Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = hybrid PV-battery/supercapacitors storage system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2795 KiB  
Article
Coordinated Control Strategy-Based Energy Management of a Hybrid AC-DC Microgrid Using a Battery–Supercapacitor
by Zineb Cabrane, Donghee Choi and Soo Hyoung Lee
Batteries 2025, 11(7), 245; https://doi.org/10.3390/batteries11070245 - 25 Jun 2025
Cited by 1 | Viewed by 705
Abstract
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with [...] Read more.
The need for electrical energy is dramatically increasing, pushing researchers and industrial communities towards the development and improvement of microgrids (MGs). It also encourages the use of renewable energies to benefit from available sources. Thereby, the implementation of a photovoltaic (PV) system with a hybrid energy storage system (HESS) can create a standalone MG. This paper presents an MG that uses photovoltaic energy as a principal source. An HESS is required, combining batteries and supercapacitors. This MG responds “insure” both alternating current (AC) and direct current (DC) loads. The batteries and supercapacitors have separate parallel connections to the DC bus through bidirectional converters. The DC loads are directly connected to the DC bus where the AC loads use a DC-AC inverter. A control strategy is implemented to manage the fluctuation of solar irradiation and the load variation. This strategy was implemented with a new logic control based on Boolean analysis. The logic analysis was implemented for analyzing binary data by using Boolean functions (‘0’ or ‘1’). The methodology presented in this paper reduces the stress and the faults of analyzing a flowchart and does not require a large concentration. It is used in this paper in order to simplify the control of the EMS. It permits the flowchart to be translated to a real application. This analysis is based on logic functions: “Or” corresponds to the addition and “And” corresponds to the multiplication. The simulation tests were executed at Tau  =  6 s of the low-pass filter and conducted in 60 s. The DC bus voltage was 400 V. It demonstrates that the proposed management strategy can respond to the AC and DC loads. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

17 pages, 6996 KiB  
Article
Distributed Control Strategy for Automatic Power Sharing of Hybrid Energy Storage Systems with Constant Power Loads in DC Microgrids
by Tian Xia, He Zhou and Bonan Huang
Mathematics 2025, 13(12), 2001; https://doi.org/10.3390/math13122001 - 17 Jun 2025
Viewed by 321
Abstract
Hybrid energy storage systems (HESSs), with superior transient response characteristics compared to conventional battery (BAT) systems, have emerged as an effective solution for power balance. However, the high penetration of constant power loads (CPLs) introduces destabilization risks to the system. To address this [...] Read more.
Hybrid energy storage systems (HESSs), with superior transient response characteristics compared to conventional battery (BAT) systems, have emerged as an effective solution for power balance. However, the high penetration of constant power loads (CPLs) introduces destabilization risks to the system. To address this challenge, this paper proposes a novel hierarchical control strategy to achieve voltage stabilization and accurate current sharing. First, this paper proposes an improved P–V2 controller as the primary controller. It utilizes virtual conductance to replace the fixed coefficients of traditional droop controllers to achieve automatic power allocation between supercapacitors (SCs) and BATs, while eliminating the effects of CPLs on the voltage–current relationship. Second, based on traditional distributed control, the secondary control layer integrates a dynamic event-triggered communication mechanism, which reduces communication bandwidth requirements while maintaining precise current sharing across distributed buses. Finally, simulation and experimental results validate the effectiveness and robustness of the proposed control strategy. Full article
Show Figures

