Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,428)

Search Parameters:
Keywords = hybrid economic model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3315 KB  
Article
Digital Twin Success Factors and Their Impact on Efficiency, Energy, and Cost Under Economic Strength: A Structural Equation Modeling and XGBoost Approach
by Jiachen Sun, Atasya Osmadi, Terh Jing Khoo, Qinghua Liu, Yi Zheng, Shan Liu and Yiwen Xu
Buildings 2026, 16(3), 467; https://doi.org/10.3390/buildings16030467 - 23 Jan 2026
Abstract
Digital twin (DT) technology is recognized for its transformative potential to enhance efficiency in the construction process. However, the full potential of DT in construction practices remains largely unrealised. Moreover, few studies explore how DT success factors affect efficiency improvement (EI), energy optimization [...] Read more.
Digital twin (DT) technology is recognized for its transformative potential to enhance efficiency in the construction process. However, the full potential of DT in construction practices remains largely unrealised. Moreover, few studies explore how DT success factors affect efficiency improvement (EI), energy optimization (EO), and cost control (CC) in the context of economic strength (ES). The study applied a hybrid research method to examine the impact of key DT success factors on EI, EO, and CC under the moderation of ES. After a critical literature review, five key DT success factors were identified. Then, 490 valid questionnaires were analyzed with the Partial Least Squares Structural Equation Model (PLS-SEM) to assess how success factors affect DT effectiveness. This is complemented using extreme gradient boosting (XGBoost) to assess prediction accuracy and understand which factors most influenced EI, EO, and CC. Research shows that ES exerts a significant positive influence on the relationships between most success factors and performance outcomes. High levels of ES enhance the contribution of success factors to performance in EI, EO, and CC. Resource management (RM) has a strong influence on EI and EO, but a weaker influence on CC; process optimization (PO) has the strongest influence on EO, a moderate influence on CC, and the weakest influence on EI; real-time monitoring (R-Tm) primarily affects EI; sustainable design (SD) has a comprehensive and significant regulatory effect on EI, EO, and CC; and predictive maintenance (PM) has a strong influence on both EI and CC. In practice, it offers practical guidance for implementing DT and supports policy and resource planning for building stakeholders. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
29 pages, 1348 KB  
Perspective
The Transcritical CO2 Cycle: Promise, Pitfalls, and Prospects
by Xiang Qin, Yinghao Zeng, Pan Li and Yuduo Li
Energies 2026, 19(3), 585; https://doi.org/10.3390/en19030585 - 23 Jan 2026
Abstract
As a natural refrigerant, CO2 shows significant potential in sustainable thermal engineering due to its environmental safety and economic viability. While the transcritical CO2 cycle demonstrates strong performance in heating, low-temperature applications, and integration with renewable energy sources, its widespread adoption [...] Read more.
As a natural refrigerant, CO2 shows significant potential in sustainable thermal engineering due to its environmental safety and economic viability. While the transcritical CO2 cycle demonstrates strong performance in heating, low-temperature applications, and integration with renewable energy sources, its widespread adoption is hindered by key challenges at the application level. These include: high sensitivity of system efficiency to operating conditions, which creates an “efficiency hump” and narrows the optimal operating window; increased component costs and technical challenges for key devices such as multi-channel valves due to high-pressure requirements; and complex system control with limited intelligent solutions currently integrated. Despite these challenges, the transcritical CO2 cycle holds unique value in enabling synergistic energy conversion. Its ability to efficiently match and cascade different energy grades makes it particularly suitable for data center cooling, industrial combined cooling and heating, and solar–thermal hybrid systems, positioning it as an indispensable technology in future low-carbon energy systems. To fully realize its potential, development efforts must focus on high-value applications and key technological breakthroughs. Priority should be given to demonstrating its use in fields where it holds a distinct advantage, such as low-temperature refrigeration and high-temperature industrial heat pumps, to establish commercially viable models. Concurrently, core technologies—including adaptive intelligent control algorithms, high-efficiency expanders, and cost-effective pressure-resistant components—must be advanced. Supportive policies, encompassing energy efficiency standards, safety regulations, and fiscal incentives, will be essential to facilitate the transition from demonstration projects to widespread industrial adoption. Full article
32 pages, 472 KB  
Review
Electrical Load Forecasting in the Industrial Sector: A Literature Review of Machine Learning Models and Architectures for Grid Planning
by Jannis Eckhoff, Simran Wadhwa, Marc Fette, Jens Peter Wulfsberg and Chathura Wanigasekara
Energies 2026, 19(2), 538; https://doi.org/10.3390/en19020538 - 21 Jan 2026
Viewed by 72
Abstract
The energy transition, driven by the global shift toward renewable and electrification, necessitates accurate and efficient prediction of electrical load profiles to quantify energy consumption. Therefore, the systematic literature review (SLR), followed by PRISMA guidelines, synthesizes hybrid architectures for sequential electrical load profiles, [...] Read more.
The energy transition, driven by the global shift toward renewable and electrification, necessitates accurate and efficient prediction of electrical load profiles to quantify energy consumption. Therefore, the systematic literature review (SLR), followed by PRISMA guidelines, synthesizes hybrid architectures for sequential electrical load profiles, aiming to span statistical techniques, machine learning (ML), and deep learning (DL) strategies for optimizing performance and practical viability. The findings reveal a dominant trend towards complex hybrid models leveraging the combined strengths of DL architectures such as long short-term memory (LSTM) and optimization algorithms such as genetic algorithm and Particle Swarm Optimization (PSO) to capture non-linear relationships. Thus, hybrid models achieve superior performance by synergistically integrating components such as Convolutional Neural Network (CNN) for feature extraction and LSTMs for temporal modeling with feature selection algorithms, which collectively capture local trends, cross-correlations, and long-term dependencies in the data. A crucial challenge identified is the lack of an established framework to manage adaptable output lengths in dynamic neural network forecasting. Addressing this, we propose the first explicit idea of decoupling output length predictions from the core signal prediction task. A key finding is that while models, particularly optimization-tuned hybrid architectures, have demonstrated quantitative superiority over conventional shallow methods, their performance assessment relies heavily on statistical measures like Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). However, for comprehensive performance assessment, there is a crucial need for developing tailored, application-based metrics that integrate system economics and major planning aspects to ensure reliable domain-specific validation. Full article
(This article belongs to the Special Issue Power Systems and Smart Grids: Innovations and Applications)
Show Figures

