2025, 15(11), 1859; https://doi.org/10.3390/buildings15111859 - 28 May 2025
Viewed by 531
Abstract
In this paper, a new type of combined column, square steel tube hybrid steel–basalt fiber reinforced concrete column (BSFCFST), is proposed for the first time, and a new hybrid machine learning model, NRBO-XGBoost, is proposed to predict the axial compressive load capacity of [...] Read more.
In this paper, a new type of combined column, square steel tube hybrid steel–basalt fiber reinforced concrete column (BSFCFST), is proposed for the first time, and a new hybrid machine learning model, NRBO-XGBoost, is proposed to predict the axial compressive load capacity of BSFCFST. Eleven specimens were designed and fabricated to investigate the axial mechanical properties of BSFCFST. The variables considered include basalt fiber volume content, steel fiber volume content, steel tube wall thickness and specimen length to slenderness ratio. The characteristics of damage modes, load-displacement curves and load-strain curves of the new combined columns were mainly investigated. The results showed that the hybrid fibers improved the ultimate load carrying capacity of the specimen, and the improvement of the ductility was obvious. On the basis of the experiments, a parametric expansion analysis of several structural parameters of the specimen was carried out by using ABAQUS finite element software, and a combined model NRBO-XGBoost, based on the Newton-Raphson optimization algorithm (NRBO), and the advanced machine learning model XGBoost was proposed for the prediction of the BSFCFST’s ultimate carrying capacity. The combined model NRBO-XGBoost was evaluated by comparing it with several prediction methods. The results show that the prediction accuracy of the NRBO-XGBoost model is significantly higher than that of other prediction methods, with R2 = 0.988, which is a good alternative to existing empirical models. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 28824 KiB  
Review
Research Status of Mechanical Properties and Microstructure of Fiber-Reinforced Desert Sand Concrete
by Bo Nan, Jiantong Xin and Wei Yu
Materials 2025, 18(11), 2531; https://doi.org/10.3390/ma18112531 - 27 May 2025
Viewed by 430
Abstract
This study systematically investigates the effects of the desert sand replacement ratio (DSRR) and the incorporation of individual fiber types such as steel fibers, polypropylene fibers, and basalt fibers, as well as various hybrid fiber combinations, on the workability, mechanical properties, and microstructure [...] Read more.
This study systematically investigates the effects of the desert sand replacement ratio (DSRR) and the incorporation of individual fiber types such as steel fibers, polypropylene fibers, and basalt fibers, as well as various hybrid fiber combinations, on the workability, mechanical properties, and microstructure of fiber-reinforced desert sand concrete (FRDSC). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) assessed hydration byproducts and elucidated the material’s toughening mechanisms. The optimal compressive strength occurs at 40% DSRR; further increases in the replacement ratio lead to a decline in performance. At this optimal DSRR, the addition of 0.5% steel fibers by volume results in a 27.6% increase in the compressive strength of the specimens. Moreover, the splitting tensile strength of specimens reinforced with a hybrid combination of basalt fibers and polypropylene fibers increased by 9.7% compared to those reinforced with basalt fibers alone. Microstructural observations reveal that fiber bridging promotes denser calcium silicate hydrate (C-S-H) gel development. These findings underscore the promising viability of FRDSC as a sustainable construction material, particularly for infrastructure projects in desert regions, offering both environmental and economic advantages. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

51 pages, 3113 KiB  
Review
Effect of Hybrid Fiber Compositions on Mechanical Properties and Durability of Ultra-High-Performance Concrete: A Comprehensive Review
by Paulina Dziomdziora and Piotr Smarzewski
Materials 2025, 18(11), 2426; https://doi.org/10.3390/ma18112426 - 22 May 2025
Cited by 1 | Viewed by 1188
Abstract
Ultra-high-performance concrete (UHPC) has emerged as a revolutionary material in structural engineering due to its exceptional mechanical properties and durability. This review comprehensively examines the influence of hybrid fiber compositions on UHPC, focusing on mechanical performance and resistance to environmental degradation. Hybrid fibers, [...] Read more.
Ultra-high-performance concrete (UHPC) has emerged as a revolutionary material in structural engineering due to its exceptional mechanical properties and durability. This review comprehensively examines the influence of hybrid fiber compositions on UHPC, focusing on mechanical performance and resistance to environmental degradation. Hybrid fibers, which combine steel and synthetic and basalt fibers, improve compressive, tensile, and flexural strengths by bridging microcracks and limiting macrocrack propagation. Studies reveal that steel fiber combinations, particularly those with varying lengths and shapes, significantly improve ductility and load-bearing capacity, while steel–synthetic hybrids balance strength and flexibility. However, excessive synthetic fibers can reduce compressive strength. Basalt–synthetic hybrids, though less effective in compression, excel in tensile strength and crack resistance. Durability assessments highlight the superior resistance of UHPCs to chloride penetration, carbonation, freeze–thaw cycles, and high temperatures, and hybrid fibers further mitigate spalling and permeability. Polypropylene fibers, for instance, enhance fire resistance by creating vapor release channels. The challenge of optimizing fiber proportions and mix designs remains to minimize trade-offs between strength and workability. Future research should explore advanced fiber combinations, long-term environmental performance, and eco-friendly additives to expand the applicability of UHPC in sustainable infrastructure. This review underscores the potential of hybrid fibers to tailor UHPCs for diverse engineering demands while addressing current limitations. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Graphical abstract

