Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = human germ cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6921 KiB  
Article
Transcriptomic Analysis Identifies Oxidative Stress-Related Hub Genes and Key Pathways in Sperm Maturation
by Ali Shakeri Abroudi, Hossein Azizi, Vyan A. Qadir, Melika Djamali, Marwa Fadhil Alsaffar and Thomas Skutella
Antioxidants 2025, 14(8), 936; https://doi.org/10.3390/antiox14080936 - 30 Jul 2025
Viewed by 440
Abstract
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved [...] Read more.
Background: Oxidative stress is a critical factor contributing to male infertility, impairing spermatogonial stem cells (SSCs) and disrupting normal spermatogenesis. This study aimed to isolate and characterize human SSCs and to investigate oxidative stress-related gene expression, protein interaction networks, and developmental trajectories involved in SSC function. Methods: SSCs were enriched from human orchiectomy samples using CD49f-based magnetic-activated cell sorting (MACS) and laminin-binding matrix selection. Enriched cultures were assessed through morphological criteria and immunocytochemistry using VASA and SSEA4. Transcriptomic profiling was performed using microarray and single-cell RNA sequencing (scRNA-seq) to identify oxidative stress-related genes. Bioinformatic analyses included STRING-based protein–protein interaction (PPI) networks, FunRich enrichment, weighted gene co-expression network analysis (WGCNA), and predictive modeling using machine learning algorithms. Results: The enriched SSC populations displayed characteristic morphology, positive germline marker expression, and minimal fibroblast contamination. Microarray analysis revealed six significantly upregulated oxidative stress-related genes in SSCs—including CYB5R3 and NDUFA10—and three downregulated genes, such as TXN and SQLE, compared to fibroblasts. PPI and functional enrichment analyses highlighted tightly clustered gene networks involved in mitochondrial function, redox balance, and spermatogenesis. scRNA-seq data further confirmed stage-specific expression of antioxidant genes during spermatogenic differentiation, particularly in late germ cell stages. Among the machine learning models tested, logistic regression demonstrated the highest predictive accuracy for antioxidant gene expression, with an area under the curve (AUC) of 0.741. Protein oxidation was implicated as a major mechanism of oxidative damage, affecting sperm motility, metabolism, and acrosome integrity. Conclusion: This study identifies key oxidative stress-related genes and pathways in human SSCs that may regulate spermatogenesis and impact sperm function. These findings offer potential targets for future functional validation and therapeutic interventions, including antioxidant-based strategies to improve male fertility outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress and Male Reproductive Health)
Show Figures

Figure 1

28 pages, 1528 KiB  
Review
Is Human Chorionic Gonadotropin a Reliable Marker for Testicular Germ Cell Tumor? New Perspectives for a More Accurate Diagnosis
by Nunzio Marroncelli, Giulia Ambrosini, Andrea Errico, Sara Vinco, Elisa Dalla Pozza, Giulia Cogo, Ilaria Cristanini, Filippo Migliorini, Nicola Zampieri and Ilaria Dando
Cancers 2025, 17(14), 2409; https://doi.org/10.3390/cancers17142409 - 21 Jul 2025
Viewed by 379
Abstract
Testicular germ cell tumors (TGCTs) are the most common malignancies affecting young men between the ages of 14 and 44, accounting for about 95% of all testicular cancers. Despite being relatively rare compared to other cancers (~3.0 cases per 100,000 population, with high [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common malignancies affecting young men between the ages of 14 and 44, accounting for about 95% of all testicular cancers. Despite being relatively rare compared to other cancers (~3.0 cases per 100,000 population, with high worldwide variability), TGCTs’ incidence is increasing, particularly in industrialized countries. The initial phase of TGCT diagnosis is performed by detecting in the blood the presence of three proteins, i.e., alpha-fetoprotein (AFP), lactate dehydrogenase (LDH), and human chorionic gonadotropin (hCG). Despite these proteins being defined as markers of TGCTs, they present limitations in specificity. Indeed, AFP is not elevated in pure seminomas; LDH serum levels can be elevated in other conditions, such as liver disease or tissue damage, and hCG can be elevated in both seminomas and non-seminomas, reducing its ability to differentiate between tumor types. However, the existence of hCG variants, characterized by distinct glycosylation profiles that are differentially expressed in TGCT types and subtypes, may increase the diagnostic and prognostic potential of this hormone. Furthermore, emerging molecular biomarkers, including miRNAs and tumor cells-related epigenetic status, may offer new promising alternatives to improve diagnostic accuracy. Nonetheless, standardized diagnostic protocols still need to be implemented. Finally, understanding the biological roles of hCG isoforms and their “canonical” (e.g., LHCGR) and “non-canonical” (e.g., TGF-βR) receptor interactions may help in understanding tumor biology and therapeutic targeting. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

