Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = human trabecular meshwork

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 31542 KB  
Article
Pyrroloquinoline Quinone (PQQ) Attenuates Hydrogen Peroxide-Induced Injury Through the Enhancement of Mitochondrial Function in Human Trabecular Meshwork Cells
by Sabrina Petricca, Antonio Matrone, Daria Capece, Irene Flati, Vincenzo Flati, Enrico Ricevuto, Giuseppe Celenza, Nicola Franceschini, Mirco Mastrangelo, Cristina Pellegrini, Loredana Cristiano, Giuseppe Familiari, Benedetta Cinque, Giovanna Di Emidio, Carla Tatone and Roberto Iorio
Int. J. Mol. Sci. 2025, 26(14), 6938; https://doi.org/10.3390/ijms26146938 - 19 Jul 2025
Viewed by 3892
Abstract
Mitochondrial metabolism in the trabecular meshwork (TM) plays a critical role in maintaining intraocular pressure homeostasis by supporting the energy-demanding processes involved in aqueous humour outflow. In primary open-angle glaucoma, oxidative stress impairs mitochondrial function, leading to TM dysfunction. Therefore, understanding and targeting [...] Read more.
Mitochondrial metabolism in the trabecular meshwork (TM) plays a critical role in maintaining intraocular pressure homeostasis by supporting the energy-demanding processes involved in aqueous humour outflow. In primary open-angle glaucoma, oxidative stress impairs mitochondrial function, leading to TM dysfunction. Therefore, understanding and targeting mitochondrial health in TM cells could offer a novel therapeutic strategy. Pyrroloquinoline quinone (PQQ) is a redox cofactor with antioxidant and mitochondrial-enhancing properties. However, its effects on human TM (HTM) cells remain largely unexplored. This study examined PQQ cytoprotective effects against H2O2-induced oxidative stress in HTM cells. Seahorse analyses revealed that PQQ alone improves mitochondrial respiration and ATP production. Moreover, PQQ mitigates H2O2-induced cellular damage and preserves mitochondrial function by normalising proton leak and increasing ATP levels. Furthermore, TEM and confocal microscopy showed that PQQ can partially alleviate structural damage, restoring mitochondrial network morphology, thereby leading to reduced cell death. Although these protective effects seem not to be mediated by changes in mitochondrial content or activation of the SIRT1/PGC1-α pathway, they may involve modulation of SIRT3, a key factor of mitochondrial metabolism and homeostasis. Overall, these results suggest that PQQ may represent a promising candidate for restoring mitochondrial function and reversing oxidative damage in HTM cells. Full article
(This article belongs to the Special Issue Mitochondrial Functions and Dynamics)
Show Figures

