Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (838)

Search Parameters:
Keywords = hybrid mean value

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 5325 KiB  
Review
Mechanical Ventilation Strategies in Buildings: A Comprehensive Review of Climate Management, Indoor Air Quality, and Energy Efficiency
by Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Najah M. L. Al Maimuri, Arman Ameen, Ephraim Bonah Agyekum, Atef Chibani and Mohamed Kezzar
Buildings 2025, 15(14), 2579; https://doi.org/10.3390/buildings15142579 - 21 Jul 2025
Viewed by 242
Abstract
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance [...] Read more.
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance of mechanical ventilation systems in regulating indoor climate, improving air quality, and minimising energy consumption. The findings indicate that demand-controlled ventilation (DCV) can enhance energy efficiency by up to 88% while maintaining CO2 concentrations below 1000 ppm during 76% of the occupancy period. Heat recovery systems achieve efficiencies of nearly 90%, leading to a reduction in heating energy consumption by approximately 19%. Studies also show that employing mechanical rather than natural ventilation in schools lowers CO2 levels by 20–30%. Nevertheless, occupant misuse or poorly designed systems can result in CO2 concentrations exceeding 1600 ppm in residential environments. Hybrid ventilation systems have demonstrated improved thermal comfort, with predicted mean vote (PMV) values ranging from –0.41 to 0.37 when radiant heating is utilized. Despite ongoing technological advancements, issues such as system durability, user acceptance, and adaptability across climate zones remain. Smart, personalized ventilation strategies supported by modern control algorithms and continuous monitoring are essential for the development of resilient and health-promoting buildings. Future research should prioritize the integration of renewable energy sources and adaptive ventilation controls to further optimise system performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 4707 KiB  
Article
Fabrication of Novel Hybrid Al-SiC-ZrO2 Composites via Powder Metallurgy Route and Intelligent Modeling for Their Microhardness
by Pallab Sarmah, Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 91; https://doi.org/10.3390/ceramics8030091 - 19 Jul 2025
Viewed by 191
Abstract
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were [...] Read more.
In this work, the development of Al-based metal matrix composites (MMCs) is achieved using hybrid SiC and ZrO2 reinforcement particles for automotive applications. Powder metallurgy (PM) is employed with various combinations of important process parameters for the fabrication of MMCs. MMCs were characterized using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and a microhardness study. All XRD graphs adequately exhibit Al, SiC, and ZrO2 peaks, indicating that the hybrid MMC products were satisfactorily fabricated with appropriate mixing and sintering at all the considered fabrication conditions. Also, no impurity peaks were observed, confirming high composite purity. MMC products in all the XRD patterns, suitable for the desired applications. According to the SEM investigation, SiC and ZrO2 reinforcement components are uniformly scattered throughout Al matrix in all produced MMC products. The occurrence of Al, Si, C, Zr, and O in EDS spectra demonstrates the effectiveness of composite ball milling and sintering under all manufacturing conditions. Moreover, an increase in interfacial bonding of fabricated composites at a higher sintering temperature indicated improved physical properties of the developed MMCs. The highest microhardness value is 86.6 HVN amid all the fabricated composites at 7% silica, 14% zirconium dioxide, 500° sintering temperature, 90 min sintering time, and 60 min milling time. An integrated Particle Swarm Optimization–Support Vector Machine (PSO-SVM) model was developed to predict microhardness based on the input parameters. The model demonstrated strong predictive performance, as evidenced by low values of various statistical metrics for both training and testing datasets, highlighting the PSO-SVM model’s robustness and generalization capability. Specifically, the model achieved a coefficient of determination of 0.995 and a root mean square error of 0.920 on the training set, while on the testing set, it attained a coefficient of determination of 0.982 and a root mean square error of 1.557. These results underscore the potential of the PSO-SVM framework, which can be effectively leveraged to optimize process parameters for achieving targeted microhardness levels for the developed Al-SiC-ZrO2 Composites. Full article
Show Figures