Figure 1

24 pages, 5253 KiB  
Review
An Overview of Solar Photovoltaic Power Smoothing Control Strategies Based on Energy Storage Technology
by Mingxuan Mao, Yuhao Tang, Jiahan Chen, Fuping Ma, Ziran Li, Hongyu Ma, Haojin Sun, Chengqi Yin and Huanxin Li
Energies 2025, 18(4), 909; https://doi.org/10.3390/en18040909 - 13 Feb 2025
Cited by 3 | Viewed by 1188
Abstract
Countries around the world are actively promoting the low-carbon transformation of the energy system, and renewable energy represented by solar photovoltaic (PV) power generation will occupy a greater proportion of the power system. The power of PV power generation is characterized by randomness [...] Read more.
Countries around the world are actively promoting the low-carbon transformation of the energy system, and renewable energy represented by solar photovoltaic (PV) power generation will occupy a greater proportion of the power system. The power of PV power generation is characterized by randomness and volatility, so an energy storage system (ESS) is needed for smooth control of fluctuating power to improve the quality of electric energy and the stability of the system. First of all, through the comparative analysis of various energy storage technologies, this paper finds that the battery-supercapacitor hybrid energy storage system (HESS) has both steady-state and dynamic response capabilities. Secondly, the power smoothing control strategy comprises centralized control strategies and distributed control strategies, corresponding control algorithms based on filter and optimization, and droop control strategy, respectively. This paper introduces them in turn and analyzes their advantages and disadvantages. Finally, according to the characteristics of the two control strategies, the analysis of the applicable scenarios is given, and it can guide future applications. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

28 pages, 12760 KiB  
Article
Hydro–Wind–PV–Integrated Operation Optimization and Ultra-Short-Term HESS Configuration
by Jinhua Zhang, Haizheng Wang, Chuanxi Fan, Jiahao Hu and Xinyue Zhang
Electronics 2024, 13(23), 4778; https://doi.org/10.3390/electronics13234778 - 3 Dec 2024
Cited by 1 | Viewed by 1060
Abstract
In order to address the challenges associated with optimizing multi-timescale operations and allocating ultra-short-term energy storage for HWP integration, this study takes into account both the economic and reliability aspects of the HWP integration base. It proposes a model for optimizing operations and [...] Read more.
In order to address the challenges associated with optimizing multi-timescale operations and allocating ultra-short-term energy storage for HWP integration, this study takes into account both the economic and reliability aspects of the HWP integration base. It proposes a model for optimizing operations and allocating energy storage capacity, achieving optimization across long-term, short-term, and ultra-short-term operations for an MECB. Initially, operation optimization is implemented for an entire group of terraced hydropower plants by regulating them with annual regulating capabilities on a long-term timescale. The objectives are to maximize the daily average minimum output and annual power generation. Subsequently, short-term operation optimization focuses on maximizing HWP power feed-in, minimizing new energy power curtailment, and reducing residual load standard deviation while ensuring the guaranteed output optimization results for the long term. Finally, to mitigate ultra-short-term fluctuations in new energy, a HESS with specified capacity and power is configured with the goal of minimizing comprehensive costs. Additionally, to address the challenge of smoothing negative fluctuations, which is hindered by charging and discharging efficiency limitations, a variable baseline is introduced, deviating from the conventional 0 MW baseline. A simulation study based on data from the hydro–wind–PV hybrid project in the Beipanjiang River Basin, China, demonstrates the following: (1) after long-term system optimization, the total power generation capacity of the system increases by 9.68%, while the peak-to-valley difference in output is significantly reduced; (2) short-term system optimization significantly reduces both the average variance in residual loads and the amount of power curtailed over five representative days; (3) the system incorporates 398.62 MWh of lithium-ion battery storage with a power of 412.47 MW and 51.09 MWh of supercapacitor storage with a power of 223.32 MW, which, together, completely smooth out the ultra-short-term fluctuations in new energy output. Full article
Show Figures