Figure 1

16 pages, 8324 KB  
Article
Transcriptomic Differences Between Human Trabecular Meshwork Stem Cells and Trabecular Meshwork Cells Reveal Specific Biomarker Profiles
by Rong Du, Ajay Kumar, Enzhi Yang, Jingxue Zhang, Ningli Wang and Yiqin Du
Curr. Issues Mol. Biol. 2025, 47(7), 514; https://doi.org/10.3390/cimb47070514 - 3 Jul 2025
Cited by 1 | Viewed by 612
Abstract
Glaucoma is a leading cause of irreversible blindness, normally associated with dysfunction and degeneration of the trabecular meshwork (TM) as the primary cause. Trabecular meshwork stem cells (TMSCs) have emerged as promising candidates for TM regeneration toward glaucoma therapies, yet their molecular characteristics [...] Read more.
Glaucoma is a leading cause of irreversible blindness, normally associated with dysfunction and degeneration of the trabecular meshwork (TM) as the primary cause. Trabecular meshwork stem cells (TMSCs) have emerged as promising candidates for TM regeneration toward glaucoma therapies, yet their molecular characteristics remain poorly defined. In this study, we performed a comprehensive transcriptomic comparison of human TMSCs and human TM cells (TMCs) using RNA sequencing and microarray analyses, followed by qPCR validation. A total of 465 differentially expressed genes were identified, with 254 upregulated in TMSCs and 211 in TMCs. A functional enrichment analysis revealed that TMSCs are associated with development, immune signaling, and extracellular matrix remodeling pathways, while TMCs are enriched in structural, contractile, and adhesion-related functions. A network topology analysis identified CXCL3, CXCL6, and BMP2 as robust TMSC-specific hub genes, and LMOD1 and BGN as TMC-specific markers, with expression patterns confirmed by qPCR. These findings define distinct molecular signatures of TMSCs and TMCs, providing reliable biomarkers for cell identity and a foundation for future stem cell-based therapies targeting TM dysfunction in glaucoma. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 4051 KB  
Article
Effects of Brimonidine, Latanoprost, and Omidenepag on Tunicamycin-Induced Endoplasmic Reticulum Stress and Fibrosis in Human Trabecular Meshwork Cells
by Mengxuan Liu, Megumi Honjo, Reiko Yamagishi and Makoto Aihara
Biomolecules 2025, 15(3), 389; https://doi.org/10.3390/biom15030389 - 8 Mar 2025
Viewed by 984
Abstract
This study evaluated the effects of α2-adrenergic agonist, prostaglandin F2α analog, and EP2 receptor agonist on tunicamycin-induced endoplasmic reticulum (ER) stress and fibrosis in human trabecular meshwork (TM) cells. Human TM cells were treated with tunicamycin for 24 h, followed by cotreatment with [...] Read more.
This study evaluated the effects of α2-adrenergic agonist, prostaglandin F2α analog, and EP2 receptor agonist on tunicamycin-induced endoplasmic reticulum (ER) stress and fibrosis in human trabecular meshwork (TM) cells. Human TM cells were treated with tunicamycin for 24 h, followed by cotreatment with brimonidine (BRI), latanoprost (LAT), or omidenepag (OMD). Immunocytochemistry was used to assess expressions of collagen type I alpha 1 chain (COL1A1), fibronectin, F-actin, and alpha-smooth muscle actin (α-SMA). Western blotting was performed to evaluate levels of C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and splicing X-box binding protein-1 (sXBP-1). Real-time qPCR was used to examine the mRNA expressions of COL1A1, connective tissue growth factor (CTGF), fibronectin, α-SMA, CHOP, GRP78, and sXBP-1. Expressions of COL1A1, CTGF, F-actin, fibronectin, α-SMA, CHOP, GRP78, and sXBP-1 significantly increased after tunicamycin treatment. BRI cotreatment significantly downregulated the mRNA and protein expressions of GRP78, and LAT or OMD cotreatment significantly reduced the CHOP and sXBP-1 expressions compared to the tunicamycin-treated group. BRI, LAT, or OMD cotreatment significantly attenuated cellular cytoskeletal changes and the increase of fibrosis markers such as COL1A1, CTGF, fibronectin, and α-SMA. In addition, COL1A1 mRNA expression was significantly lowered with LAT or OMD cotreatment compared to the BRI-cotreated group. Cotreatment with α2-adrenergic agonist, prostaglandin F2α analog, or EP2 receptor agonist alleviates tunicamycin-induced ER stress in human TM cells. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

14 pages, 6544 KB  
Article
Identification and Validation of Key Biomarkers in the Proximal Aqueous Humor Outflow Pathway
by Rong Du, Enzhi Yang, Madison Clark, Ningli Wang and Yiqin Du
Curr. Issues Mol. Biol. 2025, 47(3), 147; https://doi.org/10.3390/cimb47030147 - 25 Feb 2025
Cited by 1 | Viewed by 972
Abstract
Glaucoma is a leading cause of irreversible blindness, with elevated intraocular pressure (IOP) as the most important risk factor. The trabecular meshwork (TM) and Schlemm’s canal are the main components of the proximal aqueous humor outflow pathway. Their dysfunction is a major contributor [...] Read more.
Glaucoma is a leading cause of irreversible blindness, with elevated intraocular pressure (IOP) as the most important risk factor. The trabecular meshwork (TM) and Schlemm’s canal are the main components of the proximal aqueous humor outflow pathway. Their dysfunction is a major contributor to IOP elevation. This study aims to identify and validate key biomarkers for TM and Schlemm’s canal endothelial (SCE) cells. A Microarray was performed on characterized human TM and SCE cells to analyze their transcriptome profiling. Differentially expressed genes (DEGs) were identified and cross-referenced with published single-cell RNA sequencing (scRNA-Seq) datasets to ensure cell-specific relevance. Further validation was performed using qPCR and re-confirmed on the scRNA-seq datasets. One-way ANOVA was used for statistical analysis, and p < 0.05 was considered significant. The Microarray revealed 341 DEGs, with TM cells enriched in metabolic and signaling pathways and SCE cells enriched in adhesion, immune, and morphogenesis-related processes. Cross-referencing with scRNA-Seq data refined the list of candidate biomarkers, and qPCR confirmed the significant gene expression differences between TM and SCE cells. CTTNBP2 and MGARP were identified as TM cell markers. JAM2, PODXL, and IFI27 are new SCE cell biomarkers. The validated biomarkers offer insights into glaucoma pathophysiology and lay the groundwork for targeted therapies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

