Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = husk biochar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1971 KiB  
Article
Slow Pyrolysis as a Method of Treating Household Biowaste for Biochar Production
by Agnieszka Bezuszko, Marcin Landrat, Krzysztof Pikoń, Ana F. Ferreira, Abel Rodrigues, Gabor Olejarz and Max Lewandowski
Appl. Sci. 2025, 15(14), 7858; https://doi.org/10.3390/app15147858 - 14 Jul 2025
Viewed by 322
Abstract
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such [...] Read more.
The amount of waste generated by society is constantly increasing. Consequently, there is a need to develop new and better methods of treating it. A significant part of municipal waste is biowaste, which can be treated as a source of valuable resources such as nutrients, organic matter, and energy. The present work aims to determine the properties of the tested household biowaste and the possibility of using it as feedstock in slow pyrolysis to obtain biochar. The slow pyrolysis process of the biowaste was carried out in an electrically heated Horizontal Tube Furnace (HTF) at temperatures of 400 °C, 500 °C, and 600 °C in a nitrogen atmosphere. The analysis showed that depending on the type and composition of the biowaste, its properties are different. All the biowaste tested has a high moisture content (between 63.51% and 81.53%), which means that the biowaste needs to be dried before the slow pyrolysis process. The characteristics of kitchen biowaste are similar to those of food waste studied by other researchers in different regions of the world. In addition, the properties of kitchen biowaste are similar to those of the typical biomasses used to produce biochar via slow pyrolysis, such as wood, almond shells, and rice husks. Both kinds of garden biowaste tested may have been contaminated (soil, rocks) during collection, which affected the high ash content of spring (17.75%) and autumn (43.83%) biowaste. This, in turn, affected all the properties of the garden biowaste, which differed significantly from both the literature data of other garden wastes and from the properties of typical biomass feedstocks used to produce biochar in slow pyrolysis. For all biowaste tested, it was shown that as the pyrolysis temperature increases, the yield of biochar decreases. The maximum mass yield of biochar for kitchen, spring garden, and autumn garden biowaste was 36.64%, 66.53%, and 66.99%, respectively. Comparing the characteristics of biowaste before slow pyrolysis, biochar obtained from kitchen biowaste had a high carbon content, fixed carbon, and a higher HHV. In contrast, biochar obtained from garden biowaste had a lower carbon content and a lower HHV. Full article
Show Figures

Figure 1

27 pages, 1696 KiB  
Article
Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(7), 1651; https://doi.org/10.3390/agronomy15071651 - 7 Jul 2025
Viewed by 607
Abstract
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how [...] Read more.
This study presents an integrated approach to sustainable soil and crop management by evaluating the individual and combined effects of cow manure (CM), rice husk biochar (RHB), and potassium humate (KH)—three underutilized, low-cost organic amendments derived from agricultural byproducts. Uniquely, it investigates how these amendments simultaneously affect soil physical and chemical properties, plant growth, and the accumulation of bioactive compounds in sunflower sprouts, thereby linking soil health to crop nutritional quality. The application of 2% w/w KH alone resulted in the greatest increases in macroaggregation (+0.51), soil pH (from 6.8 to 8.6), and electrical conductivity (+298%). The combination of 1% w/w CM and 2% KH led to the highest increases in soil organic carbon (OC, +62.9%) and soil respiration (+56.4%). Nitrate and available phosphorus (P) peaked with 3% w/w RHB + 2% KH (+120%) and 1% w/w CM + 0.5% KH (+35.5%), respectively. For plant traits, 0.5% w/w KH increased the total leaf area by 61.9%, while 1% w/w CM enhanced shoot and root biomass by 60.8% and 79.0%, respectively. In contrast, 2% w/w KH reduced chlorophyll content (−43.6%). Regarding bioactive compounds, the highest total phenolic content (TPC) was observed with 1% w/w KH (+21.9%), while the strongest DPPH antioxidant activity was found under 1% w/w CM + 1% w/w KH (+72.6%). A correlation analysis revealed that biomass production and secondary metabolite accumulation are shaped by trade-offs arising from resource allocation under stress or nutrient limitations. Potassium, P, soil microbial respiration, and OC emerged as key integrators connecting soil structure, fertility, and plant metabolic responses. Overall, the combination of 1% w/w CM with 0.5–1% w/w KH proved to be the most effective strategy under the tested conditions. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