Figure 1

15 pages, 2676 KiB  
Article
Structural Decomposition of the Passivity-Based Control System of Wind–Solar Power Generating and Hybrid Battery-Supercapacitor Energy Storage Complex
by Ihor Shchur, Marek Lis and Rostyslav-Ivan Kuzyk
Dynamics 2024, 4(4), 830-844; https://doi.org/10.3390/dynamics4040042 - 6 Nov 2024
Viewed by 962
Abstract
Wind–solar power generating and hybrid battery-supercapacitor energy storage complex is used for autonomous power supply of consumers in remote areas. This work uses passivity-based control (PBC) for this complex in accordance with the accepted energy management strategy (EMS). Structural and parametric synthesis of [...] Read more.
Wind–solar power generating and hybrid battery-supercapacitor energy storage complex is used for autonomous power supply of consumers in remote areas. This work uses passivity-based control (PBC) for this complex in accordance with the accepted energy management strategy (EMS). Structural and parametric synthesis of the overall PBC system was carried out, which was accompanied by a significant amount of research. In order to simplify this synthesis, a structural decomposition of the overall dynamic system of the object presented in the form of a port-Hamiltonian system, which was described by a system of differential equations of the seventh order, into three subsystems was applied. These subsystems are a wind turbine, a PV plant, and a hybrid battery-supercapacitor system. For each of the subsystems, it is quite simple to synthesize the control influence formers according to the interconnections and damping assignment (IDA) method of PBC, which locally performs the tasks set by the EMS. The results obtained by computer simulation of the overall and decomposed systems demonstrate the effectiveness of this approach in simplifying synthesis and debugging procedures of complex multi-physical systems. Full article
Show Figures

Figure 1

21 pages, 5940 KiB  
Article
Performance Analysis of Multiple Energy-Storage Devices Used in Electric Vehicles
by Kiran Raut, Asha Shendge, Jagdish Chaudhari, Ravita Lamba, Tapas Mallick and Anurag Roy
World Electr. Veh. J. 2024, 15(8), 357; https://doi.org/10.3390/wevj15080357 - 8 Aug 2024
Cited by 2 | Viewed by 1710
Abstract
Considering environmental concerns, electric vehicles (EVs) are gaining popularity over conventional internal combustion (IC) engine-based vehicles. Hybrid energy-storage systems (HESSs), comprising a combination of batteries and supercapacitors (SCs), are increasingly utilized in EVs. Such HESS-equipped EVs typically outperform standard electric vehicles. However, the [...] Read more.
Considering environmental concerns, electric vehicles (EVs) are gaining popularity over conventional internal combustion (IC) engine-based vehicles. Hybrid energy-storage systems (HESSs), comprising a combination of batteries and supercapacitors (SCs), are increasingly utilized in EVs. Such HESS-equipped EVs typically outperform standard electric vehicles. However, the effective management of power sources to meet varying power demands remains a major challenge in the hybrid electric vehicles. This study presents the development of a MATLAB Simulink model for a hybrid energy-storage system aimed at alleviating the load on batteries during periods of high power demand. Two parallel combinations are investigated: one integrating the battery with a supercapacitor and the other with a photovoltaic (PV) system. These configurations address challenges encountered in EVs, such as power fluctuations and battery longevity issues. Although batteries are commonly used in conjunction with solar PV systems for energy storage, they incur higher operating costs due to the necessity of converters. The findings suggest that the proposed supercapacitor–battery configuration reduces battery peak power consumption by up to 39%. Consequently, the supercapacitor–battery HESS emerges as a superior option, possibly prolonging battery cycle life by mitigating stress induced by fluctuating power exchanges during the charging and discharging phases. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

27 pages, 11263 KiB  
Article
Bus Voltage Stabilization of a Sustainable Photovoltaic-Fed DC Microgrid with Hybrid Energy Storage Systems
by Rudi Uswarman, Khalid Munawar, Makbul A. M. Ramli and Ibrahim M. Mehedi
Sustainability 2024, 16(6), 2307; https://doi.org/10.3390/su16062307 - 11 Mar 2024
Cited by 5 | Viewed by 2109
Abstract
Renewable energy sources play a great role in the sustainability of natural resources and a healthy environment. Among these, solar photovoltaic (PV) systems are becoming more economically viable. However, as the utility of solar energy conversion systems is limited by the availability of [...] Read more.
Renewable energy sources play a great role in the sustainability of natural resources and a healthy environment. Among these, solar photovoltaic (PV) systems are becoming more economically viable. However, as the utility of solar energy conversion systems is limited by the availability of sunlight, they need to be integrated with electrical energy storage systems to be more sustainable. This paper aims to improve the control performance of a hybrid energy storage system (HESS) with PV power generation as the primary power source. HESSs stabilize DC microgrid systems by compensating for demand generation mismatches. Batteries and supercapacitors are chosen as energy storage elements; batteries have a high energy density and are capable of supplying and absorbing energy over a long duration, while supercapacitors can store and deliver energy very quickly. To enhance the stability of the system, each storage element is connected to the DC bus using a bidirectional Ćuk converter, which offers high efficiency, a continuous current, and minimal switching losses. This study proposes a proportional–integral (PI) controller combined with the fast nonsingular integral terminal sliding mode control (FNITSMC) for HESSs to adjust the power balance in a DC microgrid. FNITSMC has the advantage of enhancing the system states to reach the equilibrium point of a long sliding surface with a fast convergence rate. The reference current for FNITSMC is obtained using a PI controller combined with a low-pass filter (LPF), which eliminates the peaking current spikes on the battery and diverts them towards the supercapacitor. The effectiveness of the proposed control scheme is validated through the real-time hardware-in-the-loop (HIL) simulations on Typhoon™ HIL-402 with added uncertainties, including load variations at various temperatures and irradiances. Full article
Show Figures