14 pages, 3705 KiB  
Review
Yolk Sac Elements in Tumors Derived from Pluripotent Stem Cells: Borrowing Knowledge from Human Germ Cell Tumors
by Marnix van Soest, Joaquin Montilla-Rojo, Thomas F. Eleveld, Leendert H. J. Looijenga and Daniela C. F. Salvatori
Int. J. Mol. Sci. 2025, 26(13), 6464; https://doi.org/10.3390/ijms26136464 - 4 Jul 2025
Viewed by 429
Abstract
Pluripotent stem cell (PSC)-based therapies are currently in clinical trials. However, one of the main safety concerns includes the potential for cancer formation of the PSC-derived products. Currently, the teratoma in vivo assay is accepted by regulatory agencies for identifying whether PSCs have [...] Read more.
Pluripotent stem cell (PSC)-based therapies are currently in clinical trials. However, one of the main safety concerns includes the potential for cancer formation of the PSC-derived products. Currently, the teratoma in vivo assay is accepted by regulatory agencies for identifying whether PSCs have the potential to become malignant. Yolk sac elements (YSE) are one of the elements that could arise from PSC. Whereas the other malignant element, embryonal carcinoma, is thoroughly studied, this is not the case for YSE. Therefore, more research is needed to assess the nature of YSE. We propose that it is imperative to include the formation of YSE in the safety assessment of PSC due to their close resemblance to the clinical entity of yolk sac tumor (YST), a human malignant germ cell tumor (hGCT). In this review, we extrapolate knowledge from YST to better understand YSE derived from PSC. We demonstrate that both share a similar morphology and that the same characteristic immunohistochemical markers can be used for their identification. We discuss the risk these tumors pose, thereby touching upon genetic abnormalities and gene expression that characterize them, as well as possible disease mechanisms. Integrating the molecular and immunohistochemical markers identified in this review into future research will help to better address the potential malignancy associated with PSC. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumorigenesis of Human and Animal Stem Cells)
Show Figures

Figure 1

32 pages, 1613 KiB  
Review
Ultra-Processed Diets and Endocrine Disruption, Explanation of Missing Link in Rising Cancer Incidence Among Young Adults
by Almir Fajkić, Orhan Lepara, Rijad Jahić, Almira Hadžović-Džuvo, Andrej Belančić, Alexander Chupin, Doris Pavković and Emina Karahmet Sher
Cancers 2025, 17(13), 2196; https://doi.org/10.3390/cancers17132196 - 29 Jun 2025
Viewed by 1053
Abstract
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents [...] Read more.
The global increase in early-onset cancers among adolescents and young adults has happened at the same time as the rise in the consumption of ultra-processed foods (UPFs). Far beyond their poor nutritional quality, UPFs are increasingly seen as Trojan horses, complex biological agents that interfere with many functions of the human organism. In this review, we utilise the Trojan horse model to explain the quiet and building health risks from UPFs as foods that seem harmless, convenient, and affordable while secretly delivering endocrine-disrupting chemicals (EDCs), causing chronic low-grade inflammation, altering the microbiome, and producing epigenetic alterations. We bring together new proof showing that UPFs mess up hormonal signals, harm the body’s ability to fight off harmful germs, lead to an imbalance of microbes, and cause detrimental changes linked to cancer. Important components, such as bisphenols and phthalates, can migrate from containers into food, while additional ingredients and effects from cooking disrupt the normal balance of cells. These exposures are especially harmful during vulnerable developmental periods and may lay the groundwork for disease many years later. The Trojan horse model illustrates the hidden nature of UPF-related damage, not through a sudden toxin but via chronic dysregulation of metabolic, hormonal, and genetic control. This model changes focus from usual diet worries to a bigger-picture view of UPFs as causes of life-disrupting damage. Ultimately, this review aims to identify gaps in current knowledge and epidemiological approaches and highlight the need for multi-omics, long-term studies and personalised nutrition plans to assess and reduce the cancer risk associated with UPFs. Recognising UPFs as a silent disruptor is crucial in shaping public health policies and cancer prevention programs targeting younger people. Full article
(This article belongs to the Special Issue Lifestyle Choices and Endocrine Dysfunction on Cancer Onset and Risk)
Show Figures