23 pages, 4356 KiB  
Article
Effects of High Temperature and Water Re-Curing on the Flexural Behavior and Mechanical Properties of Steel–Basalt Hybrid Fiber-Reinforced Concrete
by Zinnur Çelik and Yunus Urtekin
Appl. Sci. 2025, 15(3), 1587; https://doi.org/10.3390/app15031587 - 4 Feb 2025
Cited by 1 | Viewed by 942
Abstract
Fiber-reinforced concrete (FRC) has become increasingly important in recent decades due to its superior mechanical properties, especially flexural strength and toughness, compared to normal concrete. FRC has also received significant attention because of its superior fire resistance performance compared to non-fiber concrete. In [...] Read more.
Fiber-reinforced concrete (FRC) has become increasingly important in recent decades due to its superior mechanical properties, especially flexural strength and toughness, compared to normal concrete. FRC has also received significant attention because of its superior fire resistance performance compared to non-fiber concrete. In recent years, studies on the mechanical performance, fire design, and post-fire repair of thermally damaged fibrous and non-fibrous concrete have gained importance. In particular, there are very few studies in the literature on the mechanical performance and flexural behavior of steel and basalt hybrid fiber concretes after high temperature and water re-curing. This study aims to determine the mechanical properties and toughness of concrete containing steel fiber (SF) and basalt fiber (BF) after ambient and high temperature (400 °C, 600 °C, and 800 °C). Additionally, this study aimed to examine the changes in fire-damaged FRCs as a result of water re-curing. In this context, high temperature and water re-curing were carried out on non-fibrous concrete (control) and four different fiber compositions: in the first mixture, only steel fibers were used, and in the other two mixtures, basalt fibers were substituted at 25% and 50% rates instead of steel fibers. Furthermore, in the fifth mixture, basalt fibers were replaced by polypropylene fibers (PPFs) to make a comparison with the steel and basalt hybrid fiber-reinforced mixture. This study examined the effects of different fiber compositions on the ultrasonic pulse velocity (UPV) and compressive and flexural strength of the specimens at ambient temperature and after exposure to elevated temperatures and water re-curing. Additionally, the load–deflection curves and toughness of the mixtures were determined. The study results showed that different fiber compositions varied in their healing effect at different stages. The hybrid use of SF and BF can improve the flexural strength before elevated temperature and particularly after 600 °C. However, it caused a decrease in the recovery rates, especially after re-curing with water in terms of toughness. Water re-curing provided remarkable improvement in terms of mechanical and toughness properties. This improvement was more evident in steel–polypropylene fiber-reinforced concretes. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 9526 KiB  
Article
Effect of Basalt/Steel Individual and Hybrid Fiber on Mechanical Properties and Microstructure of UHPC
by Yongfan Gong, Qian Hua, Zhengguang Wu, Yahui Yu, Aihong Kang, Xiao Chen and Hu Dong
Materials 2024, 17(13), 3299; https://doi.org/10.3390/ma17133299 - 4 Jul 2024
Cited by 9 | Viewed by 1800
Abstract
Ultra High-Performance Concrete (UHPC) is a cement-based composite material with great strength and durability. Fibers can effectively increase the ductility, strength, and fracture energy of UHPC. This work describes the impacts of individual or hybrid doping of basalt fiber (BF) and steel fiber [...] Read more.
Ultra High-Performance Concrete (UHPC) is a cement-based composite material with great strength and durability. Fibers can effectively increase the ductility, strength, and fracture energy of UHPC. This work describes the impacts of individual or hybrid doping of basalt fiber (BF) and steel fiber (SF) on the mechanical properties and microstructure of UHPC. We found that under individual doping, the effect of BF on fluidity was stronger than that of SF. Moreover, the compressive, flexural, and splitting tensile strength of UHPC first increased and then decreased with increasing BF dosage. The optimal dosage of BF was 1%. At a low content of fiber, UHPC reinforced by BF demonstrated greater flexural strength than that reinforced by SF. SF significantly improved the toughness of UHPC. However, a high SF dosage did not increase the strength of UHPC and reduced the splitting tensile strength. Secondly, under hybrid doping, BF was partially substituted for SF to improve the mechanical properties of hybrid fiber UHPC. Consequently, when the BF replacement rate increased, the compressive strength of UHPC gradually decreased; on the other hand, there was an initial increase in the fracture energy, splitting tensile strength, and flexural strength. The ideal mixture was 0.5% BF + 1.5% SF. The fluidity of UHPC with 1.5% BF + 0.5% SF became the lowest with a constant total volume of 2%. The microstructure of hydration products in the hybrid fiber UHPC became denser, whereas the interface of the fiber matrix improved. Full article
Show Figures