Figure 1

30 pages, 29045 KiB  
Article
Optimized Power Management Approach for Photovoltaic Systems with Hybrid Battery-Supercapacitor Storage
by Djamila Rekioua, Khoudir Kakouche, Abdulrahman Babqi, Zahra Mokrani, Adel Oubelaid, Toufik Rekioua, Abdelghani Azil, Enas Ali, Ali H. Kasem Alaboudy and Saad A. Mohamed Abdelwahab
Sustainability 2023, 15(19), 14066; https://doi.org/10.3390/su151914066 - 22 Sep 2023
Cited by 19 | Viewed by 4079
Abstract
The paper addresses the ongoing and continuous interest in photovoltaic energy systems (PESs). In this context, the study focuses on an isolated photovoltaic system with hybrid battery-supercapacitor storage (HBSS). The integration of supercapacitors (SCs) in this system is particularly important because of their [...] Read more.
The paper addresses the ongoing and continuous interest in photovoltaic energy systems (PESs). In this context, the study focuses on an isolated photovoltaic system with hybrid battery-supercapacitor storage (HBSS). The integration of supercapacitors (SCs) in this system is particularly important because of their high specific power density. In photovoltaic (PV) systems, multi-storage systems use two or more energy storage technologies to enhance system performance and flexibility. When batteries and supercapacitors are combined in a PV system, their benefits are maximized and offer a more reliable, efficient, cost-effective energy storage option. In addition, effective multi-storage power management in a PV system needs a solid grasp of the energy storage technologies, load power demand profiles, and the whole system architecture. This work establishes a battery-supercapacitor storage system (HBSS) by combining batteries and supercapacitors. The primary objective is to devise a novel management algorithm that effectively controls the different power sources. The algorithm is designed to manage the charge and discharge cycles of the hybrid battery-supercapacitor energy storage system (HBSS), thereby guaranteeing that the state of charge (SOC) for both batteries and supercapacitors is maintained within the specified range. The proposed management algorithm is designed to be simple, efficient, and light on computational resources. It efficiently handles the energy flow within the HBSS, optimizing the usage of both batteries and supercapacitors based on real-time conditions and energy demands. The proposed method ensures their longevity and maximizes their performance by maintaining the SOC of these energy storage components within the specified limits. Simulation results obtained from applying the management strategy are found to be satisfactory. These results show that the proposed algorithm maintains the SOC of batteries and supercapacitors within the desired range, leading to improved energy management and enhanced system efficiency. Full article
(This article belongs to the Special Issue Sustainable Future of Power System: Estimation and Optimization)
Show Figures