21 pages, 2015 KiB  
Article
Biochar as a Stimulator of Zea mays Growth and Enzyme Activity in Soil Contaminated with Zinc, Copper, and Nickel
by Edyta Boros-Lajszner, Jadwiga Wyszkowska and Jan Kucharski
Agronomy 2025, 15(7), 1543; https://doi.org/10.3390/agronomy15071543 - 25 Jun 2025
Viewed by 390
Abstract
Biochar continues to attract growing interest as a promising soil amendment, particularly in areas contaminated with heavy metals. The present experiment was conducted on soil contaminated with zinc (Zn), copper (Cu), and nickel (Ni) in the following treatments: contamination with a single heavy [...] Read more.
Biochar continues to attract growing interest as a promising soil amendment, particularly in areas contaminated with heavy metals. The present experiment was conducted on soil contaminated with zinc (Zn), copper (Cu), and nickel (Ni) in the following treatments: contamination with a single heavy metal (Zn, Cu, or Ni) and with a combination of heavy metals (ZnCu, ZnNi, CuNi, and ZnCuNi). The analysis was performed in soil samples with and without biochar addition. The biochar dose was 15 g kg−1 soil. The biochar was produced from sunflower husks, with the following composition: ash—7.49%; organic carbon (Corg)—83.92%; total nitrogen (Ntotal)—0.91%; hydrogen—2.56%; sulfur—0.02%; oxygen—3.30%; and pH—9.79. Nickel, followed by Cu, induced the greatest decrease in Zea mays yields, whereas the smallest decline in yields was observed in response to Zn contamination. The combined application of the tested heavy metals had more damaging effects, in particular by decreasing maize yields. The values of the heavy metal impact index (IFHm) confirmed that heavy metals exerted a negative impact on the biochemical activity of soil. Copper applied alone and in combination with other heavy metals had the most inhibitory effect on soil enzyme activity. The toxicity of the analyzed heavy metals for plants and soil enzymes was reduced by biochar. This is confirmed by the tolerance index (TI) values for copper and nickel in Zea mays. The TI values for copper increased from 0.318 in soil without biochar to 0.405 in soil with biochar. For nickel, the TI values increased from 0.015 to 0.133. The values of the biochar impact index (IFCB) also suggest that biochar stimulated enzyme activity in all treatments. Biochar also improved the chemical and physicochemical properties of soil, including the content of Corg and Ntotal and soil pH. Full article
Show Figures

Figure 1

23 pages, 2069 KiB  
Article
Evaluating the Odor Mitigation Effects of Biochar-Enhanced Bedding Materials in a Simulated Bedded Pack Dairy Barn Environment: A Laboratory-Scale Study
by Jinho Shin, Daehun Kim, Yangjoon Lee, Seunghun Lee, Riuh Wardhani and Heekwon Ahn
Appl. Sci. 2025, 15(11), 6361; https://doi.org/10.3390/app15116361 - 5 Jun 2025
Viewed by 638
Abstract
This study evaluated the odor mitigation potential of rice husk biochar in a simulated dairy bedded pack over 21 days. Biochar was incorporated into a dairy manure–sawdust mixture at 5% and 10% dry weight. Emissions of key odorous compounds—ammonia (NH3), sulfur [...] Read more.
This study evaluated the odor mitigation potential of rice husk biochar in a simulated dairy bedded pack over 21 days. Biochar was incorporated into a dairy manure–sawdust mixture at 5% and 10% dry weight. Emissions of key odorous compounds—ammonia (NH3), sulfur compounds, volatile fatty acids, phenol, p-cresol, and indole—were evaluated. Odor units were assessed to determine perceived odor reduction. Biochar significantly reduced NH3 and dimethyl sulfide (DMS) emissions: NH3 by 27% and 43%, and DMS by 53% and 75%, at 5% and 10% application, respectively. The NH3 reduction was attributed to ammoniacal nitrogen adsorption, while the DMS reduction likely resulted from enhanced air permeability suppressing anaerobic bacterial activity. The 5% biochar treatment, achieving 63% and 70% of the NH3 and DMS reductions attained by the 10% treatment, respectively, offers a more practical and cost-effective option. Other odorous compounds were not significantly affected. A temporary reduction in odor units was observed on day 7. Rice husk biochar contains 14.5% atomic Si, primarily as silica, which supports structural stability but hinders pore development, reducing adsorption efficiency. These findings demonstrate the importance of biochar’s physicochemical properties in odor mitigation. Future research should evaluate long-term field performance, microbial interactions, and silica modification strategies. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Graphical abstract