11 pages, 2151 KB  
Article
mTOR Inhibitors Modulate the Biological Nature of TGF-β2-Treated or -Untreated Human Trabecular Meshwork Cells in Different Manners
by Megumi Watanabe, Tatsuya Sato, Toshiyuki Yano, Megumi Higashide, Toshifumi Ogawa, Nami Nishikiori, Masato Furuhashi and Hiroshi Ohguro
Biomedicines 2024, 12(11), 2604; https://doi.org/10.3390/biomedicines12112604 - 14 Nov 2024
Viewed by 1272
Abstract
Background/Objectives: Mammalian target of rapamycin (mTOR) inhibition may have been suggested to have a beneficial effect on the glaucomatous human trabecular meshwork (HTM). To study the effects of the mTOR inhibitors rapamycin (Rapa) and Torin1 on the glaucomatous HTM, transforming growth factor-β2 (TGF-β2)-treated [...] Read more.
Background/Objectives: Mammalian target of rapamycin (mTOR) inhibition may have been suggested to have a beneficial effect on the glaucomatous human trabecular meshwork (HTM). To study the effects of the mTOR inhibitors rapamycin (Rapa) and Torin1 on the glaucomatous HTM, transforming growth factor-β2 (TGF-β2)-treated two-dimensionally (2D) and three-dimensionally (3D) cultured HTM cells were used. Methods: We evaluated (1) the levels of autophagy via Western blot analysis using a specific antibody against microtubule-associated protein 1 light chain 3 (LC3), (2) barrier capacity based on transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC) permeability (2D), (3) cellular metabolic functions (2D), (4) the size and stiffness of spheroids, and (5) the mRNA expression of ECM proteins. Results: TGF-β2-induced inhibition of autophagy was significantly inhibited by Rapa and Torin1. Rapa and Torin1 substantially decreased barrier capacity in both TGF-β2-untreated and TGF-β2-treated HTM cells. Cellular metabolic analysis indicated that Rapa, but not Torin1, substantially enhanced both mitochondrial and glycolytic functions of TGF-β2-untreated HTM cells. In the physical properties of spheroids, TGF-β2 resulted in the formation of down-sized and stiffened spheroids. mTOR inhibitors decreased the size but not the stiffness of TGF-β2-untreated spheroids and significantly reduced the TGF-β2-related increase in the stiffness but not the size of spheroids. The diverse effects of mTOR inhibitors on TGF-β2-untreated and TGF-β2-treated spheroids were also observed in the mRNA expression of extracellular matrix proteins. Conclusions: The results taken together suggest that mTOR inhibitors significantly influence the biological aspects of both a single layer and multiple layers of the TGF-β2-treated HTM and untreated HTM. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

27 pages, 3971 KB  
Article
The Delayed Turnover of Proteasome Processing of Myocilin upon Dexamethasone Stimulation Introduces the Profiling of Trabecular Meshwork Cells’ Ubiquitylome
by Grazia Raffaella Tundo, Dario Cavaterra, Irene Pandino, Gabriele Antonio Zingale, Sara Giammaria, Alessandra Boccaccini, Manuele Michelessi, Gloria Roberti, Lucia Tanga, Carmela Carnevale, Michele Figus, Giuseppe Grasso, Massimo Coletta, Alessio Bocedi, Francesco Oddone and Diego Sbardella
Int. J. Mol. Sci. 2024, 25(18), 10017; https://doi.org/10.3390/ijms251810017 - 17 Sep 2024
Viewed by 1675
Abstract
Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from [...] Read more.
Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains. Western blotting and native-gel electrophoresis first uncovered that, in the presence of dexamethasone, myocilin turnover by proteasome particles was slower than in the absence of the drug. Thereafter, co-immunoprecipitation, RT-PCR and gene-silencing studies identified STUB1/CHIP as a candidate E3-ligase of myocilin. In this regard, dexamethasone treatment was found to downregulate STUB1/CHIP levels by likely promoting its proteasome-mediated turnover. Hence, to strengthen the working hypothesis about global alterations of ubiquitin-signaling, the first profiling of TMCs ubiquitylome, in the presence and absence of dexamethasone, was here undertaken by diGLY proteomics. Application of this workflow effectively highlighted a robust dysregulation of key pathways (e.g., phospholipid signaling, β-catenin, cell cycle regulation) in dexamethasone-treated Trabecular Meshwork Cells, providing an ubiquitin-centered perspective around the effect of glucocorticoids on metabolism and glaucoma pathogenesis. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 2nd Edition)
Show Figures