Figure 1

16 pages, 1383 KiB  
Article
Probabilistic Demand Forecasting in the Southeast Region of the Mexican Power System Using Machine Learning Methods
by Ivan Itai Bernal Lara, Roberto Jair Lorenzo Diaz, María de los Ángeles Sánchez Galván, Jaime Robles García, Mohamed Badaoui, David Romero Romero and Rodolfo Alfonso Moreno Flores
Forecasting 2025, 7(3), 39; https://doi.org/10.3390/forecast7030039 - 18 Jul 2025
Viewed by 269
Abstract
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the [...] Read more.
This paper focuses on electricity demand forecasting and its uncertainty representation using a hybrid machine learning (ML) model in the eastern control area of southeastern Mexico. In this case, different sources of uncertainty are integrated by applying the Bootstrap method, which adds the characteristics of stochastic noise, resulting in a hybrid probabilistic and ML model in the form of a time series. The proposed methodology addresses a function density probability, which is the generalized of extreme values obtained from the errors of the ML model; however, it is adaptable and independent and simulates the variability that may arise due to unforeseen events. Results indicate that for a five-day forecast using only demand data, the proposed model achieves a Mean Absolute Percentage Error (MAPE) of 4.358%; however, incorporating temperature increases the MAPE to 5.123% due to growing uncertainty. In contrast, a day-ahead forecast, including temperature, improves accuracy, reducing MAPE to 1.644%. The stochastic noise component enhances probabilistic modeling, yielding a MAPE of 3.042% with and 2.073% without temperature in five-day forecasts. Therefore, the proposed model proves useful for regions with high demand variability, such as southeastern Mexico, while maintaining accuracy over longer time horizons. Full article
(This article belongs to the Section Power and Energy Forecasting)
Show Figures

Figure 1

22 pages, 12507 KiB  
Article
Research on the Friction Prediction Method of Micro-Textured Cemented Carbide–Titanium Alloy Based on the Noise Signal
by Hao Zhang, Xin Tong and Baiyi Wang
Coatings 2025, 15(7), 843; https://doi.org/10.3390/coatings15070843 - 18 Jul 2025
Viewed by 231
Abstract
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force [...] Read more.
The vibration and noise of friction pairs are severe when cutting titanium alloy with cemented carbide tools, and the surface micro-texture can significantly reduce noise and friction. Therefore, it is very important to clarify the correlation mechanism between friction noise and friction force for processing quality control. Consequently, investigating the underlying mechanisms that link friction noise and friction is of considerable importance. This study focuses on the friction and wear acoustic signals generated by micro-textured cemented carbide–titanium alloy. A friction testing platform specifically designed for the micro-textured cemented carbide grinding of titanium alloy has been established. Acoustic sensors are employed to capture the acoustic signals, while ultra-depth-of-field microscopy and scanning electron microscopy are utilized for surface analysis. A novel approach utilizing the dung beetle algorithm (DBO) is proposed to optimize the parameters of variational mode decomposition (VMD), which is subsequently combined with wavelet packet threshold denoising (WPT) to enhance the quality of the original signal. Continuous wavelet transform (CWT) is applied for time–frequency analysis, facilitating a discussion on the underlying mechanisms of micro-texture. Additionally, features are extracted from the time domain, frequency domain, wavelet packet, and entropy. The Relief-F algorithm is employed to identify 19 significant features, leading to the development of a hybrid model that integrates Bayesian optimization (BO) and Transformer-LSTM for predicting friction. Experimental results indicate that the model achieves an R2 value of 0.9835, a root mean square error (RMSE) of 0.2271, a mean absolute error (MAE) of 0.1880, and a mean bias error (MBE) of 0.1410 on the test dataset. The predictive performance and stability of this model are markedly superior to those of the BO-LSTM, LSTM–Attention, and CNN–LSTM–Attention models. This research presents a robust methodology for predicting friction in the context of friction and wear of cemented carbide–titanium alloys. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