14 pages, 2703 KiB  
Article
Evaluation of Heavy Metal Adsorption Efficiency of Biochars Derived from Agricultural Waste
by Velyana Georgieva, Lenia Gonsalvesh, Sonia Mileva, Mariyana Hamanova and Hyusein Yemendzhiev
Biomass 2025, 5(2), 33; https://doi.org/10.3390/biomass5020033 - 3 Jun 2025
Cited by 1 | Viewed by 922
Abstract
This study investigates the potential of biochars derived from agricultural waste biomass for the removal of heavy metal ions from aqueous solutions. Biochars were produced via slow pyrolysis at 793 K using almond shells (AS), walnut shells (WS), pistachio shells (PS), and rice [...] Read more.
This study investigates the potential of biochars derived from agricultural waste biomass for the removal of heavy metal ions from aqueous solutions. Biochars were produced via slow pyrolysis at 793 K using almond shells (AS), walnut shells (WS), pistachio shells (PS), and rice husks (RH) as feedstocks. The physicochemical properties and adsorption performance of the resulting materials were evaluated with respect to Cd(II), Mn(II), Co(II), Ni(II), Zn(II), total Iron (Fetot), total Arsenic (Astot), and total Chromium (Crtot) in model solutions. Surface morphology, porosity, and surface chemistry of the biochars were characterized by scanning electron microscopy (SEM), nitrogen adsorption at 77 K (for specific surface area and pore structure), Fourier-transform infrared spectroscopy (FTIR), and determination of the point of zero charge (pHpzc). Based on their textural properties, biochars derived from WS, PS, and AS were classified as predominantly microporous, while RH-derived biochar exhibited mesoporous characteristics. The highest Brunauer–Emmett–Teller (SBET) surface area was recorded for PS biochar, while RH biochar showed the lowest. The pistachio shell biochar exhibited the highest specific surface area (440 m2/g), while the rice husk biochar was predominantly mesoporous. Batch adsorption experiments were conducted at 25 °C, with an adsorbent dose of 3 g/L and a contact time of 24 h. The experiments in multicomponent systems revealed removal efficiencies exceeding 87% for all tested metals, with maximum values reaching 99.9% for Cd(II) and 97.5% for Fetot. The study highlights strong correlations between physicochemical properties and sorption performance, demonstrating the suitability of these biochars as low-cost sorbents for complex water treatment applications. Full article
Show Figures