Figure 1

14 pages, 1280 KB  
Article
Dexamethasone Impairs ATP Production and Mitochondrial Performance in Human Trabecular Meshwork Cells
by Shane Kennedy, Clayton Williams, Emily Tsaturian and Joshua T. Morgan
Curr. Issues Mol. Biol. 2024, 46(9), 9867-9880; https://doi.org/10.3390/cimb46090587 - 5 Sep 2024
Cited by 2 | Viewed by 1835
Abstract
Mitochondrial damage occurs in human trabecular meshwork (HTM) cells as a result of normal aging and in open angle glaucoma. Using an HTM cell model, we quantified mitochondrial function and ATP generation rates after dexamethasone (Dex) and TGF-β2 treatments, frequently used as in [...] Read more.
Mitochondrial damage occurs in human trabecular meshwork (HTM) cells as a result of normal aging and in open angle glaucoma. Using an HTM cell model, we quantified mitochondrial function and ATP generation rates after dexamethasone (Dex) and TGF-β2 treatments, frequently used as in vitro models of glaucoma. Primary HTM cells were assayed for metabolic function using a Seahorse XFp Analyzer. We additionally assessed the mitochondrial copy number and the expression of transcripts associated with mitochondrial biogenesis and oxidative stress regulation. Cells treated with Dex, but not TGF-β2, exhibited a significant decrease in total ATP production and ATP from oxidative phosphorylation relative to that of the control. Dex treatment also resulted in significant decreases in maximal respiration, ATP-linked O2 consumption, and non-mitochondrial O2 consumption. We did not observe significant changes in the level of mitochondrial genomes or mRNA transcripts of genes involved in mitochondrial biogenesis and oxidative stress regulation. Decreased mitochondrial performance and ATP production are consistent with the results of prior studies identifying the effects of Dex on multiple cell types, including HTM cells. Our results are also consistent with in vivo evidence of mitochondrial damage in open-angle glaucoma. Overall, these results demonstrate a decrease in mitochondrial performance in Dex-induced glaucomatous models in vitro, meriting further investigation. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

15 pages, 5537 KB  
Article
Artificial Trabecular Meshwork Structure Combining Melt Electrowriting and Solution Electrospinning
by Maria Bikuna-Izagirre, Javier Aldazabal, Javier Moreno-Montañes, Elena De-Juan-Pardo, Elena Carnero and Jacobo Paredes
Polymers 2024, 16(15), 2162; https://doi.org/10.3390/polym16152162 - 30 Jul 2024
Cited by 1 | Viewed by 1833
Abstract
The human trabecular meshwork (HTM) is responsible for regulating intraocular pressure (IOP) by means of gradient porosity. Changes in its physical properties, like increases in stiffness or alterations in the extracellular matrix (ECM), are associated with increases in the IOP, which is the [...] Read more.
The human trabecular meshwork (HTM) is responsible for regulating intraocular pressure (IOP) by means of gradient porosity. Changes in its physical properties, like increases in stiffness or alterations in the extracellular matrix (ECM), are associated with increases in the IOP, which is the primary cause of glaucoma. The complexity of its structure limits the engineered models to one-layered and simple approaches, which do not accurately replicate the biological and physiological cues related to glaucoma. Here, a combination of melt electrowriting (MEW) and solution electrospinning (SE) is explored as a biofabrication technique used to produce a gradient porous scaffold that mimics the multi-layered structure of the native HTM. Polycaprolactone (PCL) constructs with a height of 20–710 µm and fiber diameters of 0.7–37.5 µm were fabricated. After mechanical characterization, primary human trabecular meshwork cells (HTMCs) were seeded over the scaffolds within the subsequent 14–21 days. In order to validate the system’s responsiveness, cells were treated with dexamethasone (Dex) and the rho inhibitor Netarsudil (Net). Scanning electron microscopy and immunochemistry staining were performed to evaluate the expected morphological changes caused by the drugs. Cells in the engineered membranes exhibited an HTMC-like morphology and a correct drug response. Although this work demonstrates the utility of combining MEW and SE in reconstructing complex morphological features like the HTM, new geometries and dimensions should be tested, and future works need to be directed towards perfusion studies. Full article
(This article belongs to the Special Issue Polymer Scaffold for Tissue Engineering Applications)
Show Figures