Figure 1

15 pages, 2524 KiB  
Article
Disparate Roles of Cell–Cell Contact and Cytokine Secretion in an In Vitro Model of the Seminoma Microenvironment
by Patrick Fruth, Juliane Luft, Lucas Klaus, Tobias J. Legler, Holger M. Reichardt and Fabian A. Gayer
Int. J. Mol. Sci. 2025, 26(13), 6173; https://doi.org/10.3390/ijms26136173 - 26 Jun 2025
Viewed by 390
Abstract
Type II testicular germ cell tumors (TGCTs) are the most common solid malignancies in young men and are classified into seminomas and non-seminomatous subtypes. Seminomas are known for their highly pro-inflammatory tumor microenvironment (TME) with abundant immune cell infiltration. While previous work has [...] Read more.
Type II testicular germ cell tumors (TGCTs) are the most common solid malignancies in young men and are classified into seminomas and non-seminomatous subtypes. Seminomas are known for their highly pro-inflammatory tumor microenvironment (TME) with abundant immune cell infiltration. While previous work has demonstrated that the seminoma-derived cell line TCam-2 induces immune cell activation in co-culture and undergoes phenotypic changes itself, the underlying mechanisms remained unclear. To explore the role of direct cell–cell interaction and the effects mediated by soluble mediators such as cytokines, we conducted co-culture experiments of TCam-2 cells with purified human T cells or monocytes, including Transwell assays and treatments with IL-6, TNFα, or their respective blocking antibodies Tocilizumab and Adalimumab. In this way, we found that immune cell activation, indicated by enhanced secretion of pro-inflammatory cytokines and an upregulation of activation markers, strongly depended on direct physical contact between both cell types. Nonetheless, we also unveiled the role of soluble mediators in both immune cell activation and promoting a shift in TCam-2 cells from a seminoma-like phenotype to a more dedifferentiated phenotype, suggesting that cytokines critically shape the TME. These observations highlight the complexity of tumor–immune interactions in the seminoma microenvironment, offering new insight into immune-driven dynamics in TGCTs. Full article
(This article belongs to the Special Issue Current Research on Cancer Biology and Therapeutics: Third Edition)
Show Figures