Figure 1

33 pages, 3604 KiB  
Article
Enhancing Soil Health, Growth, and Bioactive Compound Accumulation in Sunflower Sprouts Using Agricultural Byproduct-Based Soil Amendments
by Thidarat Rupngam, Patchimaporn Udomkun, Thirasant Boonupara and Puangrat Kaewlom
Agronomy 2025, 15(5), 1213; https://doi.org/10.3390/agronomy15051213 - 16 May 2025
Cited by 1 | Viewed by 608
Abstract
This study investigated the effects of organic soil amendments derived from agricultural byproducts—specifically cow manure (CM) at 0% and 1% w/w, and rice husk biochar (RHB) at 0%, 1%, 3%, and 5% w/w—on soil health, plant growth, [...] Read more.
This study investigated the effects of organic soil amendments derived from agricultural byproducts—specifically cow manure (CM) at 0% and 1% w/w, and rice husk biochar (RHB) at 0%, 1%, 3%, and 5% w/w—on soil health, plant growth, and the accumulation of bioactive compounds in sunflower sprouts. The application of 1% CM significantly improved the soil properties—enhancing macroaggregates (MaAs) by 54.5%, mesoaggregates (MeAs) by 16.7%, and soil organic carbon (SOC) by 27.2%. It also increased the shoot and root biomass by 22.3% and 25.8%, respectively, and boosted soil respiration by 67.0%, while reducing the nitrate (NO3) content by 33.7%. However, the CM also decreased the total phenolic content (TPC) by 21% and chlorophyll by 44.7%. The RHB, particularly at rates of 1–3% w/w, increased the MaAs by 62%, microaggregates (MiAs) by 3%, leaf area by up to 43.9%, root-to-shoot ratio by 26.5%, SOC by 13.1%, and DPPH antioxidant activity by 42.8%, while lowering the MeAs by 9% and NO3 content by up to 56.1%. In contrast, excessive RHB application (5% w/w) negatively impacted root development. The interaction effects revealed that the combination of 1% w/w CM with 1% w/w RHB maximized the MaAs by 12%, increased the root dry biomass by 101.9%, and also increased the TPC by 40.1% compared to the manure-only treatment. The Principal Component Analysis (PCA) indicated that CM primarily promoted plant growth and respiration, while RHB contributed to organic matter retention and nutrient availability. Applying 1% w/w CM and 1% w/w RHB showed promising effects and is recommended for short-cycle crop production. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 2914 KiB  
Article
Biochar Herbicide Protection Pods for Mitigating Herbicide Sensitivity in Tomato Plants
by Sandipan Sil, Fernanda Reolon de Souza, Bailey Bullard, Todd Mlsna and Te-Ming Tseng
Agronomy 2025, 15(5), 1188; https://doi.org/10.3390/agronomy15051188 - 14 May 2025
Viewed by 796
Abstract
Tomato is a major crop, and efforts are ongoing to enhance its resilience to biotic and abiotic stresses. Weed management remains a key challenge, prompting the search for sustainable alternatives to reduce the impact of excessive herbicide use. Biochar is a promising alternative, [...] Read more.
Tomato is a major crop, and efforts are ongoing to enhance its resilience to biotic and abiotic stresses. Weed management remains a key challenge, prompting the search for sustainable alternatives to reduce the impact of excessive herbicide use. Biochar is a promising alternative, as it enriches the soil, improves its water retention capacity, promotes its regeneration and increased fertility, delays nutrient leaching, and improves fertilizer use efficiency. This study aimed to investigate the efficiency of biochar use in mitigating stress caused by different herbicides. Two different biochar materials, Douglas fir and rice husk, were used. Tomato seeds were sown in pots and arranged in a randomized design. At the 4V stage (28 days after sowing), the herbicides S-metolachlor, metribuzin, and halosulfuron were applied. Plant length, injury, antioxidant enzyme activity, ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPOD), glutathione reductase (GR), and hydrogen peroxide content (H2O2) were assessed 7 and 14 days after herbicide application. Plants treated with biochar and submitted to herbicide treatments showed significantly higher growth parameters and fewer injuries when compared to plants treated with herbicides without biochar. The antioxidant response of the plants followed the same trend; smaller plants with more injuries showed greater H2O2 accumulation and significantly higher antioxidant enzyme activity. These findings highlight the protective effect of biochar, particularly Douglas fir biochar, as it effectively mitigated herbicide-induced oxidative stress and helped maintain plant growth and structural integrity under treatment conditions. Full article
Show Figures

Figure 1

31 pages, 7056 KiB  
Article
Agronomic Effectiveness of Biochar–KCl Composites for Corn Cultivation in Tropical Soils
by Gabrielly Nayara Tavares Silva Rodrigues, Carlos Alberto Silva and Everton Geraldo de Morais
Soil Syst. 2025, 9(2), 45; https://doi.org/10.3390/soilsystems9020045 - 9 May 2025
Cited by 1 | Viewed by 794
Abstract
Potassium chloride (KCl) is the main source of potassium (K) in Brazilian agriculture, but its high import dependency and the need for split applications increase costs and expose the system to supply and efficiency risks. Understanding the availability and release kinetics of potassium [...] Read more.
Potassium chloride (KCl) is the main source of potassium (K) in Brazilian agriculture, but its high import dependency and the need for split applications increase costs and expose the system to supply and efficiency risks. Understanding the availability and release kinetics of potassium (K) from biochar-based fertilizers (K-BBFs) is crucial for optimizing their use as full or partial substitutes for KCl in Brazilian agriculture. This study evaluated biochars derived from banana peel (BP), coffee husk (CH), and chicken manure (CM), both in their pure form and co-pyrolyzed with KCl (composites) at 300 °C and 650 °C, as K sources for corn grown in two contrasting Oxisols. For pure biochars, feedstock type and pyrolysis temperature significantly influenced K content and release kinetics. Higher pyrolysis temperatures increased K content in BP and CH biochars but not in CM, while also slowing K release in CH and CM. Co-pyrolysis with KCl increased biochar yield, ash content, and K availability. Composites released more K than pure biochar but less than KCl, and at a slower rate. Notably, banana peel biochar co-pyrolyzed with KCl at 650 °C (CBP650) exhibited 36% slower K release and reduced KCl use by 82% while maintaining similar K use efficiency and corn growth. All K-BBFs matched KCl in promoting robust corn growth in clay soil, increasing biomass by 5.3 times and K uptake by 9 times compared to unfertilized (no K addition) plants. In sandy Oxisol, K-BBFs boosted biomass by up to 3.5 times compared to unfertilized plants, though some pure biochars were less effective than KCl in supporting full corn growth. Soil texture strongly influenced K availability, with sandier soils exhibiting higher K levels in solution. These findings suggest that kinetic release studies in abiotic systems, such as lysimeters with sand, are not suitable for evaluating K-BBFs as slow-release fertilizers. Due to lower K retention in sandy soil and solution K levels exceeding 1100 mg L−1, split applications of some K-BBFs are recommended to prevent corn cation uptake imbalances and soil K leaching. Additionally, granulating biochar–KCl composites may enhance K retention and regulate its release in sandy Oxisols. Full article
Show Figures