Figure 1

25 pages, 12969 KiB  
Article
Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
by Mohamad Yusuf Bin Salim, Ali Farokhi Nejad, Mohd Yazid Yahya, Tobias Dickhut and Seyed Saeid Rahimian Koloor
J. Compos. Sci. 2024, 8(5), 184; https://doi.org/10.3390/jcs8050184 - 15 May 2024
Cited by 11 | Viewed by 2439
Abstract
Hybrid composite materials have been widely used to advance the mechanical responses of fiber-reinforced composites by utilizing different types of fibers and fillers in a single polymeric matrix. This study incorporated three types of fibers: basalt woven fiber and steel (AISI304) wire meshes [...] Read more.
Hybrid composite materials have been widely used to advance the mechanical responses of fiber-reinforced composites by utilizing different types of fibers and fillers in a single polymeric matrix. This study incorporated three types of fibers: basalt woven fiber and steel (AISI304) wire meshes with densities of 100 and 200. These fibers were mixed with epoxy resin to generate plain composite laminates. Three fundamental mechanical tests (tensile, compression, and shear) were conducted according to the corresponding ASTM standards to characterize the steel wire mesh/basalt/epoxy FRP composites used as plain composite laminates. To investigate the flexural behavior of the hybrid laminates, various layer configurations and thickness ratios were examined using a design of experiments (DoE) matrix. Hybrid samples were chosen for flexural testing, and the same procedure was employed to develop a finite element (FE) model. Material properties from the initial mechanical testing procedure were integrated into plain and hybrid composite laminate simulations. The second FE model simulated the behavior of hybrid laminates under flexural loading; this was validated through experimental data. The results underwent statistical analysis, highlighting the optimal configuration of hybrid composite laminates in terms of flexural strength and modulus; we found an increase of up to 25% in comparison with the plain composites. This research provides insights into the potential improvements offered by hybrid composite laminates, generating numerical models for predicting various laminate configurations produced using hybrid steel wire mesh/basalt/epoxy FRP composites. Full article
(This article belongs to the Special Issue Hybrid Metal Matrix Composites)
Show Figures

Figure 1

19 pages, 12343 KiB  
Article
The Effects of Hybrid Steel/Basalt Fibers on the Durability of Concrete Pavement against Freeze–Thaw Cycles
by Jianqiao Yu, Zijing Yi, Zhigang Zhang, Dawei Liu and Junxin Ran
Materials 2023, 16(22), 7137; https://doi.org/10.3390/ma16227137 - 12 Nov 2023
Cited by 7 | Viewed by 1832
Abstract
Freeze–thaw (F-T) is one of the principal perils afflicting concrete pavements. A remedial strategy used during construction encompasses the integration of hybrid fibers into the concrete matrix. An extant research gap persists in elucidating the damage mechanism inherent in hybrid steel fiber (SF)- [...] Read more.
Freeze–thaw (F-T) is one of the principal perils afflicting concrete pavements. A remedial strategy used during construction encompasses the integration of hybrid fibers into the concrete matrix. An extant research gap persists in elucidating the damage mechanism inherent in hybrid steel fiber (SF)- and basalt fiber (BF)-reinforced concrete subjected to F-T conditions. This paper empirically investigated the durability performance of hybrid fiber-reinforced concrete (HFRC) subjected to F-T cycles. The impact of SF/BF hybridization on mass loss, abrasion resistance, compressive strength, flexural strength, damaged layer thickness, and the relative dynamic modulus of elasticity (RDME) was examined. The damage mechanism was explored using micro-hardness and SEM analysis. The results indicate that incorporating hybrid SF/BF effectively enhances the F-T resistance of concrete and prolongs the service life of concrete pavement. The mechanisms underlying these trends can be traced back to robust bonding at the fiber/matrix interface. Randomly dispersed SFs and BFs contribute to forming a three-dimensional spatial structure within the concrete matrix, suppressing the expansion of internal cracks caused by accumulated hydrostatic pressure during the F-T cycle. This research outcome establishes a theoretical foundation for the application of HFRC to concrete pavements in cold regions. Full article
Show Figures