22 pages, 1718 KiB  
Review
A Review on Risk and Reliability Analysis in Photovoltaic Power Generation
by Ahmad Zaki Abdul Karim, Mohamad Shaiful Osman and Mohd. Khairil Rahmat
Energies 2025, 18(14), 3790; https://doi.org/10.3390/en18143790 - 17 Jul 2025
Viewed by 198
Abstract
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized [...] Read more.
Precise evaluation of risk and reliability is crucial for decision making and predicting the outcome of investment in a photovoltaic power system (PVPS) due to its intermittent source. This paper explores different methodologies for risk evaluation and reliability assessment, which can be categorized into qualitative, quantitative, and hybrid qualitative and quantitative (HQQ) approaches. Qualitative methods include failure mode analysis, graphical analysis, and hazard analysis, while quantitative methods include analytical methods, stochastic methods, Bayes’ theorem, reliability optimization, multi-criteria analysis, and data utilization. HQQ methodology combines table-based and visual analysis methods. Currently, reliability assessment techniques such as mean time between failures (MTBF), system average interruption frequency index (SAIFI), and system average interruption duration index (SAIDI) are commonly used to predict PVPS performance. However, alternative methods such as economical metrics like the levelized cost of energy (LCOE) and net present value (NPV) can also be used. Therefore, a risk and reliability approach should be applied together to improve the accuracy of predicting significant aspects in the photovoltaic industry. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 5486 KiB  
Article
SE-TransUNet-Based Semantic Segmentation for Water Leakage Detection in Tunnel Secondary Linings Amid Complex Visual Backgrounds
by Renjie Song, Yimin Wu, Li Wan, Shuai Shao and Haiping Wu
Appl. Sci. 2025, 15(14), 7872; https://doi.org/10.3390/app15147872 - 14 Jul 2025
Viewed by 182
Abstract
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was [...] Read more.
Traditional manual inspection methods for tunnel lining leakage are subjective and inefficient, while existing models lack sufficient recognition accuracy in complex scenarios. An intelligent leakage identification model adaptable to complex backgrounds is therefore needed. To address these issues, a Vision Transformer (ViT) was integrated into the UNet architecture, forming an SE-TransUNet model by incorporating SE-Block modules at skip connections between the encoder-decoder and the ViT output. Using a hybrid leakage dataset partitioned by k-fold cross-validation, the roles of SE-Block and ViT modules were examined through ablation experiments, and the model’s attention mechanism for leakage features was analyzed via Score-CAM heatmaps. Results indicate: (1) SE-TransUNet achieved mean values of 0.8318 (IoU), 0.8304 (Dice), 0.9394 (Recall), 0.8480 (Precision), 0.9733 (AUC), 0.8562 (MCC), 0.9218 (F1-score), and 6.53 (FPS) on the hybrid dataset, demonstrating robust generalization in scenarios with dent shadows, stain interference, and faint leakage traces. (2) Ablation experiments confirmed both modules’ necessity: The baseline model’s IoU exceeded the variant without the SE module by 4.50% and the variant without both the SE and ViT modules by 7.04%. (3) Score-CAM heatmaps showed the SE module broadened the model’s attention coverage of leakage areas, enhanced feature continuity, and improved anti-interference capability in complex environments. This research may provide a reference for related fields. Full article
Show Figures