Figure 1

25 pages, 6816 KiB  
Article
Mechanisms of Cu2+ Immobilization Using Carbonyl Iron Powder–Biochar Composites for Remediating Acidic Soils from Copper Sulfide Mining Areas
by Shuting Wang, Jinchun Xue, Min He, Xiaojuan Wang and Hui Qi
Sustainability 2025, 17(10), 4281; https://doi.org/10.3390/su17104281 - 8 May 2025
Viewed by 638
Abstract
Soil heavy metal contamination poses critical challenges to ecological sustainability in mining regions, particularly in acidic soils from copper sulfide mines. This study developed a sustainable remediation strategy using a carbonyl iron powder–biochar composite (CIP@BC) derived from agricultural waste (rice husk) and industrial [...] Read more.
Soil heavy metal contamination poses critical challenges to ecological sustainability in mining regions, particularly in acidic soils from copper sulfide mines. This study developed a sustainable remediation strategy using a carbonyl iron powder–biochar composite (CIP@BC) derived from agricultural waste (rice husk) and industrial byproducts. The composite was synthesized through an energy-efficient mechanical grinding method at a 10:1 mass ratio of biochar to carbonyl iron powder, aligning with circular economy principles. Material characterization revealed CIP particles uniformly embedded within biochar’s porous structure, synergistically enhancing surface functionality and redox activity. CIP@BC demonstrated exceptional Cu2+ immobilization capacity (910.5 mg·g−1), achieved through chemisorption and monolayer adsorption mechanisms. Notably, the remediation process concurrently improved key soil health parameters. Soil incubation trials demonstrated that 6% CIP@BC application elevated soil pH from 4.27 to 6.19, reduced total Cu content by 29.43%, and decreased DTPA-extractable Cu by 67.26%. This treatment effectively transformed Cu speciation from bioavailable to residual fractions. Concurrent improvements in electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (OM), and soil water content (SWC) collectively highlighted the composite’s multifunctional remediation potential. This study bridges environmental remediation with sustainable land management through an innovative waste-to-resource approach that remediates acidic mine soils. The dual functionality of CIP@BC in contaminant immobilization and soil quality restoration provides a scalable solution. Full article
Show Figures