Figure 1

24 pages, 396 KB  
Article
Multi-Objective Optimization for the Location and Sizing of Capacitor Banks in Distribution Grids: An Approach Based on the Sine and Cosine Algorithm
by Laura Camila Garzón-Perdomo, Brayan David Duque-Chavarro, Carlos Andrés Torres-Pinzón and Oscar Danilo Montoya
Appl. Syst. Innov. 2026, 9(1), 24; https://doi.org/10.3390/asi9010024 - 21 Jan 2026
Viewed by 46
Abstract
This article presents a hybrid optimization model designed to determine the optimal location and operation of capacitor banks in medium-voltage distribution networks, aiming to reduce energy losses and enhance the system’s economic efficiency. The use of reactive power compensation through fixed-step capacitor banks [...] Read more.
This article presents a hybrid optimization model designed to determine the optimal location and operation of capacitor banks in medium-voltage distribution networks, aiming to reduce energy losses and enhance the system’s economic efficiency. The use of reactive power compensation through fixed-step capacitor banks is highlighted as an effective and cost-efficient solution; however, their optimal placement and sizing pose a mixed-integer nonlinear programming optimization challenge of a combinatorial nature. To address this issue, a multi-objective optimization methodology based on the Sine Cosine Algorithm (SCA) is proposed to identify the ideal location and capacity of capacitor banks within distribution networks. This model simultaneously focuses on minimizing technical losses while reducing both investment and operational costs, thereby producing a Pareto front that facilitates the analysis of trade-offs between technical performance and economic viability. The methodology is validated through comprehensive testing on the 33- and 69-bus reference systems. The results demonstrate that the proposed SCA-based approach is computationally efficient, easy to implement, and capable of effectively exploring the search space to identify high-quality Pareto-optimal solutions. These characteristics render the approach a valuable tool for the planning and operation of efficient and resilient distribution networks. Full article
Show Figures