Figure 1

14 pages, 1563 KiB  
Article
High-Resolution Time-Frequency Feature Selection and EEG Augmented Deep Learning for Motor Imagery Recognition
by Mouna Bouchane, Wei Guo and Shuojin Yang
Electronics 2025, 14(14), 2827; https://doi.org/10.3390/electronics14142827 - 14 Jul 2025
Viewed by 235
Abstract
Motor Imagery (MI) based Brain Computer Interfaces (BCIs) have promising applications in neurorehabilitation for individuals who have lost mobility and control over parts of their body due to brain injuries, such as stroke patients. Accurately classifying MI tasks is essential for effective BCI [...] Read more.
Motor Imagery (MI) based Brain Computer Interfaces (BCIs) have promising applications in neurorehabilitation for individuals who have lost mobility and control over parts of their body due to brain injuries, such as stroke patients. Accurately classifying MI tasks is essential for effective BCI performance, but this task remains challenging due to the complex and non-stationary nature of EEG signals. This study aims to improve the classification of left and right-hand MI tasks by utilizing high-resolution time-frequency features extracted from EEG signals, enhanced with deep learning-based data augmentation techniques. We propose a novel deep learning framework named the Generalized Wavelet Transform-based Deep Convolutional Network (GDC-Net), which integrates multiple components. First, EEG signals recorded from the C3, C4, and Cz channels are transformed into detailed time-frequency representations using the Generalized Morse Wavelet Transform (GMWT). The selected features are then expanded using a Deep Convolutional Generative Adversarial Network (DCGAN) to generate additional synthetic data and address data scarcity. Finally, the augmented feature maps data are subsequently fed into a hybrid CNN-LSTM architecture, enabling both spatial and temporal feature learning for improved classification. The proposed approach is evaluated on the BCI Competition IV dataset 2b. Experimental results showed that the mean classification accuracy and Kappa value are 89.24% and 0.784, respectively, making them the highest compared to the state-of-the-art algorithms. The integration of GMWT and DCGAN significantly enhances feature quality and model generalization, thereby improving classification performance. These findings demonstrate that GDC-Net delivers superior MI classification performance by effectively capturing high-resolution time-frequency dynamics and enhancing data diversity. This approach holds strong potential for advancing MI-based BCI applications, especially in assistive and rehabilitation technologies. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

20 pages, 1902 KiB  
Article
Prediction Model of Household Carbon Emission in Old Residential Areas in Drought and Cold Regions Based on Gene Expression Programming
by Shiao Chen, Yaohui Gao, Zhaonian Dai and Wen Ren
Buildings 2025, 15(14), 2462; https://doi.org/10.3390/buildings15142462 - 14 Jul 2025
Viewed by 138
Abstract
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in [...] Read more.
To support the national goals of carbon peaking and carbon neutrality, this study proposes a household carbon emission prediction model based on Gene Expression Programming (GEP) for low-carbon retrofitting of aging residential areas in arid-cold regions. Focusing on 15 typical aging communities in Kundulun District, Baotou City, a 17-dimensional dataset encompassing building characteristics, demographic structure, and energy consumption patterns was collected through field surveys. Key influencing factors (e.g., electricity usage and heating energy consumption) were selected using Pearson correlation analysis and the Random Forest (RF) algorithm. Subsequently, a hybrid prediction model was constructed, with its parameters optimized by minimizing the root mean square error (RMSE) as the fitness function. Experimental results demonstrated that the model achieved an R2 value of 0.81, reducing RMSE by 77.1% compared to conventional GEP models and by 60.4% compared to BP neural networks, while significantly improving stability. By combining data dimensionality reduction with adaptive evolutionary algorithms, this model overcomes the limitations of traditional methods in capturing complex nonlinear relationships. It provides a reliable tool for precision-based low-carbon retrofits in aging residential areas of arid-cold regions and offers a methodological advance for research on building carbon emission prediction driven by urban renewal. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 4616 KiB  
Article
Temporal Convolutional Network with Attention Mechanisms for Strong Wind Early Warning in High-Speed Railway Systems
by Wei Gu, Guoyuan Yang, Hongyan Xing, Yajing Shi and Tongyuan Liu
Sustainability 2025, 17(14), 6339; https://doi.org/10.3390/su17146339 - 10 Jul 2025
Viewed by 289
Abstract
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions [...] Read more.
High-speed railway (HSR) is a key transport mode for achieving carbon reduction targets and promoting sustainable regional economic development due to its fast, efficient, and low-carbon nature. Accurate wind speed forecasting (WSF) is vital for HSR systems, as it provides future wind conditions that are critical for ensuring safe train operations. Numerous WSF schemes based on deep learning have been proposed. However, accurately forecasting strong wind events remains challenging due to the complex and dynamic nature of wind. In this study, we propose a novel hybrid network architecture, MHSETCN-LSTM, for forecasting strong wind. The MHSETCN-LSTM integrates temporal convolutional networks (TCNs) and long short-term memory networks (LSTMs) to capture both short-term fluctuations and long-term trends in wind behavior. The multi-head squeeze-and-excitation (MHSE) attention mechanism dynamically recalibrates the importance of different aspects of the input sequence, allowing the model to focus on critical time steps, particularly when abrupt wind events occur. In addition to wind speed, we introduce wind direction (WD) to characterize wind behavior due to its impact on the aerodynamic forces acting on trains. To maintain the periodicity of WD, we employ a triangular transform to predict the sine and cosine values of WD, improving the reliability of predictions. Massive experiments are conducted to evaluate the effectiveness of the proposed method based on real-world wind data collected from sensors along the Beijing–Baotou railway. Experimental results demonstrated that our model outperforms state-of-the-art solutions for WSF, achieving a mean-squared error (MSE) of 0.0393, a root-mean-squared error (RMSE) of 0.1982, and a coefficient of determination (R2) of 99.59%. These experimental results validate the efficacy of our proposed model in enhancing the resilience and sustainability of railway infrastructure.Furthermore, the model can be utilized in other wind-sensitive sectors, such as highways, ports, and offshore wind operations. This will further promote the achievement of Sustainable Development Goal 9. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