Figure 1

15 pages, 2074 KiB  
Article
Optimized Filtrations for Stormwater Quality Improvement by Porous Media–Biochar Applications: Column Experiments and Inverse Modeling
by Sumiaya Amin Preota, Chu-Lin Cheng, Myung Hwangbo and Jongsun Kim
Water 2025, 17(9), 1372; https://doi.org/10.3390/w17091372 - 1 May 2025
Viewed by 654
Abstract
Stormwater reuse plays a critical role under changing climates and increasing water demands. This study investigates the removal efficacy of lead (Pb2+) and ammonia (NH3) using sand and rice husk (RH) biochar for potential stormwater quality improvements and treatments. [...] Read more.
Stormwater reuse plays a critical role under changing climates and increasing water demands. This study investigates the removal efficacy of lead (Pb2+) and ammonia (NH3) using sand and rice husk (RH) biochar for potential stormwater quality improvements and treatments. Column experiments combined with HYDRUS inverse modeling were conducted to optimize adsorption isotherms from breakthrough curves. Among linear and non-linear models, the Langmuir and Freundlich models performed better for sand and biochar, respectively. RH biochar showed much higher adsorption capacity of both Pb2+ (4.813 mg/g) and NH3 (6.188 mg/g). In contrast, sand showed a relatively limited adsorption capacity for Pb2+ (0.118 mg/g) and NH3 (0.104 mg/g). This can be contributed to higher pore size distribution, surface area, and the presence of different functional groups of biochar. The optimized adsorption coefficients and adsorption capacity parameters of sand and RH biochar by inverse modeling provided useful input for improving field designs. These findings will enhance the development of the best management practices (BMPs) for managing heavy metal and solute pollution in groundwater or stormwater low-impact development (LID) infrastructure systems. Full article
(This article belongs to the Special Issue Soil-Groundwater Pollution Investigations)
Show Figures

Figure 1

21 pages, 3830 KiB  
Article
Field Evaluation of Rice Husk Biochar and Pine Tree Woodchips for Removal of Tire Wear Particles from Urban Stormwater Runoff in Oxford, Mississippi (USA)
by Boluwatife S. Olubusoye, James V. Cizdziel, Kendall Wontor, Ruojia Li, Rachel Hambuchen, Voke Tonia Aminone, Matthew T. Moore and Erin R. Bennett
Sustainability 2025, 17(9), 4080; https://doi.org/10.3390/su17094080 - 30 Apr 2025
Viewed by 1311
Abstract
Tire wear particles (TWPs), a form of microplastics (MPs) pollution, are transported into waterbodies through stormwater runoff, leading to environmental pollution and impacts on associated biota. Here, we investigated the effectiveness of stormwater filter socks filled with rice husk biochar or pine tree [...] Read more.
Tire wear particles (TWPs), a form of microplastics (MPs) pollution, are transported into waterbodies through stormwater runoff, leading to environmental pollution and impacts on associated biota. Here, we investigated the effectiveness of stormwater filter socks filled with rice husk biochar or pine tree woodchips in reducing TWP pollution in urban runoff in Oxford, Mississippi. Triplicate runoff samples were collected upstream and downstream of the biofilters at two sites during two storm events at peak flow within minutes of the start of the storm and after 30 min. Samples were analyzed for TWPs using a combination of stereomicroscopy, micro-attenuated total reflectance Fourier transform infrared spectroscopy (µ-ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Concentrations (TWPs/L) upstream of the biofilter were variable but highest at the start of the runoff, dropping from an average of 2811 ± 1700 to 476 ± 63 after 30 min at site 1 and from 2702 ± 353 to 2356 ± 884 at site 2. Biochar was more effective than woodchips (p < 0.05) at removing TWPs, reducing concentrations by an average of 97.6% (first use) and 85.3% (second use) compared to 66.2% and 54.2% for woodchips, respectively. Biochar was particularly effective at removing smaller TWPs (<100 µm). Both materials became less effective with use, suggesting fewer available trapping sites and the need for removal and replacement of the material with time. Overall, this study suggests that biochar and woodchips, alone or in combination, deserve further scrutiny as a potential cost-effective and sustainable method to mitigate the transfer of TWPs to aquatic ecosystems and associated biota. Full article
Show Figures