Figure 1

25 pages, 513 KB  
Review
A Cross-Regional Review of AI Safety Regulations in the Commercial Aviation Industry
by Penny A. Barr and Sohel M. Imroz
Adm. Sci. 2026, 16(1), 53; https://doi.org/10.3390/admsci16010053 - 21 Jan 2026
Viewed by 204
Abstract
In this paper, we examine the existing artificial intelligence policy documents in aviation for the following three regions: the United States, the European Union, and China. These global economic leaders were selected for their dominance in economic activity; as a result, their influence [...] Read more.
In this paper, we examine the existing artificial intelligence policy documents in aviation for the following three regions: the United States, the European Union, and China. These global economic leaders were selected for their dominance in economic activity; as a result, their influence on aviation policy direction is a logical assumption. Historically, the aviation industry has always been a first mover in adopting technological advancements. This early adoption offers valuable insights because of its stringent regulations and safety-critical procedures. Consequently, the aviation industry provides an optimal platform to address AI vulnerabilities through its stringent regulations, standardized processes, and certification of new technologies. Our research aims to compare AI regulations across these regions to guide other sectors in shaping effective policies. The findings of our comparative analysis show that there are vastly differing approaches to the application of AI regulations in the aviation sector, thus weakening desired prospects for global cooperation and worsening existing geopolitical tensions. Therefore, we propose a hybrid model approach as a way forward. Under this model, regions maintain their distinctive AI policies but collaborate on high-risk aviation applications through joint working groups, shared safety intelligence, or mutual recognition agreements. This would preserve incentives for innovation but also reduce regulatory friction. Full article
Show Figures

Figure 1

39 pages, 6278 KB  
Article
Towards Generative Interest-Rate Modeling: Neural Perturbations Within the Libor Market Model
by Anna Knezevic
J. Risk Financial Manag. 2026, 19(1), 82; https://doi.org/10.3390/jrfm19010082 - 21 Jan 2026
Viewed by 83
Abstract
This study proposes a neural-augmented Libor Market Model (LMM) for swaption surface calibration that enhances expressive power while maintaining the interpretability, arbitrage-free structure, and numerical stability of the classical framework. Classical LMM parametrizations, based on exponential decay volatility functions and static correlation kernels, [...] Read more.
This study proposes a neural-augmented Libor Market Model (LMM) for swaption surface calibration that enhances expressive power while maintaining the interpretability, arbitrage-free structure, and numerical stability of the classical framework. Classical LMM parametrizations, based on exponential decay volatility functions and static correlation kernels, are known to perform poorly in sparsely quoted and long-tenor regions of swaption volatility cubes. Machine learning–based diffusion models offer flexibility but often lack transparency, stability, and measure-consistent dynamics. To reconcile these requirements, the present approach embeds a compact neural network within the volatility and correlation layers of the LMM, constrained by structural diagnostics, low-rank correlation construction, and HJM-consistent drift. Empirical tests across major currencies (EUR, GBP, USD) and multiple quarterly datasets from 2024 to 2025 show that the neural-augmented LMM consistently outperforms the classical model. Improvements of approximately 7–10% in implied volatility RMSE and 10–15% in PV RMSE are observed across all datasets, with no deterioration in any region of the surface. These results reflect the model’s ability to represent cross-tenor dependencies and surface curvature beyond the reach of classical parametrizations, while remaining economically interpretable and numerically tractable. The findings support hybrid model designs in quantitative finance, where small neural components complement robust analytical structures. The approach aligns with ongoing industry efforts to integrate machine learning into regulatory-compliant pricing models and provides a pathway for future generative LMM variants that retain an arbitrage-free diffusion structure while learning data-driven volatility geometry. Full article
(This article belongs to the Special Issue Quantitative Finance in the Era of Big Data and AI)
Show Figures

Figure 1

35 pages, 4191 KB  
Article
AI-Driven Modeling of the Energy Transition in the SPRING-F Group: A Hybrid Panel ARDL and Machine Learning Approach
by Ionuț Nica, Camelia Delcea, Nora Chiriță and Ștefan Ionescu
Appl. Sci. 2026, 16(2), 1044; https://doi.org/10.3390/app16021044 - 20 Jan 2026
Viewed by 74
Abstract
This study analyses the dynamics of the energy transition within the SPRING-F group (Spain, Poland, Romania, Italy, the Netherlands, Germany, France) through a hybrid approach that combines econometric panel ARDL models with machine learning algorithms. The analysis is based on energy, economic, and [...] Read more.
This study analyses the dynamics of the energy transition within the SPRING-F group (Spain, Poland, Romania, Italy, the Netherlands, Germany, France) through a hybrid approach that combines econometric panel ARDL models with machine learning algorithms. The analysis is based on energy, economic, and technological indicators, including renewable energy consumption, energy intensity, CO2 emissions, GDP per capita, urbanization, trade openness, and R&D expenditure. The results of the exploratory analysis highlight the existence of clear structural differences between Western European and emerging Central and Eastern European economies. Based on the estimates made with the ARDL panel model, the long-term equilibrium relationships were confirmed. They indicated positive and significant effects of urbanization and economic growth on renewable energy consumption, as well as a negative impact of CO2 emissions. Regarding the short-term effects, the error correction coefficient suggests a moderate convergence towards equilibrium. Machine learning models highlight the superiority of nonlinear approaches, and SHAP analysis confirms the dominant role of CO2 emissions and the heterogeneity of national energy transition trajectories. Full article
(This article belongs to the Special Issue Holistic Approaches in Artificial Intelligence and Renewable Energy)
Show Figures