Graphical abstract

32 pages, 5749 KB  
Article
The TGFβ Induced MicroRNAome of the Trabecular Meshwork
by Chelsey Doyle, Breedge Callaghan, Anton W. Roodnat, Lee Armstrong, Karen Lester, David A. Simpson, Sarah D. Atkinson, Carl Sheridan, Declan J. McKenna and Colin E. Willoughby
Cells 2024, 13(12), 1060; https://doi.org/10.3390/cells13121060 - 19 Jun 2024
Cited by 6 | Viewed by 2627
Abstract
Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are [...] Read more.
Primary open-angle glaucoma (POAG) is a progressive optic neuropathy with a complex, multifactorial aetiology. Raised intraocular pressure (IOP) is the most important clinically modifiable risk factor for POAG. All current pharmacological agents target aqueous humour dynamics to lower IOP. Newer therapeutic agents are required as some patients with POAG show a limited therapeutic response or develop ocular and systemic side effects to topical medication. Elevated IOP in POAG results from cellular and molecular changes in the trabecular meshwork driven by increased levels of transforming growth factor β (TGFβ) in the anterior segment of the eye. Understanding how TGFβ affects both the structural and functional changes in the outflow pathway and IOP is required to develop new glaucoma therapies that target the molecular pathology in the trabecular meshwork. In this study, we evaluated the effects of TGF-β1 and -β2 treatment on miRNA expression in cultured human primary trabecular meshwork cells. Our findings are presented in terms of specific miRNAs (miRNA-centric), but given miRNAs work in networks to control cellular pathways and processes, a pathway-centric view of miRNA action is also reported. Evaluating TGFβ-responsive miRNA expression in trabecular meshwork cells will further our understanding of the important pathways and changes involved in the pathogenesis of glaucoma and could lead to the development of miRNAs as new therapeutic modalities in glaucoma. Full article
Show Figures

Figure 1

13 pages, 1998 KB  
Article
The Specific ROCK2 Inhibitor KD025 Alleviates Glycolysis through Modulating STAT3-, CSTA- and S1PR3-Linked Signaling in Human Trabecular Meshwork Cells
by Megumi Watanabe, Tatsuya Sato, Araya Umetsu, Toshifumi Ogawa, Nami Nishikiori, Megumi Suzuki, Masato Furuhashi and Hiroshi Ohguro
Biomedicines 2024, 12(6), 1165; https://doi.org/10.3390/biomedicines12061165 - 24 May 2024
Cited by 2 | Viewed by 1802
Abstract
To investigate the biological significance of Rho-associated coiled-coil-containing protein kinase (ROCK) 2 in the human trabecular meshwork (HTM), changes in both metabolic phenotype and gene expression patterns against a specific ROCK2 inhibitor KD025 were assessed in planar-cultured HTM cells. A seahorse real-time ATP [...] Read more.
To investigate the biological significance of Rho-associated coiled-coil-containing protein kinase (ROCK) 2 in the human trabecular meshwork (HTM), changes in both metabolic phenotype and gene expression patterns against a specific ROCK2 inhibitor KD025 were assessed in planar-cultured HTM cells. A seahorse real-time ATP rate assay revealed that administration of KD025 significantly suppressed glycolytic ATP production rate and increased mitochondrial ATP production rate in HTM cells. RNA sequencing analysis revealed that 380 down-regulated and 602 up-regulated differentially expressed genes (DEGs) were identified in HTM cells treated with KD025 compared with those that were untreated. Gene ontology analysis revealed that DEGs were more frequently related to the plasma membrane, extracellular components and integral cellular components among cellular components, and related to signaling receptor binding and activity and protein heterodimerization activity among molecular functions. Ingenuity Pathway Analysis (IPA) revealed that the detected DEGs were associated with basic cellular biological and physiological properties, including cellular movement, development, growth, proliferation, signaling and interaction, all of which are associated with cellular metabolism. Furthermore, the upstream regulator analysis and causal network analysis estimated IL-6, STAT3, CSTA and S1PR3 as possible regulators. Current findings herein indicate that ROCK2 mediates the IL-6/STAT3-, CSTA- and S1PR3-linked signaling related to basic biological activities such as glycolysis in HTM cells. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