Figure 1

15 pages, 1622 KiB  
Article
Chicken Primordial Germ Cell Surface Marker
by Tamara J. Gough, Terry G. Wise, Matthew P. Bruce, Timothy J. Doran, Daniel S. Layton and Andrew G. D. Bean
Animals 2025, 15(13), 1868; https://doi.org/10.3390/ani15131868 - 24 Jun 2025
Viewed by 420
Abstract
The creation of transgenic chickens holds significant promise for the agricultural and biotechnological sectors, offering potential improvements in disease resistance and production efficiency. The preferred method for generating gene-edited chickens involves the genetic manipulation of primordial germ cells (PGCs), making the identification and [...] Read more.
The creation of transgenic chickens holds significant promise for the agricultural and biotechnological sectors, offering potential improvements in disease resistance and production efficiency. The preferred method for generating gene-edited chickens involves the genetic manipulation of primordial germ cells (PGCs), making the identification and isolation of these cells a growing focus of research. PGCs are the precursors to sperm and oocytes, responsible for transmitting genetic material to the next generation. In humans, PGCs are characterized by their large size, round nuclei, and refractive lipids in the cytoplasm, and can be identified using periodic acid–Schiff (PAS) staining and the surface marker stage-specific embryonic antigen 1 (SSEA1). Similarly, chicken PGCs express SSEA1, but their most specific marker is the chicken vasa homologue (CVH), the avian equivalent of the RNA-binding factor gene vasa. However, SSEA1, along with other known surface markers, does not bind to all PGCs or lacks specificity, while CVH, although highly specific to PGCs, is intracellular and unsuitable for isolating viable cells. This study aims to develop an antibody targeting a PGC surface marker with the same specificity as CVH. Despite the importance of identifying surface markers for PGC characterization, to date, such reagents are limited. To address this, whole chicken PGCs were injected into mice, leading to the generation of a panel of monoclonal antibodies. One antibody was found to bind cultured chicken PGCs and showed reduced expression upon differentiation with retinoic acid, indicating its specificity to PGCs. Immunoprecipitation followed by mass spectrometry identified the antigen as myosin heavy chain-like (MYH9) protein. The antibody, αMYH9, was further characterized and shown to bind circulating PGCs and embryonic gonadal PGCs (Hamburger Hamilton (H-H) stage 30, embryonic day 6.5–7). Whilst our primary aim was to determine the binding to PGCs, further investigation is required to determine potential binding to somatic cells. In conclusion, this study provides the characterization of a surface marker for chicken PGCs, with significant implications for advancements in avian genetic preservation, agriculture, and biotechnology. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Figure 1

13 pages, 5576 KiB  
Article
Ribosome Incorporation Transdifferentiates Chick Primary Cells and Induces Their Proliferation by Secreting Growth Factors
by Shota Inoue, Arif Istiaq, Anamika Datta, Mengxue Lu, Shintaro Nakayama, Kousei Takashi, Nobushige Nakajo, Shigehiko Tamura, Ikko Kawashima and Kunimasa Ohta
J. Dev. Biol. 2025, 13(2), 19; https://doi.org/10.3390/jdb13020019 - 1 Jun 2025
Viewed by 3614
Abstract
Previously, we reported that mammalian cells, specifically human dermal fibroblasts (HDFs), could be transdifferentiated by lactic acid bacteria (LAB). Later, we observed that HDFs incorporated LAB-derived ribosomes, forming the ribosome-induced cell clusters (RICs) and transdifferentiating into cells derived from all three germ layers. [...] Read more.
Previously, we reported that mammalian cells, specifically human dermal fibroblasts (HDFs), could be transdifferentiated by lactic acid bacteria (LAB). Later, we observed that HDFs incorporated LAB-derived ribosomes, forming the ribosome-induced cell clusters (RICs) and transdifferentiating into cells derived from all three germ layers. Based on this insight, we hypothesized that incorporating ribosomes into non-mammalian cells could reveal the universality of this mechanism and open the door to commercial applications. Our current study demonstrates that ribosome incorporation can transdifferentiate chick primary muscle-derived cells (CMCs) into adipocytes, osteoblasts, and chondrocytes. Furthermore, the culture medium supernatant from ribosome-incorporated CMCs was found to significantly enhance CMC’s proliferation. RNA-seq analysis revealed that RICs-CMC exhibit increased expression of genes related to multi-lineage cell growth. In addition, we developed a novel technological shift in meat production—the “CulNet System”—which replicates organ interactions within mechanical systems for cell-cultured meat production. While significant efforts are still required to implement this technology in a cost-effective manner, we believe that combining the “CulNet System” with ribosome-incorporated multipotent cells that have prolonged culture capability could substantially improve the scalability and cost-effectiveness of cultured chicken meat production. This report highlights a promising approach for cell-culture-based meat production, offering a sustainable alternative to traditional methods. Full article
Show Figures