Figure 1

34 pages, 9430 KiB  
Review
Part II: State-of-the-Art Technologies of Solar-Powered DC Microgrid with Hybrid Energy Storage Systems: Converter Topologies
by Dogga Raveendhra, Rajana Poojitha, Beeramangalla Lakshminarasaiah Narasimharaju, Alexander Domyshev, Aliona Dreglea, Minh Hien Dao, Mukesh Pathak, Fang Liu and Denis Sidorov
Energies 2023, 16(17), 6194; https://doi.org/10.3390/en16176194 - 25 Aug 2023
Cited by 7 | Viewed by 1815
Abstract
Over the past few years, there have been significant advancements in Microgrid (MG) systems, particularly in the field of power electronics. These advancements aim to address the needs of the grid and loads, while integrating low-voltage, non-linear, and highly sensitive power sources, such [...] Read more.
Over the past few years, there have been significant advancements in Microgrid (MG) systems, particularly in the field of power electronics. These advancements aim to address the needs of the grid and loads, while integrating low-voltage, non-linear, and highly sensitive power sources, such as solar PV modules, batteries, and supercapacitors. It is crucial to select the appropriate converter configuration and power converters in MG systems, as they greatly impact their optimal performance. To achieve the best results, numerous architectures and converter configurations have been suggested for integrating different energy sources. As a result, a considerable number of research articles have been published, necessitating a thorough review. This article continues studies of Part I and presents a comprehensive overview of various architectures based on the arrangement of different sources and provides a detailed analysis and discussion of these architectures. This article covers thirty-three different categories of DC-DC converters, both isolated and non-isolated. These converters are divided into subcategories, such as conventional type, switched-capacitor type, soft-switching type, multi-phase type, and multilevel type. The article also evaluates the suitability of these topologies based on factors such as high conversion gain, power decoupling, efficiency, isolation, power handling capabilities, and compact design. The critical examination and comparative study presented in this work can be valuable for industry professionals and academics in selecting the most suitable architectural and power converter topologies for optimal performance. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

23 pages, 7049 KiB  
Article
Sizing Optimization of a Photovoltaic Hybrid Energy Storage System Based on Long Time-Series Simulation Considering Battery Life
by Ye Liu, Yiwei Zhong and Chaowei Tang
Appl. Sci. 2023, 13(15), 8693; https://doi.org/10.3390/app13158693 - 27 Jul 2023
Cited by 5 | Viewed by 2194
Abstract
An energy storage system works in sync with a photovoltaic system to effectively alleviate the intermittency in the photovoltaic output. Owing to its high power density and long life, supercapacitors make the battery–supercapacitor hybrid energy storage system (HESS) a good solution. This study [...] Read more.
An energy storage system works in sync with a photovoltaic system to effectively alleviate the intermittency in the photovoltaic output. Owing to its high power density and long life, supercapacitors make the battery–supercapacitor hybrid energy storage system (HESS) a good solution. This study considers the particularity of annual illumination due to climate conditions in Harbin, China. A global optimal PV-HESS sizing method is proposed by constructing a PV-HESS operating cost model and taking the annual system operating cost as the objective function. To consider the effect of battery life degradation due to different charge and discharge rates and charge and discharge times, a semi-empirical model based on the Arrhenius model was used to quantify the battery life degradation. Based on the effects of different seasons and different photovoltaic panel sizes, batteries, and supercapacitors on the optimization results, four scenarios are proposed. The feasibility of the system configuration corresponding to the four scenarios is discussed, and an optimal sizing configuration of the system is obtained. The simulation results show that the proposed method can effectively balance the degradation of the ESS due to irregular charging and discharging and determine the minimum operating cost and a reasonable sizing configuration of the system. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

12 pages, 9135 KiB  
Proceeding Paper
Robust Frequency-Decoupling-Based Power Split of Battery/Supercapacitor Hybrid Energy Storage Systems in DC Microgrids
by Mohamed Amine Hartani, Messaoud Hamouda, Othmane Abdelkhalek, Aissa Benhamou, Bouchaib Ali and Saad Mekhilef
Phys. Sci. Forum 2023, 6(1), 6; https://doi.org/10.3390/psf2023006006 - 21 Jun 2023
Cited by 5 | Viewed by 1329
Abstract
A frequency-decoupling-based power split was used in this study to manage a direct-current microgrid (DC-MG)-based PV and hybridized energy storage system (HESS), which consisted of a battery and a supercapacitor. The HESS control integrated a dual-loop structure for bus voltage regulation and recovery [...] Read more.
A frequency-decoupling-based power split was used in this study to manage a direct-current microgrid (DC-MG)-based PV and hybridized energy storage system (HESS), which consisted of a battery and a supercapacitor. The HESS control integrated a dual-loop structure for bus voltage regulation and recovery and HESS charge/discharge control. Hysteresis current control (HCC) tracked the supercapacitor setpoint current using low-pass filtering (LPF) control. The system reliability was assessed using pulsing, smooth, and disturbed PV and load waveforms with standard and advanced LPF methods. The Matlab simulation results confirmed a superior HESS control performance under varying resource waveforms. Key performance indexes (KPIs) were used to evaluate the bus voltage, HESS current management, loading efficiency, and loading mismatch. Full article
Show Figures