21 pages, 1337 KiB  
Article
Cost Prediction for Power Transmission and Transformation Projects in High-Altitude Regions Based on a Hybrid Deep-Learning Algorithm
by Shasha Peng, Ya Zuo, Xiangping Li, Mingrui Zhao and Bingkang Li
Processes 2025, 13(7), 2092; https://doi.org/10.3390/pr13072092 - 1 Jul 2025
Viewed by 332
Abstract
Energy resources are abundant in high-altitude regions, and the construction of power transmission and transformation projects has important value. However, harsh natural environments can increase project costs. To address the issue of insufficient accuracy caused by the impact of extreme weather factors on [...] Read more.
Energy resources are abundant in high-altitude regions, and the construction of power transmission and transformation projects has important value. However, harsh natural environments can increase project costs. To address the issue of insufficient accuracy caused by the impact of extreme weather factors on cost predictions for power transmission and transformation projects in high-altitude regions, this paper first constructs a four-dimensional influencing factor system covering climate and environment, engineering scale, material consumption, and technological economy. On this basis, a hybrid deep-learning model combining an improved whale optimization algorithm (IWOA) and a convolutional neural network (CNN) is then proposed. The model improves the training accuracy of CNNs and avoids falling into local optima through the use of an SGDM optimizer, the L2 regularization method, and the Bayesian optimization method. Nonlinear convergence factors and adaptive weights are introduced to enhance the WOA’s ability to optimize the CNN’s learning rate. The case analysis results show that, compared with the comparison model, the proposed IWOA-CNN model exhibits a better convergence performance and fitting effect in the training set and a better prediction effect on the test set. Its mean absolute percentage error is as low as 1.51%, which is 10.1% lower than the optimal comparison model. The root mean square error is reduced to 5.07, and the sum of squared errors is reduced by 72.4%, demonstrating high prediction accuracy. The comparative analysis of scenarios further confirms the crucial role of climate environment; that is, the prediction accuracy of models containing a climate dimension is improved by 51.6% compared to models without such a climate dimension, indicating that the nonlinear impact of low temperatures, frozen soil, and other characteristics of high-altitude regions on costs cannot be ignored. The research results of this paper enrich the method system and application scenarios for the cost prediction for power transmission and transformation projects and provide theoretical reference for engineering predictions in other complex geographical environments. Full article
Show Figures