Figure 1

36 pages, 2309 KiB  
Review
Oxidative Damage Under Microgravity Conditions: Response Mechanisms, Monitoring Methods and Countermeasures on Somatic and Germ Cells
by Zekai Chen, Jingtong Xie, Chiyuan Ma, Pengfei Zhang and Xiaohua Lei
Int. J. Mol. Sci. 2025, 26(10), 4583; https://doi.org/10.3390/ijms26104583 - 10 May 2025
Viewed by 623
Abstract
With the growing human interest in space exploration, understanding the oxidative damage effects of microgravity on somatic and germ cells and their underlying mechanisms has become a pivotal scientific challenge for ensuring reproductive health during long-term space missions. In this review, we comprehensively [...] Read more.
With the growing human interest in space exploration, understanding the oxidative damage effects of microgravity on somatic and germ cells and their underlying mechanisms has become a pivotal scientific challenge for ensuring reproductive health during long-term space missions. In this review, we comprehensively summarize the molecular mechanisms of microgravity-induced oxidative stress, advanced detection methods, and potential protective strategies for germ cells. The evidence demonstrates that microgravity substantially compromises germ cell viability and embryonic developmental potential by disrupting mitochondrial function, increasing reactive oxygen species (ROS) production, and impairing antioxidant defenses. These alterations result in DNA damage, lipid peroxidation, and protein oxidation, thereby affecting cellular integrity and functionality. Furthermore, we discuss how cells respond to microgravity-induced oxidative stress through adaptive mechanisms, such as autophagy, apoptosis, and antioxidant systems, although these responses can have both beneficial and detrimental effects on cellular homeostasis. Additionally, this paper highlights the utility of fluorescent probes for detecting ROS levels under microgravity conditions, which are convenient and practical, but may require further optimization to improve sensitivity and specificity. To counteract these challenges, interventions such as antioxidants and artificial gravity systems show promise but need rigorous validation in prolonged microgravity environments. Finally, future research should integrate multi-omics approaches to unravel the oxidative damage network, advance space-adapted reproductive technologies, and provide essential theoretical insights and technical support for maintaining human reproductive health beyond Earth. Full article
Show Figures

Figure 1

16 pages, 27659 KiB  
Article
Three-Dimensional Trilineage Differentiation Conditions for Human Induced Pluripotent Stem Cells
by Md Sharifur Rahman, Guangyan Qi, Quan Li, Xuming Liu, Jianfa Bai, Mingshun Chen, Anthony Atala and Xiuzhi Susan Sun
Bioengineering 2025, 12(5), 503; https://doi.org/10.3390/bioengineering12050503 - 9 May 2025
Viewed by 674
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential for regenerative medicine. However, optimizing their differentiation into specific lineages within three-dimensional (3D) scaffold-based culture systems that mimic in vivo environments remains challenging. This study examined the trilineage differentiation of hiPSCs under various 3D [...] Read more.
Human induced pluripotent stem cells (hiPSCs) hold great potential for regenerative medicine. However, optimizing their differentiation into specific lineages within three-dimensional (3D) scaffold-based culture systems that mimic in vivo environments remains challenging. This study examined the trilineage differentiation of hiPSCs under various 3D conditions using synthetic peptide hydrogel matrices with and without embryoid body (EB) medium induction. hiPSC 3D colonies (spheroids), naturally formed from single cells or small clusters in 3D culture, were used for differentiation into the three germ lineages. Differentiated spheroids exhibited distinct morphological characteristics and significantly increased expression of key lineage-specific markers—FOXA2 (endoderm), Brachyury (mesoderm), and PAX6 (ectoderm)—compared to undifferentiated controls. Marker expression varied depending on the 3D culture conditions. Differentiation efficiency improved significantly, increasing from 16% to 71% for endoderm, 61% to 80% for mesoderm, and 35% to 48% for ectoderm, by selecting the appropriate 3D matrix and applying EB induction. Comprehensive data analysis from RT-qPCR, immunocytochemistry staining, and flow cytometry confirmed that the Synthegel Spheroid (SGS) is a viable 3D matrix for evaluating all three germ lineages using a commercial trilineage differentiation kit. While EB induction is essential for endodermal differentiation, it is not required for mesodermal and ectodermal lineages. These findings are valuable not only for screening initial differentiation potential at the lineage level but also for optimizing 3D differentiation protocols for deriving somatic cells from hiPSCs. Full article
Show Figures