8 pages, 2878 KB  
Case Report
A Case Report of Secondary Glaucoma in a Patient with HTLV-1: Discussion about the Management of Secondary Glaucoma Due to Recurrent Granulomatous Uveitis
by Kenta Ashikaga, Teruhiko Hamanaka, Mayumi Hosogai, Takao Tanaka, Shintaro Nakao and Toshinari Funaki
J. Clin. Transl. Ophthalmol. 2024, 2(2), 26-33; https://doi.org/10.3390/jcto2020003 - 29 Mar 2024
Viewed by 1476
Abstract
Purpose: to investigate secondary glaucoma resulting from uveitis in a patient infected with Human T-cell Leukemia Virus Type 1 (HTLV-1) pathologically and discuss the management of glaucoma with recurrent uveitis. Clinical course: An octogenarian woman diagnosed as a carrier of HTLV-1 experienced recurrent [...] Read more.
Purpose: to investigate secondary glaucoma resulting from uveitis in a patient infected with Human T-cell Leukemia Virus Type 1 (HTLV-1) pathologically and discuss the management of glaucoma with recurrent uveitis. Clinical course: An octogenarian woman diagnosed as a carrier of HTLV-1 experienced recurrent uveitis and a sudden rise in intraocular pressure (IOP) in both eyes. Due to the uncontrolled IOP and severely damaged visual field in her left eye, a combined procedure of trabeculectomy and DGIS (glaucoma drainage implant surgery, Baerveldt 350) was performed. The presence of HTLV-1 provirus was detected in the aqueous humor. Her trabeculectomy sample was processed for light microscopic observation. Following an irregular follow-up, she presented with a sudden decrease in vision and pain in her fellow eye, four years after the glaucoma surgeries. Her right eye exhibited a significant accumulation of mutton-fat-like keratic precipitates. Results: Clinical manifestations revealed the presence of granulomatous uveitis. The combined glaucoma surgery, along with continuous topical corticosteroid medication post-surgery in her left eye, effectively suppressed the high IOP spikes and the recurrence of uveitis for 4 years. The pathological examination of the outflow pathways showed a range of damages in Schlemm’s canal (SC), including SC endothelial loss, narrowing, and occlusion, as well as loss of trabecular meshwork (TM) cells and fused TM beams. Conclusion: Combined GDIS and trabeculectomy represents a promising approach for managing such refractory cases of secondary glaucoma. Continuous topical corticosteroid medication is strongly recommended to prevent irreversible changes in SC and TM associated with granulomatous uveitis. Full article
Show Figures

Figure 1

12 pages, 2510 KB  
Article
Ripasudil as a Potential Therapeutic Agent in Treating Secondary Glaucoma in HTLV-1-Uveitis: An In Vitro Analysis
by Mingming Yang, Koju Kamoi, Yuan Zong, Jing Zhang, Yaru Zou and Kyoko Ohno-Matsui
Int. J. Mol. Sci. 2024, 25(6), 3229; https://doi.org/10.3390/ijms25063229 - 12 Mar 2024
Cited by 4 | Viewed by 2735
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), a virus that affects 5–10 million people globally, causes several diseases, including adult T-cell leukemia-lymphoma and HTLV-1-associated uveitis (HU). HU is prevalent in Japan and often leads to secondary glaucoma, which is a serious complication. We [...] Read more.
Human T-cell leukemia virus type 1 (HTLV-1), a virus that affects 5–10 million people globally, causes several diseases, including adult T-cell leukemia-lymphoma and HTLV-1-associated uveitis (HU). HU is prevalent in Japan and often leads to secondary glaucoma, which is a serious complication. We investigated the efficacy of ripasudil, a Rho-associated coiled coil-forming protein kinase inhibitor, in alleviating changes in human trabecular meshwork cells (hTM cells) infected with HTLV-1. HTLV-1-infected hTM cells were modeled in vitro using MT-2 cells, followed by treatment with varying concentrations of ripasudil. We assessed changes in cell morphology, viability, and inflammatory cytokine levels, as well as NF-κB activation. The results showed that ripasudil treatment changed the cell morphology, reduced the distribution of F-actin and fibronectin, and decreased the levels of certain inflammatory cytokines, such as interleukin (IL)-6, IL-8, and IL-12. However, ripasudil did not significantly affect NF-κB activation or overall cell viability. These findings suggest that ripasudil has the potential to treat secondary glaucoma in patients with HU by modulating cytoskeletal organization and alleviating inflammation in HTLV-1-infected hTM cells. This study lays the foundation for further clinical studies exploring the effectiveness of ripasudil for the treatment of secondary glaucoma associated with HU. Full article
(This article belongs to the Special Issue Molecular Research on Human Retrovirus Infection)
Show Figures