Figure 1

18 pages, 2596 KiB  
Review
Management and Treatment of Carotid Stenosis: Overview of Therapeutic Possibilities and Comparison Between Interventional Radiology, Surgery and Hybrid Procedure
by Lorenzo Aliotta, Livio Maria Gavazzi, Pierantonio Malfa, Pietro Valerio Foti, Stefano Palmucci, Maria Chiara Lo Greco, Corrado Spatola, Corrado Inì, Francesco Tiralongo, Davide Castiglione, Rita Bella, Gianluca Galvano, Giuseppe Lanza, Silvia Gigli, Antonio Basile, Vito Cantisani and Emanuele David
Diagnostics 2025, 15(13), 1679; https://doi.org/10.3390/diagnostics15131679 - 1 Jul 2025
Viewed by 701
Abstract
Carotid stenosis is a common pathology in clinical practice and unfortunately carries a high risk of serious cerebrovascular events. The early recognition of carotid plaque and, consequently, a careful analysis by means of multimodal imaging are the necessary steps to undertake a correct [...] Read more.
Carotid stenosis is a common pathology in clinical practice and unfortunately carries a high risk of serious cerebrovascular events. The early recognition of carotid plaque and, consequently, a careful analysis by means of multimodal imaging are the necessary steps to undertake a correct management pathway, aimed at preventing or, if not possible, reducing the risk of atherogenic phenomena responsible for cerebral infarction. In particular, the presence or absence of clinical symptoms, understood as the occurrence of events such as TIAs in the last 6 months, non-disabling strokes or repeated episodes of amaurosis fugax, and the degree of carotid stenosis, are certainly the most studied parameters, and as reported by several international guidelines, can lead to the best therapeutic strategy: whether to rely on conservative medical therapy or to resort to mechanical revascularization of the carotid stenosis. According to the recommendations of the European Society of Vascular Surgery, mechanical revascularization is recommended for stenosis > 50% in symptomatic patients and stenosis > 60% in asymptomatic patients. In contrast, the latest findings on plaque vulnerability have focused attention on individual patient characteristics and clinical comorbidities that may be responsible for plaque inflammation and should therefore be taken into consideration to decide if revascularization treatment is needed even in those subjects who present stenosis with less degree than reported as critical value. Moreover, further radiological investigations are fundamental to finding the presence of entities such as plaque ulceration, plaque neo-vascularization, fibrous caps, and intraplaque lipid core that are responsible for increased vulnerability. Medical therapy involves interventions aimed at eliminating cardiovascular risk factors by administering drugs that control the comorbidities responsible for worsening carotid stenosis. Recent studies are also evaluating the effectiveness of new plaque-modifying drugs or targeted anti-inflammatory agents in reducing the risk of plaque development and complications. Revascularization therapies, on the other hand, include surgery (CEA), the endovascular technique (CAS), and a new hybrid technique (TCAR): they are all valid alternatives for the treatment of carotid stenosis, each with specific technical difficulties, but on the whole with comparable safety profiles and risk rates of postoperative complications, although some recent emergencies have focused attention on possible short- and long-term gender-dependent outcome differences. The aim of this manuscript is to present the state of the art in the management of patients with carotid stenosis and to take a closer look at revascularization options. In our opinion, the choice of one strategy over another should therefore depend on gender, anatomical features of the patient, preoperative comorbidities, and last but not least, the experience of the center and the multidisciplinary team involved in the management of the patient. Full article
Show Figures