Figure 1

17 pages, 3683 KiB  
Article
Changes in Soil Properties, Content of Cd, and Cd-Resistant Bacterial Community with Biochar After One-Time Addition Under Soybean Continuous Cropping and Crop Rotation Patterns
by Qin Yao, Gege He, Shubo Yan, Jie Song, Yuetong Zhang, Xiaoyu Zhang, Yan Sun, Yibo Wang, Yongjuan Li, Yu Tian, Changjiang Zhao and Yongxia Guo
Agronomy 2025, 15(5), 1084; https://doi.org/10.3390/agronomy15051084 - 29 Apr 2025
Viewed by 411
Abstract
In recent years, Cadmium (Cd) pollution in soybean farmland is severe. Therefore, this study focused on whether biochar influences soil physiochemical properties, the Cd content in soil and soybean grains, and the abundance and community structure of the czcA gene. Four doses of [...] Read more.
In recent years, Cadmium (Cd) pollution in soybean farmland is severe. Therefore, this study focused on whether biochar influences soil physiochemical properties, the Cd content in soil and soybean grains, and the abundance and community structure of the czcA gene. Four doses of rice husk biochar (0, 5, 15, and 25 t·ha−1) were applied under continuous cropping and crop rotation systems, and soil samples were collected after four years of one-time addition. The results indicated that biochar addition significantly increased soil available nitrogen, phosphorus, and soil organic carbon contents under continuous cropping and rotation. Biochar application significantly reduced the total Cd content of soil samples and soybean grains. Additionally, biochar application reduced czcA gene abundance in soybean soils by 14.26–37.88% and 35.96–48.71%, respectively. Correlation analysis revealed that Cd content and the abundance of the czcA gene significantly correlated with soil nutrients and pH. High-throughput sequencing revealed that the relative abundances of several Cd-resistant microorganisms were decreased by biochar addition. In addition, adding biochar significantly affected the Cd-resistant microbial community structure and diversity by influencing soil properties and Cd content. Therefore, this study has important practical significance for improving the soil environment and ensuring the quality and safety of agricultural products. Full article
Show Figures

Figure 1

21 pages, 3188 KiB  
Article
Biochar Amendment in Remediation of Heavy Metals in Paddy Soil: A Case Study in Nobewam, Ghana
by Kwadwo Owusu Boakye, Matt Dodd, Maxwell Darko Asante, Vincent Logah and Godfred Darko
Soil Syst. 2025, 9(2), 38; https://doi.org/10.3390/soilsystems9020038 - 22 Apr 2025
Viewed by 1700
Abstract
Biochar is a stabilised, carbon-rich material created when biomass is heated to temperatures usually between 450 and 550 °C, under low-oxygen concentrations. This study evaluated the effectiveness of sawdust, cocoa pod ash and rice husk biochars in remediating metal-contaminated paddy soil in Nobewam, [...] Read more.
Biochar is a stabilised, carbon-rich material created when biomass is heated to temperatures usually between 450 and 550 °C, under low-oxygen concentrations. This study evaluated the effectiveness of sawdust, cocoa pod ash and rice husk biochars in remediating metal-contaminated paddy soil in Nobewam, Ghana. Biochar was applied 21 days before cultivating the rice for 120 days, followed by soil sampling and rice harvesting for metals and physicochemical analyses. Compared to the untreated soils, biochar treatments exhibited an enhancement in soil quality, characterised by an increase in pH of 1.01–1.20 units, an increase in available phosphorus (P) concentration of 6.76–13.05 mg/kg soil and an increase in soil total nitrogen (N), and organic carbon (OC) concentration, ranging from 0.02% to 0.12%. Variabilities in electrical conductivity and effective cation exchange capacity were observed among the treated soils. Concentrations of potentially toxic metals (arsenic, cadmium, copper, mercury, lead and zinc) in paddy soils and rice analysed by atomic absorption spectroscopy showed significant differences (p < 0.05) among the sampled soils. The concentrations of arsenic and lead in all soil samples exceeded the Canadian Council of Ministers of the Environment soil quality guideline for agricultural soils, with untreated soils having the highest levels among all the soils. Cadmium had a potential ecological risk index > 2000 and a geoaccumulation index above 5, indicating pollution in all samples. In contrast, arsenic and mercury contamination were only found in the untreated soils. Among the tested treatments, rice husk and its combinations, particularly with cocoa pod ash, showed significant efficacy in reducing metal concentrations in the soils. The potential non-carcinogenic human health risks associated with the consumption of rice grown in biochar-treated soils were lower for all the metals compared to the control samples. Future research should focus on long-term field studies to validate these findings and explore the underlying mechanisms governing metal immobilization in paddy fields. Full article
Show Figures