Figure 1

18 pages, 6818 KiB  
Article
Adhesion and Sliding Constitutive Relationship between Basalt–Polypropylene Hybrid Fiber-Reinforced Concrete and Steel Bars
by Bo Wen, Guanyi Gao, Ding Huang and Hongyu Zheng
Appl. Sci. 2023, 13(22), 12108; https://doi.org/10.3390/app132212108 - 7 Nov 2023
Cited by 4 | Viewed by 1183
Abstract
The extreme marine environment of the South China Sea Islands, which features high temperatures, high humidity levels and high salt levels, seriously affects the safety of building structures. The durability of concrete can be significantly improved by adding a basalt–polypropylene hybrid fiber, but [...] Read more.
The extreme marine environment of the South China Sea Islands, which features high temperatures, high humidity levels and high salt levels, seriously affects the safety of building structures. The durability of concrete can be significantly improved by adding a basalt–polypropylene hybrid fiber, but its bonding mechanism with deformed bars is complicated. Therefore, the bonding performance of hybrid basalt–polypropylene fiber-reinforced concrete and deformed bars was studied by combining experiments and a theoretical analysis. We designed 38 groups of different concrete strengths, different thicknesses of concrete covers, different anchor lengths and different diameters of rebars. The bond strengths, bond–sliding curves and failure forms of each pull specimen were compared and analyzed. The results showed that the failure forms and bond–slip curves of the basalt–polypropylene hybrid fiber-reinforced concrete specimens and the ordinary concrete specimens were essentially the same. Based on the results of the axial tensile tests, an ultimate bond strength prediction model was developed, and a bond–sliding constitutive model for hybrid fiber-reinforced concrete and steel bars was also established. Full article
Show Figures

Figure 1

22 pages, 10638 KiB  
Article
Strength of Hybrid Steel-BFRP Reinforced Concrete Beams with Openings in the D-Region Strengthened Internally and Externally
by Sameh Yehia, Bader Faihan and Arafa M. A. Ibrahim
Buildings 2023, 13(10), 2522; https://doi.org/10.3390/buildings13102522 - 5 Oct 2023
Cited by 2 | Viewed by 1688
Abstract
The opened beams always confused the designers due to the guidelines missing. In this research, six hybrid beams reinforced with mixed steel and basalt fiber-reinforced polymer (BFRP) bars and having constant cross-sections of 150 mm × 300 mm and a clear span of [...] Read more.
The opened beams always confused the designers due to the guidelines missing. In this research, six hybrid beams reinforced with mixed steel and basalt fiber-reinforced polymer (BFRP) bars and having constant cross-sections of 150 mm × 300 mm and a clear span of 1800 mm were cast and tested under a four-point loading setup. Generally, five beams had symmetrical rectangular openings with dimensions of 150 mm × 250 mm located at a distance of 250 mm (equivalent to the beam effective depth) from the beam support, while an additional solid beam served as a control. The studied parameters included the effect of using internal reinforcement (steel or BFRP bars) provided adjacent to the opening sides or by incorporating an external BFRP sheet around the opening corners. Also, double enhancement with internal steel reinforcement bars together with external strengthening BFRP sheet was investigated. The relevant results showed that the opened beam without enhancement lost 75% of the maximum load compared with the solid beam. Placing internal steel or BFRP bars around the openings increased the maximum load by 62% and 60%, respectively, compared to the non-enhanced opened beams. Using an external BFRP sheet to strengthen the opening corners of the beam enhanced the maximum load by 76% compared with the non-enhanced opened beam. Consequently, by combining both the internal steel reinforcement and external BFRP sheet around the openings, the maximum load increased by 137% compared with the non-enhanced opened beam. Ultimately, a numerical analysis of the three-dimensional finite element model was performed to confirm the experimental findings, and the relevant results showed compatibility correlations with the experimental ones. Also, the effect of various parameters such as BFRP reinforcement ratio and number of BFRP sheet layers around the openings was investigated by adapting the validated numerical model. Full article
Show Figures