Figure 1

20 pages, 8957 KB  
Article
Exploring the Ocular Absorption Pathway of Fasudil Hydrochloride towards Developing a Nanoparticulate Formulation with Improved Performance
by Barzan Osi, Ali A. Al-Kinani, Zinah K. Al-Qaysi, Mouhamad Khoder and Raid G. Alany
Pharmaceutics 2024, 16(1), 112; https://doi.org/10.3390/pharmaceutics16010112 - 15 Jan 2024
Cited by 11 | Viewed by 2519
Abstract
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and [...] Read more.
Rho-kinase (ROCK) inhibitors represent a new category of anti-glaucoma medications. Among them, Fasudil hydrochloride, a selective ROCK inhibitor, has demonstrated promising outcomes in glaucoma treatment. It works by inhibiting the ROCK pathway, which plays a crucial role in regulating the trabecular meshwork and canal of Schlemm’s aqueous humor outflow. This study aims to investigate the ocular absorption pathway of Fasudil hydrochloride and, subsequently, develop a nanoparticle-based delivery system for enhanced corneal absorption. Employing the ionic gelation method and statistical experimental design, the factors influencing chitosan nanoparticle (Cs NP) characteristics and performance were explored. Fasudil in vitro release and ex vivo permeation studies were performed, and Cs NP ocular tolerability and cytotoxicity on human lens epithelial cells were evaluated. Permeation studies on excised bovine eyes revealed significantly higher Fasudil permeation through the sclera compared to the cornea (370.0 μg/cm2 vs. 96.8 μg/cm2, respectively). The nanoparticle size (144.0 ± 15.6 nm to 835.9 ± 23.4 nm) and entrapment efficiency range achieved (17.2% to 41.4%) were predominantly influenced by chitosan quantity. Cs NPs showed a substantial improvement in the permeation of Fasudil via the cornea, along with slower release compared to the Fasudil aqueous solution. The results from the Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) and Bovine Corneal Opacity and Permeability (BCOP) tests indicated good conjunctival and corneal biocompatibility of the formulated chitosan nanoparticles, respectively. Lens epithelial cells displayed excellent tolerance to low concentrations of these nanoparticles (>94% cell viability). To the best of our knowledge, this is the first report on the ocular absorption pathway of topically applied Fasudil hydrochloride where the cornea has been identified as a potential barrier that could be overcome using Cs NPs. Full article
Show Figures

Figure 1

12 pages, 2523 KB  
Article
Myo/Nog Cells Increase in Response to Elevated Intraocular Pressure and Mitigate Ganglion Cell Death in a Mouse Model of Glaucoma
by Paul Lecker, Karanveer Johal, Alexa McGrath, John Spikes, Jake Bernstein, Victoria MacPherson, Rushil Brahmbhatt, Nada Fadl, Edgar Weyback-Liogier, Sarah Adams, Rachel Souza, E-Jine Tsai, Mark Martin, Jacquelyn Gerhart, Grezgorz Gorski, Federica De Cecco, Brian Heist, Sebastian Egberts, Mindy George-Weinstein and Arturo Bravo-Nuevo
Appl. Sci. 2023, 13(22), 12423; https://doi.org/10.3390/app132212423 - 17 Nov 2023
Cited by 1 | Viewed by 1885
Abstract
Glaucoma is one of the leading causes of blindness worldwide. Decreased aqueous humor drainage causes an increase in intraocular pressure (IOP), which in turn damages the ganglion cells of the retina and optic nerve. A mouse model of glaucoma was used to examine [...] Read more.
Glaucoma is one of the leading causes of blindness worldwide. Decreased aqueous humor drainage causes an increase in intraocular pressure (IOP), which in turn damages the ganglion cells of the retina and optic nerve. A mouse model of glaucoma was used to examine the behavior of Myo/Nog (M/N) cells, which were previously shown to respond to cataract surgery and retinopathy induced by hypoxia, light damage, and intravitreal injection of human retinal pigment epithelial cells. M/N cells express the skeletal-muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and brain-specific angiogenesis inhibitor 1 (BAI1). Glaucoma was induced by injecting microbeads into the anterior chamber (AC) of the right eye to obstruct the flow of aqueous humor into the trabecular meshwork. IOP was elevated within three days of addition of microbeads. Loss of retinal ganglion cells (RGCs) and thinning of the ganglion cell layer–nerve fiber layer (GCL-NFL) was observed in tissue sections by day 32. The injection of microbeads resulted in an increase in BAI1-positive (+) M/N cells in the trabecular meshwork, ciliary body, canal of Schlemm, cornea, and ganglion cell layer (GCL). M/N cells ingested microbeads. The effect of further increasing the population of M/N cells on IOP and RGC loss was determined by injecting BAI1+ cells isolated from the brain into the AC of both eyes. Exogenous M/N cells prelabeled with CellTracker™ Red were found in the same tissues as the endogenous population of M/N cells in eyes with and without elevated IOP. The addition of M/N cells did not significantly reduce IOP in bead-injected eyes. However, there were significantly more RGCs and the NFL was thicker in glaucomatous eyes with M/N cell supplementation than eyes injected with phosphate-buffered saline. The numbers of RGCs and NFL thickness were similar in glaucomatous and non-glaucomatous eyes after adding M/N cells. These results demonstrate that endogenous M/N cells respond to elevated IOP in the anterior and posterior segments in response to induction of glaucoma. M/N cells’ mitigation of RGC loss may reflect a neuroprotective effect within the retina, as opposed to a significant drop in IOP. Full article
(This article belongs to the Special Issue Advances in Visual Neuroscience)
Show Figures