Figure 1

33 pages, 4465 KB  
Article
Environmentally Sustainable HVAC Management in Smart Buildings Using a Reinforcement Learning Framework SACEM
by Abdullah Alshammari, Ammar Ahmed E. Elhadi and Ashraf Osman Ibrahim
Sustainability 2026, 18(2), 1036; https://doi.org/10.3390/su18021036 - 20 Jan 2026
Viewed by 106
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems dominate energy consumption in hot-climate buildings, where maintaining occupant comfort under extreme outdoor conditions remains a critical challenge, particularly under emerging time-of-use (TOU) electricity pricing schemes. While deep reinforcement learning (DRL) has shown promise for adaptive HVAC [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems dominate energy consumption in hot-climate buildings, where maintaining occupant comfort under extreme outdoor conditions remains a critical challenge, particularly under emerging time-of-use (TOU) electricity pricing schemes. While deep reinforcement learning (DRL) has shown promise for adaptive HVAC control, existing approaches often suffer from comfort violations, myopic decision making, and limited robustness to uncertainty. This paper proposes a comfort-first hybrid control framework that integrates Soft Actor–Critic (SAC) with a Cross-Entropy Method (CEM) refinement layer, referred to as SACEM. The framework combines data-efficient off-policy learning with short-horizon predictive optimization and safety-aware action projection to explicitly prioritize thermal comfort while minimizing energy use, operating cost, and peak demand. The control problem is formulated as a Markov Decision Process using a simplified thermal model representative of commercial buildings in hot desert climates. The proposed approach is evaluated through extensive simulation using Saudi Arabian summer weather conditions, realistic occupancy patterns, and a three-tier TOU electricity tariff. Performance is assessed against state-of-the-art baselines, including PPO, TD3, and standard SAC, using comfort, energy, cost, and peak demand metrics, complemented by ablation and disturbance-based stress tests. Results show that SACEM achieves a comfort score of 95.8%, while reducing energy consumption and operating cost by approximately 21% relative to the strongest baseline. The findings demonstrate that integrating comfort-dominant reward design with decision-time look-ahead yields robust, economically viable HVAC control suitable for deployment in hot-climate smart buildings. Full article
Show Figures

Figure 1

38 pages, 8329 KB  
Review
The Validation–Deployment Gap in Agricultural Information Systems: A Systematic Technology Readiness Assessment
by Mary Elsy Arzuaga-Ochoa, Melisa Acosta-Coll and Mauricio Barrios Barrios
Informatics 2026, 13(1), 14; https://doi.org/10.3390/informatics13010014 - 19 Jan 2026
Viewed by 184
Abstract
Agricultural marketing increasingly integrates Agriculture 4.0 technologies—Blockchain, AI/ML, IoT, and recommendation systems—yet systematic evaluations of computational maturity and deployment readiness remain limited. This Systematic Literature Review (SLR) examined 99 peer-reviewed studies (2019–2025) from Scopus, Web of Science, and IEEE Xplore following PRISMA protocols [...] Read more.
Agricultural marketing increasingly integrates Agriculture 4.0 technologies—Blockchain, AI/ML, IoT, and recommendation systems—yet systematic evaluations of computational maturity and deployment readiness remain limited. This Systematic Literature Review (SLR) examined 99 peer-reviewed studies (2019–2025) from Scopus, Web of Science, and IEEE Xplore following PRISMA protocols to assess algorithmic performance, evaluation methods, and Technology Readiness Levels (TRLs) for agricultural marketing applications. Hybrid recommendation systems dominate current research (28.3%), achieving accuracies of 80–92%, while blockchain implementations (15.2%) show fast transaction times (<2 s) but limited real-world adoption. Machine learning models using Random Forest, Gradient Boosting, and CNNs reach 85–95% predictive accuracy, and IoT systems report >95% data transmission reliability. However, 77.8% of technologies remain at validation stages (TRL ≤ 5), and only 3% demonstrate operational deployment beyond one year. The findings reveal an “efficiency paradox”: strong technical performance (75–97/100) contrasts with weak economic validation (≤20% include cost–benefit analysis). Most studies overlook temporal, geographic, and economic generalization, prioritizing computational metrics over implementation viability. This review highlights the persistent validation–deployment gap in digital agriculture, urging a shift toward multi-tier evaluation frameworks that include contextual, adoption, and impact validation under real deployment conditions. Full article
Show Figures