Figure 1

20 pages, 6706 KiB  
Article
Investigation of Self-Powered IoT Sensor Nodes for Harvesting Hybrid Indoor Ambient Light and Heat Energy
by Heng Xiao, Nanjian Qi, Yajiang Yin, Shijie Yu, Xiangzheng Sun, Guozhe Xuan, Jie Liu, Shanpeng Xiao, Yuan Li and Yizheng Li
Sensors 2023, 23(8), 3796; https://doi.org/10.3390/s23083796 - 7 Apr 2023
Cited by 16 | Viewed by 4901
Abstract
Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, [...] Read more.
Sensor nodes are critical components of the Internet of Things (IoT). Traditional IoT sensor nodes are typically powered by disposable batteries, making it difficult to meet the requirements for long lifetime, miniaturization, and zero maintenance. Hybrid energy systems that integrate energy harvesting, storage, and management are expected to provide a new power source for IoT sensor nodes. This research describes an integrated cube-shaped photovoltaic (PV) and thermal hybrid energy-harvesting system that can be utilized to power IoT sensor nodes with active RFID tags. The indoor light energy was harvested using 5-sided PV cells, which could generate 3 times more energy than most current studies using single-sided PV cells. In addition, two vertically stacked thermoelectrical generators (TEG) with a heat sink were utilized to harvest thermal energy. Compared to one TEG, the harvested power was improved by more than 219.48%. In addition, an energy management module with a semi-active configuration was designed to manage the energy stored by the Li-ion battery and supercapacitor (SC). Finally, the system was integrated into a 44 mm × 44 mm × 40 mm cube. The experimental results showed that the system was able to generate a power output of 192.48 µW using indoor ambient light and the heat from a computer adapter. Furthermore, the system was capable of providing stable and continuous power for an IoT sensor node used for monitoring indoor temperature over a prolonged period. Full article
(This article belongs to the Special Issue Energy Harvesting in Environmental Wireless Sensor Networks)
Show Figures

Figure 1

21 pages, 8564 KiB  
Article
Implementation of EFC Charging Station by Multiport Converter with Integration of RES
by Jayaprakash Suvvala and Kannaiah Sathish Kumar
Energies 2023, 16(3), 1521; https://doi.org/10.3390/en16031521 - 3 Feb 2023
Cited by 6 | Viewed by 2772
Abstract
Electric vehicles (EVs) are gradually becoming an integral part of the drive to accomplish sustainable energy standards. Due to their limited onboard battery capacity, EVs’ expanding popularity creates a need for widespread charging stations. However, fast charging stations, particularly Extreme Fast Charging (EFC), [...] Read more.
Electric vehicles (EVs) are gradually becoming an integral part of the drive to accomplish sustainable energy standards. Due to their limited onboard battery capacity, EVs’ expanding popularity creates a need for widespread charging stations. However, fast charging stations, particularly Extreme Fast Charging (EFC), may impose a hassle on the electrical system due to overload during peak hours, frequent power gaps, and voltage sag. To flatten the power supply, the photovoltaic (PV) Hybrid Energy Storage Systems (HESS) and the uncertain and variable nature of PV systems always include solar and hybrid energy storage systems (HESS) such as batteries and supercapacitors. This research suggests a multi-port DC-DC converter (MPC) with a bidirectional DC-DC converter for battery ESS-integrated PV systems. The MPC can regulate the majority of active power through PV to a battery, PV to an EV charging station, HESS to an EV charging station, and PV to AC grid. Additionally, a PI controller is used for the MPC, taking both the PV and battery voltage variations into account. Therefore, the presented configuration can achieve the key benefits of greater integration, more efficiency, and reduced cost. Simulation results show the advantages of this multiport EV charging circuit with PV-HESS and design in different modes. Full article
(This article belongs to the Special Issue Multilevel Inverters for Utility Applications)
Show Figures