Figure 1

13 pages, 8315 KiB  
Article
Immunohistochemical Detection of Iron-Related Proteins in Sertoli Cell-Only Patterns in Canine Testicular Lesions
by Rebecca Leandri, Karen Power, Manuela Martano and Gionata De Vico
Animals 2025, 15(10), 1377; https://doi.org/10.3390/ani15101377 - 9 May 2025
Viewed by 642
Abstract
Sertoli cell-only (SCO) tubules are a histologic pattern characterized by the absence of germ cells within seminiferous tubules, leading to infertility in both humans and dogs. While its association with testicular tumors has been documented, the role of iron metabolism in SCO tubules [...] Read more.
Sertoli cell-only (SCO) tubules are a histologic pattern characterized by the absence of germ cells within seminiferous tubules, leading to infertility in both humans and dogs. While its association with testicular tumors has been documented, the role of iron metabolism in SCO tubules remains unclear. This study investigates the immunolabeling of key iron-related proteins (Transferrin Receptor 1, Transferrin Receptor 2, and Ferritin Heavy chain 1) and Proliferating Cell Nuclear Antigen (PCNA) in canine SCO tubules within distinct microenvironments: seminomas, Sertoli cell tumors, and isolated. We confirm the presence and distribution of iron-related proteins in Sertoli cells as a part of a Sertoli cell-only pattern across different microenvironments. Our findings suggest a potential increase in iron uptake in association with tumors, and the cytoplasmic PCNA immunolabeling suggests a preferential activation of cell survival rather than proliferation, potentially facilitating neoplastic transformation. In contrast, Sertoli cells in the isolated Sertoli cell-only pattern exhibit nuclear PCNA immunolabeling, possibly correlated to the state of immaturity of Sertoli cells. These findings highlight the role of iron homeostasis and apoptosis in testicular tumorigenesis. Immunohistochemistry revealed that Sertoli cells in SCO tubules actively uptake iron in all conditions, yet their capacity to utilize it for proliferation appears restricted. Interestingly, PCNA labeling exhibits a pattern dependent on the microenvironment: in tumor-associated SCO tubules, it showed cytoplasmic localization, characteristic of an anti-apoptotic function, whereas isolated SCO tubules showed nuclear PCNA labeling, suggesting a potential role in DNA synthesis and repair. These findings highlight the interplay between iron homeostasis and cellular survival mechanisms, offering novel perspectives on its pathophysiology and implications for testicular cancer development. Full article
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Application of Inertial Microfluidics for Isolation and Removal of Round Spermatids from a Spermatogenic Cell Sample to Assist In-Vitro Human Spermatogenesis
by Sabin Nepal, Joey Casalini, Alex Jafek and Bruce Gale
Micromachines 2025, 16(5), 500; https://doi.org/10.3390/mi16050500 - 25 Apr 2025
Viewed by 585
Abstract
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though [...] Read more.
In-vitro spermatogenesis holds great potential in addressing male infertility, yet one of the main challenges is separating round spermatids from other germ cells in spermatogonial stem cell cultures. STA-PUT, a method based on velocity sedimentation, has been extensively tested for this application. Though somewhat effective, it requires bulky, expensive equipment and significant time. In contrast, the method of inertial microfluidics offers a compact, cost-effective, and faster alternative. In this study, we designed, fabricated, and tested a microfluidic spiral channel for isolating round spermatids and purifying spermatogenic cells. A commercially available spiral device close to the calculated specifications was tested for rapid prototyping, achieving 79% purity for non-spermatid cells in a single pass, with ability to achieve higher purity through repeated passes. However, the commercial device’s narrow outlets caused clogging, prompting the fabrication of a custom polydimethylsiloxane device matching the calculated specifications. This custom device demonstrated significant improvements, achieving 86% purity in a single pass compared to STA-PUT’s 38%, and that without any clogging issues. Further purification could be attained by repeated passes, as shown in earlier studies. This work underscores the efficacy of inertial microfluidics for efficient, high-purity cell separation, with the potential to revolutionize workflows in in-vitro spermatogenesis research. Full article
(This article belongs to the Special Issue Application of Microfluidic Technology in Biology)
Show Figures