Figure 1

19 pages, 2954 KB  
Article
An Adaptive Hybrid Short-Term Load Forecasting Framework Based on Improved Rime Optimization Variational Mode Decomposition and Cross-Dimensional Attention
by Aodi Zhang, Daobing Liu and Jianquan Liao
Energies 2026, 19(2), 497; https://doi.org/10.3390/en19020497 - 19 Jan 2026
Viewed by 73
Abstract
Accurate Short-Term Load Forecasting (STLF) is paramount for the stable and economical operation of power systems, particularly in the context of high renewable energy penetration, which exacerbates load volatility and non-stationarity. The prevailing advanced “decomposition–ensemble” paradigm, however, faces two significant challenges when processing [...] Read more.
Accurate Short-Term Load Forecasting (STLF) is paramount for the stable and economical operation of power systems, particularly in the context of high renewable energy penetration, which exacerbates load volatility and non-stationarity. The prevailing advanced “decomposition–ensemble” paradigm, however, faces two significant challenges when processing non-stationary signals: (1) The performance of Variational Mode Decomposition (VMD) is highly dependent on its hyperparameters (K, α), and traditional meta-heuristic algorithms (e.g., GA, GWO, PSO) are prone to converging to local optima during the optimization process; (2) Deep learning predictors struggle to dynamically weigh the importance of multi-dimensional, heterogeneous features (such as the decomposed Intrinsic Mode Functions (IMFs) and external climatic factors). To address these issues, this paper proposes a novel, adaptive hybrid forecasting framework, namely IRIME-VMD-CDA-LSTNet. Firstly, an Improved Rime Optimization Algorithm (IRIME) integrated with a Gaussian Mutation strategy is proposed. This algorithm adaptively optimizes the VMD hyperparameters by targeting the minimization of average sample entropy, enabling it to effectively escape local optima. Secondly, the optimally decomposed IMFs are combined with climatic features to construct a multi-dimensional information matrix. Finally, this matrix is fed into an innovative Cross-Dimensional Attention (CDA) LSTNet model, which dynamically allocates weights to each feature dimension. Ablation experiments conducted on a real-world dataset from a distribution substation demonstrate that, compared to GA-VMD, GWO-VMD, and PSO-VMD, the proposed IRIME-VMD method achieves a reduction in Root Mean Square Error (RMSE) of up to 18.9%. More importantly, the proposed model effectively mitigates the “prediction lag” phenomenon commonly observed in baseline models, especially during peak load periods. This framework provides a robust and high-accuracy solution for non-stationary load forecasting, holding significant practical value for the operation of modern power systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

26 pages, 2118 KB  
Article
A Hybrid HAR-LSTM-GARCH Model for Forecasting Volatility in Energy Markets
by Wiem Ben Romdhane and Heni Boubaker
J. Risk Financial Manag. 2026, 19(1), 77; https://doi.org/10.3390/jrfm19010077 - 17 Jan 2026
Viewed by 322
Abstract
Accurate volatility forecasting in energy markets is paramount for risk management, derivative pricing, and strategic policy planning. Traditional econometric models like the Heterogeneous Auto-regressive (HAR) model effectively capture the long-memory and multi-component nature of volatility but often fail to account for non-linearities and [...] Read more.
Accurate volatility forecasting in energy markets is paramount for risk management, derivative pricing, and strategic policy planning. Traditional econometric models like the Heterogeneous Auto-regressive (HAR) model effectively capture the long-memory and multi-component nature of volatility but often fail to account for non-linearities and complex, unseen dependencies. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, excel at capturing these non-linear patterns but can be data-hungry and prone to overfitting, especially in noisy financial datasets. This paper proposes a novel hybrid model, HAR-LSTM-GARCH, which synergistically combines the strengths of the HAR model, an LSTM network, and a GARCH model to forecast the realized volatility of crude oil futures. The HAR component captures the persistent, multi-scale volatility dynamics, the LSTM network learns the non-linear residual patterns, and the GARCH component models the time-varying volatility of the residuals themselves. Using high-frequency data on Brent Crude futures, we compute daily Realized Volatility (RV). Our empirical results demonstrate that the proposed HAR-LSTM-GARCH model significantly outperforms the benchmark HAR, GARCH(1,1), and standalone LSTM models in both statistical accuracy and economic significance, offering a robust framework for volatility forecasting in the complex energy sector. Full article
(This article belongs to the Special Issue Mathematical Modelling in Economics and Finance)
Show Figures