Figure 1

20 pages, 4558 KiB  
Article
Remaining Useful Life Prediction of Rolling Bearings Based on an Improved U-Net and a Multi-Dimensional Hybrid Gated Attention Mechanism
by Hengdi Wang and Aodi Shi
Appl. Sci. 2025, 15(13), 7166; https://doi.org/10.3390/app15137166 - 25 Jun 2025
Viewed by 421
Abstract
In practical scenarios, rolling bearing vibration signals suffer from detail loss, and information loss occurs during feature dimensionality reduction and fusion, leading to inaccurate life prediction results. To address these issues, this paper first proposes a method for predicting the remaining useful life [...] Read more.
In practical scenarios, rolling bearing vibration signals suffer from detail loss, and information loss occurs during feature dimensionality reduction and fusion, leading to inaccurate life prediction results. To address these issues, this paper first proposes a method for predicting the remaining useful life (RUL) of bearings, which combines an improved U-Net for enhancing vibration signals and a multi-dimensional hybrid gated attention mechanism (MHGAM) for dynamic feature fusion. The enhanced U-Net effectively suppresses the loss of signal details, while the MHGAM adaptively constructs health indices through multi-dimensional weighting, significantly improving prediction accuracy. Initially, the improved U-Net is utilized for signal preprocessing. By comprehensively considering both channel and spatial dimensions, the MHGAM dynamically assigns fusion weights across different dimensions to construct a health index. Subsequently, the health index is used as input for the Bi-GRU network model to obtain the remaining life prediction results. Finally, comparative analyses between the proposed method and other RUL prediction methods are conducted using the IEEE PHM 2012 bearing dataset (Condition 1: rotational speed 1800 r/min with radial load 4000 N; Condition 2: rotational speed 1650 r/min with radial load 4200 N) and engineering test data (rotational speed 1800 r/min with radial load 4000 N). Experimental results from the IEEE PHM 2012 bearing dataset indicate that this method achieves a low mean root mean square error (RMSE = 0.0504) and mean absolute error (MAE = 0.0239). The engineering test verification results demonstrate that the mean values of RMSE and MAE for this method are 7.8% lower than those of the CNN-BiGRU benchmark model and 14.6% lower than those of the TCN-BiGRU model, respectively. In terms of comprehensive prediction performance scores, the average scores improve by 7.8% and 9.3 percentage points compared with the two benchmark models, respectively. Under various test conditions, the prediction results of this method exhibit commendable comprehensive performance, significantly enhancing the prediction accuracy of bearing remaining useful life. Full article
Show Figures

Figure 1

28 pages, 2050 KiB  
Article
A Multidimensional Evaluation-Based Reinterpretation of the Cultural Heritage Value of Blue-and-White Porcelain Patterns in Contemporary Design
by Jiajia Zhao, Qian Bao, Ziyang Huang and Ru Zhang
Heritage 2025, 8(7), 250; https://doi.org/10.3390/heritage8070250 - 25 Jun 2025
Viewed by 473
Abstract
Blue-and-white porcelain patterns embody rich symbolic meanings and play a pivotal role in the transmission of Chinese intangible cultural heritage. However, their contemporary application often faces challenges due to complex visual forms and contextual interpretations. This study adopts a semiotic perspective to reinterpret [...] Read more.
Blue-and-white porcelain patterns embody rich symbolic meanings and play a pivotal role in the transmission of Chinese intangible cultural heritage. However, their contemporary application often faces challenges due to complex visual forms and contextual interpretations. This study adopts a semiotic perspective to reinterpret blue-and-white porcelain motifs as cultural heritage symbols, aiming to assess their potential for sustainable preservation and modern revitalization. A hybrid evaluation framework is proposed, combining Grey System Theory and the Fuzzy Evaluation Method to quantitatively analyze 40 representative patterns across five key dimensions: cultural symbolism, esthetic value, communicative potential, modern applicability, and sustainability. Data were collected from expert panels, public surveys, and market performance, with the Analytic Hierarchy Process (AHP) employed to determine the relative importance of each dimension. The results reveal that plant and geometric patterns exhibit high adaptability and symbolic clarity, making them ideal for reinterpretation in modern design. Conversely, complex narrative and animal-based motifs demonstrate weaker performance in communicative efficiency and sustainability, indicating the need for visual simplification and semantic transformation. This study provides a theoretical and methodological foundation for the revitalization of traditional porcelain heritage in contemporary design practice, contributing to the global dissemination and sustainable development of cultural heritage symbols. Full article
Show Figures