Figure 1

17 pages, 6230 KiB  
Article
Study of the Freeze–Thaw Resistance for Composite Fiber Recycled Concrete with Sulphate Attack Exposure
by Xiaosa Yuan, Mingjiang Dai, Mengfan Li and Fang Liu
Buildings 2023, 13(4), 1037; https://doi.org/10.3390/buildings13041037 - 14 Apr 2023
Cited by 12 | Viewed by 2281
Abstract
The exposure of recycled concrete (RCA) to a sulphate environment in cold regions makes it crucial to overcome the freeze–thaw cycling effects of recycled concrete. Based on steel and basalt fiber reinforced recycled concrete, the freeze–thaw cycle resistance of recycled concrete was studied [...] Read more.
The exposure of recycled concrete (RCA) to a sulphate environment in cold regions makes it crucial to overcome the freeze–thaw cycling effects of recycled concrete. Based on steel and basalt fiber reinforced recycled concrete, the freeze–thaw cycle resistance of recycled concrete was studied by exposure to a sulphate environment. The mass loss, dynamic elastic modulus loss and compressive strength loss of the specimens were studied through freeze–thaw cycle experiments. SEM techniques were used to explore the effect of fiber distribution on the freeze–thaw resistance of recycled concrete. The freeze–thaw mechanism of the basalt fiber and steel fiber recycled concrete exposed to a sulphate environment has also been summarized. The results show that, based on the sulphate environment, the composite fiber recycled concrete has a higher stability in terms of mass loss and relative dynamic modulus of elasticity than single fiber concrete. The compressive strength of S0.9RC (recycled concrete with 0.9% steel fibers) and BF5.5RC (recycled concrete containing 5.5 kg/m3 basalt fibers) increased by 8.62% and 13.62%, respectively, compared to normal recycled concrete after 28 days of maintenance; and after 150 freeze–thaw cycles, the compressive strength increased by 41.39% and 47.54%, respectively; compared to ordinary natural aggregate concrete, the compressive strength of S0.9RC and BF5.5RC increased by 32.90% and 27.36%, respectively. The compressive strength of the S1.5BF7.5RC (recycled concrete with 1.5% steel fibers and 7.5 kg/m3 basalt fibers) composite basalt fiber–steel fiber concrete also increased by 42.82%. SEM techniques indicated that the basalt fiber in the recycled concrete exhibited fracture damage, which inhibited the development of microcracks within the concrete. When the recycled concrete is subjected to coupled sulphate and freeze–thaw cycles, freezing occurs from the outside in, with ice crystals extending along the cracks into the matrix. Prior to freezing, a negative pressure is created by the compression of the air and the contraction of the salt solution, which pulls the external solution inwards. The brine is in a state where ice and water coexist during the continuous cooling process. The salt solution migrates from the inside to the outside during heating and melting. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Graphical abstract

15 pages, 7886 KiB  
Article
Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC Nanoparticle/Polyester Hybrid Composite Materials
by Krishnasamy Karthik, Devaraj Rajamani, Elumalai Perumal Venkatesan, Mohamed Iqbal Shajahan, Ali A. Rajhi, Abdul Aabid, Muneer Baig and Bahaa Saleh
Crystals 2023, 13(3), 415; https://doi.org/10.3390/cryst13030415 - 27 Feb 2023
Cited by 49 | Viewed by 3712
Abstract
In recent years, many researchers have focused on the preparation of carbon and basalt fiber-reinforced composites. As a result, the composites have gained popularity as an alternative to traditional materials such as wood, steel, and aluminum. Carbon and basalt fibers were used in [...] Read more.
In recent years, many researchers have focused on the preparation of carbon and basalt fiber-reinforced composites. As a result, the composites have gained popularity as an alternative to traditional materials such as wood, steel, and aluminum. Carbon and basalt fibers were used in a bidirectional woven mat, with particulates varying from 0 to 15 wt% nanoparticle SiC. The hybrid laminates were fabricated through vacuum bag infusion methods. The novelty of the research work lies in studying the influence of nanoparticle SiC-combined carbon and basalt fibers arranged in six stacking sequences, with LY556 used as polyester matrix. Specimens were prepared and tested as per ASTM standards. Tensile, flexural, impact, and hardness tests were performed on the obtained specimens and average values were obtained. It was found that 15% SiC filler addition enhanced (20%) the mechanical properties. Scanning electron microscope photos revealed the bonding between the fiber mat and the matrix of thecrystal structure. The obtained tensile strength was 346 MPa and the flexural strength was 388 MPa. Dynamic mechanical analysis showed that mechanical properties were improved with the addition of 15% SiCnanoparticles. Hence, this method can be used to manufacture structural applications and automotive parts. Full article
Show Figures

Figure 1

Back to TopTop