Figure 1

21 pages, 5213 KiB  
Review
Part-I: State-of-the-Art Technologies of Solar Powered DC Microgrid with Hybrid Energy Storage Systems-Architecture Topologies
by Dogga Raveendhra, Rajana Poojitha, Beeramangalla Lakshminarasaiah Narasimharaju, Aliona Dreglea, Fang Liu, Daniil Panasetsky, Mukesh Pathak and Denis Sidorov
Energies 2023, 16(2), 923; https://doi.org/10.3390/en16020923 - 13 Jan 2023
Cited by 12 | Viewed by 3456
Abstract
In the case of microgrid (MG) systems, the choice of the right configuration plays a vital role to meet grid/load necessities when integrating low voltage, non-linear and highly sensitive (to environmental conditions) power sources such as solar PV modules, batteries and supercapacitors (SCs), [...] Read more.
In the case of microgrid (MG) systems, the choice of the right configuration plays a vital role to meet grid/load necessities when integrating low voltage, non-linear and highly sensitive (to environmental conditions) power sources such as solar PV modules, batteries and supercapacitors (SCs), etc. In the case of MG systems, the choice of the right configuration and the appropriate type of power converters in any application can have a significant impact on the optimum performance. Numerous architectures have been proposed for the integration of various energy sources to achieve optimum performance. A large number of research articles have been published in these areas. In this article, the detailed organization of various architectures based on the arrangement of various sources and detailed analyses is presented along with a discussion on those architectures. Moreover, the suitability of all the reviewed architectures based on driving factors such as (a) high conversion gain, (b) good power decoupling, (c) high efficiency, (d) isolation, (e) power-handling capabilities and (f) compact design is presented in the discussions section. The critical examination and comparative study presented in this work can assist both industry personnel and academicians in selecting the best architectural and power converter topologies required for optimum performance. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 7068 KiB  
Article
DC Bus Voltage Stabilization and SOC Management Using Optimal Tuning of Controllers for Supercapacitor Based PV Hybrid Energy Storage System
by Saswati Pattnaik, Mano Ranjan Kumar, Sunil Kumar Mishra, Shivam Prakash Gautam, Bhargav Appasani and Taha Selim Ustun
Batteries 2022, 8(10), 186; https://doi.org/10.3390/batteries8100186 - 15 Oct 2022
Cited by 15 | Viewed by 4225
Abstract
The global initiative of decarbonization has led to the popularity of renewable energy sources, especially solar photovoltaic (PV) cells and energy storage systems. However, standalone battery-based energy storage systems are inefficient in terms of the shelf and cycle life, reliability, and overall performance, [...] Read more.
The global initiative of decarbonization has led to the popularity of renewable energy sources, especially solar photovoltaic (PV) cells and energy storage systems. However, standalone battery-based energy storage systems are inefficient in terms of the shelf and cycle life, reliability, and overall performance, especially in instantaneous variations in solar irradiance and load. In order to overcome this, a combination of a supercapacitor and battery-based hybrid energy storage system (HESS) is considered as an emerging and viable solution. The present work proposes an optimally tuned tilt-integral (TI) controller to develop an efficient power management strategy (PMS) to enhance the overall system performance. The controller parameters are tuned by optimization of the time-domain design specifications using a gradient-free simplex search technique. The robustness of the proposed TI controller is demonstrated in comparison to PI and fractional-order PI (FOPI) controllers. Furthermore, extensive experimentation was carried out to analyze the effectiveness of the proposed approach for DC bus voltage stabilization and state-of-charge (SOC) management under varying operating conditions such as solar irradiance, load, temperature, and SOC consumption by battery. Full article
(This article belongs to the Special Issue Advances in Battery Systems and Applications)
Show Figures

Figure 1

Back to TopTop