Figure 1

24 pages, 6560 KiB  
Article
Spatio-Temporal Attention-Based Deep Learning for Smart Grid Demand Prediction
by Muhammed Cavus and Adib Allahham
Electronics 2025, 14(13), 2514; https://doi.org/10.3390/electronics14132514 - 20 Jun 2025
Cited by 1 | Viewed by 1065
Abstract
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates [...] Read more.
Accurate short-term load forecasting is vital for the reliable and efficient operation of smart grids, particularly under the uncertainty introduced by variable renewable energy sources (RESs) such as solar and wind. This study introduces ST-CALNet, a novel hybrid deep learning framework that integrates convolutional neural networks (CNNs) with an Attentive Long Short-Term Memory (LSTM) network to enhance forecasting performance in renewable-integrated smart grids. The CNN component captures spatial dependencies from multivariate inputs, comprising meteorological variables and generation data, while the LSTM module models temporal correlations in historical load patterns. An embedded attention mechanism dynamically weights input sequences, enabling the model to prioritise the most influential time steps, thereby improving its interpretability and robustness during demand fluctuations. ST-CALNet was trained and evaluated using real-world datasets that include electricity consumption, solar photovoltaic (PV) output, and wind generation. Experimental evaluation demonstrated that the model achieved a mean absolute error (MAE) of 0.0494, root mean squared error (RMSE) of 0.0832, and a coefficient of determination (R2) of 0.4376 for electricity demand forecasting. For PV and wind generation, the model attained MAE values of 0.0134 and 0.0141, respectively. Comparative analysis against baseline models confirmed ST-CALNet’s superior predictive accuracy, particularly in minimising absolute and percentage-based errors. Temporal and regime-based error analysis validated the model’s resilience under high-variability conditions such as peak load periods, while visualisation of attention scores offered insights into the model’s temporal focus. These findings underscore the potential of ST-CALNet for deployment in intelligent energy systems, supporting more adaptive, transparent, and dependable forecasting within smart grid infrastructures. Full article
Show Figures

Figure 1

25 pages, 5193 KiB  
Article
A Two-Stage Model for Factors Influencing Citation Counts
by Pablo Dorta-González and Emilio Gómez-Déniz
Publications 2025, 13(2), 29; https://doi.org/10.3390/publications13020029 - 19 Jun 2025
Viewed by 460
Abstract
This work aims to use a suitable regression model to study a count response random variable, namely, the number of citations of a research paper, that is affected by some explanatory variables. The count variable exhibits substantial variation, as the sample variance is [...] Read more.
This work aims to use a suitable regression model to study a count response random variable, namely, the number of citations of a research paper, that is affected by some explanatory variables. The count variable exhibits substantial variation, as the sample variance is larger than the sample mean; thus, the classical Poisson regression model seems not to be appropriate. We concentrate our attention on the negative binomial regression model, which allows the variance of each measurement to be a function of its predicted value. Nevertheless, the process of citations of papers may be divided into two parts. In the first stage, the paper has no citations, while the second part provides the intensity of the citations. A hurdle model for separating documents with citations and those without citations is considered. The dataset for empirical application consisted of 43,190 research papers in the Economics and Business field from 2014–2021, which were obtained from The Lens database. Citation counts and social attention scores for each article were gathered from the Altmetric database. The main findings indicate that both collaboration and funding have positive impacts on citation counts and reduce the likelihood of receiving zero citations. Open access (OA) via repositories (green OA) correlates with higher citation counts and a lower probability of zero citations. In contrast, OA via the publisher’s website without an explicit open license (bronze OA) is associated with higher citation counts but also with a higher probability of zero citations. In addition, open access in subscription-based journals (hybrid OA) increases citation counts, although the effect is modest. There are clear disciplinary differences, with the prestige of the journal playing a significant role in citation counts. Articles with lower expert ratings tend to be cited less frequently and are more likely to be cited zero times. Meanwhile, news and blog mentions boost citations and reduce the likelihood of receiving no citations, while policy mentions also enhance citation counts and significantly lower the risk of being cited zero times. In contrast, patent mentions have a negative impact on citations. The influence of social media varies: X/Twitter and Wikipedia mentions increase citations and reduce the likelihood of being uncited, whereas Facebook and video mentions negatively impact citation counts. Full article
Show Figures

Figure 1

Back to TopTop