Figure 1

25 pages, 3269 KB  
Article
Dynamic Carbon-Aware Scheduling for Electric Vehicle Fleets Using VMD-BSLO-CTL Forecasting and Multi-Objective MPC
by Hongyu Wang, Zhiyu Zhao, Kai Cui, Zixuan Meng, Bin Li, Wei Zhang and Wenwen Li
Energies 2026, 19(2), 456; https://doi.org/10.3390/en19020456 - 16 Jan 2026
Viewed by 124
Abstract
Accurate perception of dynamic carbon intensity is a prerequisite for low-carbon demand-side response. However, traditional grid-average carbon factors lack the spatio-temporal granularity required for real-time regulation. To address this, this paper proposes a “Prediction-Optimization” closed-loop framework for electric vehicle (EV) fleets. First, a [...] Read more.
Accurate perception of dynamic carbon intensity is a prerequisite for low-carbon demand-side response. However, traditional grid-average carbon factors lack the spatio-temporal granularity required for real-time regulation. To address this, this paper proposes a “Prediction-Optimization” closed-loop framework for electric vehicle (EV) fleets. First, a hybrid forecasting model (VMD-BSLO-CTL) is constructed. By integrating Variational Mode Decomposition (VMD) with a CNN-Transformer-LSTM network optimized by the Blood-Sucking Leech Optimizer (BSLO), the model effectively captures multi-scale features. Validation on the UK National Grid dataset demonstrates its superior robustness against prediction horizon extension compared to state-of-the-art baselines. Second, a multi-objective Model Predictive Control (MPC) strategy is developed to guide EV charging. Applied to a real-world station-level scenario, the strategy navigates the trade-offs between user economy and grid stability. Simulation results show that the proposed framework simultaneously reduces economic costs by 4.17% and carbon emissions by 8.82%, while lowering the peak-valley difference by 6.46% and load variance by 11.34%. Finally, a cloud-edge collaborative deployment scheme indicates the engineering potential of the proposed approach for next-generation low-carbon energy management. Full article
Show Figures