Graphical abstract

24 pages, 2151 KiB  
Article
The Potential to Produce Bio-Based Ammonia Adsorbents from Lignin-Rich Residues
by Daniel Chernick, Valerie Dupont and Andrew B. Ross
Clean Technol. 2025, 7(2), 30; https://doi.org/10.3390/cleantechnol7020030 - 5 Apr 2025
Cited by 1 | Viewed by 1770
Abstract
The ammonia adsorption capacity of lignin-rich biomass solids was tested for the first time at low partial pressures (<1.5 kPa) and 20 °C. The biomass samples included untreated tree barks, husks, and peats, as well as the biochars produced by their slow pyrolysis. [...] Read more.
The ammonia adsorption capacity of lignin-rich biomass solids was tested for the first time at low partial pressures (<1.5 kPa) and 20 °C. The biomass samples included untreated tree barks, husks, and peats, as well as the biochars produced by their slow pyrolysis. Proximate and ultimate analyses, lignin content, and metal content are also presented. The untreated biosolids had higher VM/FC ratios, molar H/C, and O/C than the treated biosolids (biochars and treated biochars). A novel methodology is described for the safe generation of gaseous ammonia at predictable low partial pressures from tabletop-scale batch reaction experiments of NaOH with (NH4)2SO4 in aqueous solution, leading to the determination of ammonia adsorption capacities from low-cost experiments. Statistically significantly larger NH3 adsorption capacities were obtained for the untreated biosolids than for their biochars (p < 0.001). In contrast, the biochars were found to be poor NH3 adsorbers without further treatment. The NH3 adsorption capacities from this study’s biosolids were compared with those of common adsorbent types in the same conditions using the existing literature through equilibrium model interpolation (Dubinin–Astakhov, Toth, and Freundlich) or cubic spline fit from graphical isotherms. Controls consisting of commercially sourced activated carbons (AC) had low adsorption capacities, close to those derived from the literature in the same conditions for similar materials, confirming the methodology’s robustness. The untreated biosolids’ NH3 adsorption capacities were in the same range as those reported for silica, gamma-alumina, and some of the treated or doped ACs. They also performed better than the undoped, untreated ACs. The work suggests lignin-rich untreated biosolids such as barks and peats are competent low-cost ammonia adsorbents. Full article
Show Figures

Figure 1

24 pages, 3552 KiB  
Article
Effects of Biochar on Growth, Response to Water Stress, and Post-Stress Recovery in Underutilized Vegetable Hibiscus sabdariffa from Malawi
by Dickson Mgangathweni Mazibuko, Sarvesh Maskey, Kiseki Kurashina, Hiromu Okazawa, Hiroyuki Oshima, Taku Kato and Hidehiko Kikuno
Crops 2025, 5(2), 13; https://doi.org/10.3390/crops5020013 - 21 Mar 2025
Viewed by 811
Abstract
Globally, Hibiscus sabdariffa L. (Malvaceae), commonly known as roselle or hibiscus, is a multipurpose vegetable crop. In Malawi, where it is referred to as ‘Chidede’ (Chichewa), it is recognized as an underutilized traditional plant with significant potential. Traditional vegetable production in Malawi is [...] Read more.
Globally, Hibiscus sabdariffa L. (Malvaceae), commonly known as roselle or hibiscus, is a multipurpose vegetable crop. In Malawi, where it is referred to as ‘Chidede’ (Chichewa), it is recognized as an underutilized traditional plant with significant potential. Traditional vegetable production in Malawi is being promoted to enhance nutritional food security and climate change mitigation. Recently, biochar has become increasingly used to improve agricultural productivity through climate-smart technologies. To date, the influence of rice husk biochar (RHB) on H. sabdariffa remains underexplored. This study aims to evaluate the effects of RHB on the vegetative growth, response to water stress, and post-stress recovery of H. sabdariffa using a greenhouse pot experiment. Our findings indicate that biochar-amended soil enhanced plant height, stem thickness, and total leaf area by 16.5%, 12.0%, and 12.9%, respectively. Water stress significantly reduced all assessed growth parameters (p < 0.05) except total leaf area and average leaf area per plant. Under water stress conditions, biochar-treated plants were significantly taller (p < 0.05) and had a higher specific leaf area (p < 0.05), demonstrating a positive effect. A post-stress recovery analysis revealed that H. sabdariffa fully recovered in height and biomass, while partial recovery was observed for root collar diameter and compensatory recovery for total leaf area and average leaf area. Biochar-treated plants exhibited superior post-stress recovery compared to those grown in unamended soil. Overall, plants grown with biochar were taller and had a larger root collar diameter, higher stem and leaf fresh biomass, and greater total leaf area. These findings underscore biochar’s potential as a sustainable soil amendment for enhancing growth and resilience in underutilized crops. Further studies should explore field experiments to access environmental heterogeneity and examine the diverse factors influencing biochar efficiency. Full article
Show Figures

Figure 1

Back to TopTop