Figure 1

15 pages, 656 KiB  
Review
The Role of Long Non-Coding RNAs in Human Endoderm Differentiation
by Annanda Lyra Ribeiro and Bruno Dallagiovanna
Non-Coding RNA 2025, 11(2), 29; https://doi.org/10.3390/ncrna11020029 - 13 Apr 2025
Viewed by 714
Abstract
The human genome sequencing revealed a vast complexity of transcripts, with over 80% of the genome being transcribed into non-coding RNAs. In particular, long non-coding RNAs (lncRNAs) have emerged as critical regulators of various cellular processes, including embryonic development and stem cell differentiation. [...] Read more.
The human genome sequencing revealed a vast complexity of transcripts, with over 80% of the genome being transcribed into non-coding RNAs. In particular, long non-coding RNAs (lncRNAs) have emerged as critical regulators of various cellular processes, including embryonic development and stem cell differentiation. Despite extensive efforts to identify and characterize lncRNAs, defining their mechanisms of action in state-specific cellular contexts remains a significant challenge. Only recently has the involvement of lncRNAs in human endoderm differentiation of pluripotent stem cells begun to be addressed, creating an opportunity to explore the mechanisms by which lncRNAs exert their functions in germ layer formation, lineage specification, and commitment. This review summarizes current findings on the roles of lncRNAs in endoderm differentiation, highlighting the functional mechanisms and regulatory aspects underlying their involvement in cell fate decisions leading to endoderm development. The key lncRNAs implicated in endoderm differentiation are discussed, along with their interaction with transcription factors and RNA-binding proteins and modulation of signaling pathways essential for endoderm development. Gaining insight into the regulatory roles of lncRNAs in endoderm differentiation enhances the understanding of developmental biology and provides a foundation for discovering novel lncRNAs involved in cell fate determination. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

16 pages, 4862 KiB  
Article
Molecular Profiling and FTIR Characterization of Wheat Germ Oil, Supported by the Screening of Its Anti-Inflammatory and Cytotoxic Properties
by Paweł Paśko, Agnieszka Galanty, Emilia Ramos-Zambrano, Alma Leticia Martinez Ayala, Mikołaj Gralak, Joanna Gdula-Argasińska, Danail Pavlov, Joseph Deutsch and Shela Gorinstein
Biomolecules 2025, 15(4), 464; https://doi.org/10.3390/biom15040464 - 21 Mar 2025
Cited by 1 | Viewed by 989
Abstract
Wheat germ oil (WGO), derived from the nutrient-dense germ of wheat kernels, is a functional bioactive product, known for its rich composition of essential fatty acids, sterols, tocopherols, and polyphenols. This study aimed to comprehensively profile the molecular and therapeutic properties of WGO, [...] Read more.
Wheat germ oil (WGO), derived from the nutrient-dense germ of wheat kernels, is a functional bioactive product, known for its rich composition of essential fatty acids, sterols, tocopherols, and polyphenols. This study aimed to comprehensively profile the molecular and therapeutic properties of WGO, focusing on its antioxidant, cytotoxic, and anti-inflammatory activity. Using advanced analytical techniques such as gas chromatography-mass spectrometry (GC-MS), Fourier Transform Infrared (FTIR) spectroscopy, and fluorescence analysis, WGO was shown to contain high levels of linoleic acid (45.3%), squalene (2.52 g/100 g), and polyphenols. WGO displayed selective cytotoxicity, inhibiting cancer cells’ viability in melanoma, prostate, and colorectal cancer cell lines, but not normal cells, highlighting its chemoprevention potential. Furthermore, WGO significantly reduced LPS-induced nitric oxide and IL-6 production in macrophages, with effects plateauing at higher doses. The 3D fluorescence spectra showed a significant decrease in fluorescence intensity when human serum albumin interacted with the WGO polyphenol fraction, indicating a strong binding affinity and stable complex formation. These findings emphasize the nutritional and therapeutic potential of WGO as a natural bioactive agent, warranting further mechanistic investigation and broader applications in health and disease management. Full article
Show Figures