Figure 1

18 pages, 4248 KB  
Article
Small RNA Sequencing Reveals a Distinct MicroRNA Signature between Glucocorticoid Responder and Glucocorticoid Non-Responder Primary Human Trabecular Meshwork Cells after Dexamethasone Treatment
by Kandasamy Kathirvel, Xiaochen Fan, Ravinarayanan Haribalaganesh, Devarajan Bharanidharan, Rajendrababu Sharmila, Ramasamy Krishnadas, Veerappan Muthukkaruppan, Colin E. Willoughby and Srinivasan Senthilkumari
Genes 2023, 14(11), 2012; https://doi.org/10.3390/genes14112012 - 27 Oct 2023
Cited by 4 | Viewed by 2291
Abstract
Glucocorticoids (GCs) are known to regulate several physiological processes and are the mainstay in the management of inflammatory eye diseases. The long-term use of GC causes raised intraocular pressure (IOP) or ocular hypertension (OHT) in about 30–50% of the susceptible individuals depending on [...] Read more.
Glucocorticoids (GCs) are known to regulate several physiological processes and are the mainstay in the management of inflammatory eye diseases. The long-term use of GC causes raised intraocular pressure (IOP) or ocular hypertension (OHT) in about 30–50% of the susceptible individuals depending on the route of administration, and can lead to steroid-induced secondary glaucoma. The present study aims to understand the role of microRNAs (miRNAs) in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using small RNA sequencing. The human organ-cultured anterior segment (HOCAS) model was used to identify whether donor eyes were from GC-responders (GC-R; n = 4) or GC-non-responders (GC-NR; n = 4) following treatment with either 100 nM dexamethasone (DEX) or ethanol (ETH) for 7 days. The total RNA was extracted from cultured HTM cells with known GC responsiveness, and the differentially expressed miRNAs (DEMIRs) were compared among the following five groups: Group #1: ETH vs. DEX-treated GC-R; #2: ETH vs. DEX-treated GC-NR; #3: overlapping DEGs between Group #1 and #2; #4: Unique DEMIRs of GC-R; #5: Unique DEMIRs of GC-NR; and validated by RT-qPCR. There were 13 and 21 DEMIRs identified in Group #1 and Group #2, respectively. Seven miRNAs were common miRNAs dysregulated in both GC-R and GC-NR (Group #3). This analysis allowed the identification of DEMIRs that were unique to GC-R (6 miRNAs) and GC-NR (14 miRNAs) HTM cells, respectively. Ingenuity Pathway Analysis identified enriched pathways and biological processes associated with differential GC responsiveness in HTM cells. This is the first study to reveal a unique miRNA signature between GC-R and GC-NR HTM cells, which raises the possibility of developing new molecular targets for the management of steroid-OHT/glaucoma. Full article
(This article belongs to the Special Issue MicroRNAs in Eye Development and Diseases)
Show Figures

Figure 1

Back to TopTop