Figure 1

39 pages, 5114 KB  
Article
Optimal Sizing of Electrical and Hydrogen Generation Feeding Electrical and Thermal Load in an Isolated Village in Egypt Using Different Optimization Technique
by Mohammed Sayed, Mohamed A. Nayel, Mohamed Abdelrahem and Alaa Farah
Energies 2026, 19(2), 452; https://doi.org/10.3390/en19020452 - 16 Jan 2026
Viewed by 103
Abstract
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility [...] Read more.
This paper analyzes the functional feasibility and strategic value of hybrid hydrogen storage and photovoltaic (PV) energy systems at isolated areas, specifically at Egypt’s Shalateen station. The paper is significant as it formulates a solution to the energy independence coupled with economic feasibility issue in regions where the basic energy infrastructure is non-existent or limited. Through the integration of a portfolio of advanced optimization algorithms—Differential Evolution (DE), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Multi-Objective Genetic Algorithm (MOGA), Pattern Search, Sequential Quadratic Programming (SQP), and Simulated Annealing—the paper evaluates the performance of two scenarios. The first evaluates the PV system in the absence of hydrogen production to demonstrate how system parameters are optimized by Pattern Search and PSO to achieve a minimum Cost of Energy (COE) of 0.544 USD/kWh. The second extends the system to include hydrogen production, which becomes important to ensure energy continuity during solar irradiation-free months like those during winter months. In this scenario, the same methods of optimization enhance the COE to 0.317 USD/kWh, signifying the economic value of integrating hydrogen storage. The findings underscore the central role played by hybrid renewable energy systems in ensuring high resilience and sustainability of supplies in far-flung districts, where continued enhancement by means of optimization is needed to realize maximum environmental and technological gains. The paper offers a futuristic model towards sustainable, dependable energy solutions key to the energy independence of the future in such challenging environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 2328 KB  
Article
Dual-Control Environmental–Economic Dispatch of Power Systems Considering Regional Carbon Allowances and Pollutant Concentration Constraints
by Tiejiang Yuan, Liang Ran, Yaling Mao and Yue Teng
Sustainability 2026, 18(2), 934; https://doi.org/10.3390/su18020934 - 16 Jan 2026
Viewed by 157
Abstract
To achieve more precise and regionally adaptive emission control, this study develops a dual-control framework that simultaneously constrains both total carbon emissions and pollutant concentration levels. Regional environmental heterogeneity is incorporated into the dispatch of generating units to balance emission reduction and operational [...] Read more.
To achieve more precise and regionally adaptive emission control, this study develops a dual-control framework that simultaneously constrains both total carbon emissions and pollutant concentration levels. Regional environmental heterogeneity is incorporated into the dispatch of generating units to balance emission reduction and operational efficiency. Based on this concept, a regional carbon emission allowance allocation model is constructed by integrating ecological pollutant concentration thresholds. A multi-source Gaussian plume dispersion model is further developed to characterize the spatial and temporal distribution of pollutants from coal-fired power units. These pollutant concentration constraints are embedded into an environmental–economic dispatch model of a coupled electricity–hydrogen–carbon system supported by hybrid storage. By optimizing resource use and minimizing environmental damage at the energy-supply stage, the proposed model provides a low-carbon foundation for the entire industrial production cycle. This approach aligns with the sustainable development paradigm by integrating precision environmental management with circular economy principles. Simulation results reveal that incorporating pollutant concentration control can effectively reduce localized environmental pressure while maintaining overall system economy, highlighting the importance of region-specific environmental capacity in enhancing the overall environmental friendliness of the industrial chain. Full article
Show Figures

Figure 1

24 pages, 1474 KB  
Article
A Fractional Hybrid Strategy for Reliable and Cost-Optimal Economic Dispatch in Wind-Integrated Power Systems
by Abdul Wadood, Babar Sattar Khan, Bakht Muhammad Khan, Herie Park and Byung O. Kang
Fractal Fract. 2026, 10(1), 64; https://doi.org/10.3390/fractalfract10010064 - 16 Jan 2026
Viewed by 176
Abstract
Economic dispatch in wind-integrated power systems is a critical challenge, yet many recent metaheuristics suffer from premature convergence, heavy parameter tuning, and limited ability to escape local optima in non-smooth valve-point landscapes. This study proposes a new hybrid optimization framework, the Fractional Grasshopper [...] Read more.
Economic dispatch in wind-integrated power systems is a critical challenge, yet many recent metaheuristics suffer from premature convergence, heavy parameter tuning, and limited ability to escape local optima in non-smooth valve-point landscapes. This study proposes a new hybrid optimization framework, the Fractional Grasshopper Optimization algorithm (FGOA), which integrates fractional-order calculus into the standard Grasshopper Optimization algorithm (GOA) to enhance its search efficiency. The FGOA method is applied to the economic load dispatch (ELD) problem, a nonlinear and nonconvex task that aims to minimize fuel and wind-generation costs while satisfying practical constraints such as valve-point loading effects (VPLEs), generator operating limits, and the stochastic behavior of renewable energy sources. Owing to the increasing role of wind energy, stochastic wind power is modeled through the incomplete gamma function (IGF). To further improve computational accuracy, FGOA is hybridized with Sequential Quadratic Programming (SQP), where FGOA provides global exploration and SQP performs local refinement. The proposed FGOA-SQP approach is validated on systems with 3, 13, and 40 generating units, including mixed thermal and wind sources. Comparative evaluations against recent metaheuristic algorithms demonstrate that FGOA-SQP achieves more accurate and reliable dispatch outcomes. Specifically, the proposed approach achieves fuel cost reductions ranging from 0.047% to 0.71% for the 3-unit system, 0.31% to 27.25% for the 13-unit system, and 0.69% to 12.55% for the 40-unit system when compared with state-of-the-art methods. Statistical results, particularly minimum fitness values, further confirm the superior performance of the FGOA-SQP framework in addressing the ELD problem under wind power uncertainty. Full article
Show Figures

Figure 1

Back to TopTop