Figure 1

15 pages, 9018 KiB  
Article
The Alleviative Effects of Weizmannia coagulans CGMCC 9951 on the Reproductive Toxicity of Caenorhabditis elegans Induced by Polystyrene Microplastics
by Chengmei Li, Lina Zhao, Jiajia Fan, Wentong Qi, Xuan Li, Yuwan Li, Pingping Tian, Ying Wu and Shaobin Gu
Microorganisms 2025, 13(3), 497; https://doi.org/10.3390/microorganisms13030497 - 24 Feb 2025
Viewed by 746
Abstract
The increased emission and accumulation of microplastics pose a severe threat to humans and the environment. As effective biological agents for alleviating the effects of microplastics, the mechanism of action of probiotics remains unclear. In this study, based on the successful establishment of [...] Read more.
The increased emission and accumulation of microplastics pose a severe threat to humans and the environment. As effective biological agents for alleviating the effects of microplastics, the mechanism of action of probiotics remains unclear. In this study, based on the successful establishment of a reproductive virulence model of Caenorhabditis elegans (C. elegans), we explored the effect and mechanism of Weizmannia coagulans CGMCC 9951 (W. coagulans CGMCC 9951) on the reproductive toxicity of C. elegans. Our results showed that the gonad area and the number of offspring increased but the number of germ cells undergoing apoptosis decreased by 14% and 24% in C. elegans, after CGMCC 9951 treatments. Antioxidant test results showed that CGMCC 9951 increased the activity of Superoxide Dismutase (SOD), Catalase (CAT), and the content of Glutathione (GSH) in C. elegans. In addition, it was found by qPCR and mutagenesis experiments verified that CGMCC 9951 alleviated reproductive toxicity through the DNA checkpoint signaling pathway. Our findings suggested that CGMCC 9951 could alleviate the reproductive toxicity of polystyrene microplastics in C. elegans by enhancing antioxidant capacity and inhibiting DNA damage checkpoint signaling pathway. The above results suggest that probiotics can be used as a potential approach to alleviate the reproductive toxicity induced by polystyrene microplastics in humans. Full article
Show Figures

Graphical abstract

17 pages, 30120 KiB  
Article
Functional Investigation of a Novel PIWIL4 Mutation in Nonobstructive Azoospermia During the First Wave of Spermatogenesis
by Xiayu Wang, Qian Du, Wanqian Li, Zhongyu Zou, Chikun Wang, Yan Zhou, Zhibin Hu, Yayun Gu and Feng Li
Biomolecules 2025, 15(2), 297; https://doi.org/10.3390/biom15020297 - 17 Feb 2025
Viewed by 1114
Abstract
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that are almost exclusively expressed in germ cells to silence harmful transposons to maintain genome stability. PIWIL4 is guided by its associated piRNAs to transposable elements, where it recruits the DNA methylation apparatus and instructs de [...] Read more.
PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that are almost exclusively expressed in germ cells to silence harmful transposons to maintain genome stability. PIWIL4 is guided by its associated piRNAs to transposable elements, where it recruits the DNA methylation apparatus and instructs de novo DNA methylation. Herein, we identified a missense variant of PIWIL4 (c.805 C>T p.R269W) in two infertile males. Homozygous male mice carrying the orthologous knock-in variant displayed elevated transposable element expression and aberrant gene expression during the first wave of spermatogenesis, despite exhibiting normal sperm counts and morphology. Mechanistically, the mutated site altered the piRNA-binding ability of PIWIL4 and led to the derepression of endogenous LINE-1 elements. In summary, we identified a piRNA binding mutation in PIWIL4 that may be involved in human nonobstructive azoospermia. Full article
(This article belongs to the Collection Feature Papers in Molecular Reproduction)
Show Figures

Figure 1

Back to TopTop