Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = human coronavirus strain OC43

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4997 KiB  
Communication
Broad-Spectrum Antiviral Activity of Pyridobenzothiazolone Analogues Against Respiratory Viruses
by Elisa Feyles, Tommaso Felicetti, Irene Arduino, Massimo Rittà, Andrea Civra, Luisa Muratori, Stefania Raimondo, David Lembo, Giuseppe Manfroni and Manuela Donalisio
Viruses 2025, 17(7), 890; https://doi.org/10.3390/v17070890 - 24 Jun 2025
Viewed by 374
Abstract
Cell-based phenotypic screening of a privileged in-house library composed of pyridobenzothiazolone (PBTZ) analogues was conducted against representative viruses responsible for common respiratory tract infections in humans, i.e., respiratory syncytial virus (RSV), human coronavirus type OC43 (HCoV-OC43), and influenza virus type A (IFV-A). We [...] Read more.
Cell-based phenotypic screening of a privileged in-house library composed of pyridobenzothiazolone (PBTZ) analogues was conducted against representative viruses responsible for common respiratory tract infections in humans, i.e., respiratory syncytial virus (RSV), human coronavirus type OC43 (HCoV-OC43), and influenza virus type A (IFV-A). We identified a compound with broad-spectrum inhibitory activity against multiple strains of RSV, HCoV, and IFV, with EC50 values in the low micromolar range and cell-independent activity. Its antiviral activity and cytocompatibility were confirmed in a fully differentiated 3D model of the bronchial epithelium mimicking the in vivo setting. The hit compound enters cells and localizes homogeneously in the cytosol, inhibiting replicative phases in a virus-specific manner. Overall, the selected PBTZ represents a good starting point for further preclinical development as a broad-spectrum antiviral agent that could address the continuous threat of new emerging pathogens and the rising issue of antiviral resistance. Full article
(This article belongs to the Special Issue Advances in Small-Molecule Viral Inhibitors)
Show Figures

Graphical abstract

14 pages, 2993 KiB  
Article
Evaluation of Novel Nasal Mucoadhesive Nanoformulations Containing Lipid-Soluble EGCG for Long COVID Treatment
by Nicolette Frank, Douglas Dickinson, Garrison Lovett, Yutao Liu, Hongfang Yu, Jingwen Cai, Bo Yao, Xiaocui Jiang and Stephen Hsu
Pharmaceutics 2024, 16(6), 791; https://doi.org/10.3390/pharmaceutics16060791 - 11 Jun 2024
Cited by 1 | Viewed by 2264
Abstract
Following recovery from the acute infection stage of the SARS-CoV-2 virus (COVID-19), survivors can experience a wide range of persistent Post-Acute Sequelae of COVID-19 (PASC), also referred to as long COVID. According to the US National Research Action Plan on Long COVID 2022, [...] Read more.
Following recovery from the acute infection stage of the SARS-CoV-2 virus (COVID-19), survivors can experience a wide range of persistent Post-Acute Sequelae of COVID-19 (PASC), also referred to as long COVID. According to the US National Research Action Plan on Long COVID 2022, up to 23.7 million Americans suffer from long COVID, and approximately one million workers may be out of the workforce each day due to these symptoms, leading to a USD 50 billion annual loss of salary. Neurological symptoms associated with long COVID result from persistent infection with SARS-CoV-2 in the nasal neuroepithelial cells, leading to inflammation in the central nervous system (CNS). As of today, there is no evidence that vaccines or medications can clear the persistent viral infection in olfactory mucosa. Recently published clinical data demonstrate that only 5% of long COVID anosmia patients have fully recovered during the past 2 years, and 10.4% of COVID patients are still symptomatic 18 months post-infection. Our group demonstrated that epigallocatechin-3-gallate-monopalmitate (EC16m) nanoformulations possess strong antiviral activity against human coronavirus, suggesting that this green-tea-derived compound in nanoparticle formulations could be developed as an intranasally delivered new drug targeting the persistent SARS-CoV-2 infection, as well as inflammation and oxidative stress in the CNS, leading to restoration of neurologic functions. The objective of the current study was to evaluate the mucociliary safety of the EC16m nasal nanoformulations and their efficacy against human coronavirus. Methods: Nanoparticle size and Zeta potential were measured using the ZetaView Nanoparticle Tracking Analysis system; mucociliary safety was determined using the MucilAir human nasal model; contact antiviral activity and post-infection inhibition against the OC43 viral strain were assessed by the TCID50 assay for cytopathic effect on MRC-5 cells. Results: The saline-based EC16 mucoadhesive nanoformulations containing 0.005 to 0.02% w/v EC16m have no significant difference compared to saline (0.9% NaCl) with respect to tissue integrity, cytotoxicity, and cilia beat frequency. A 5 min contact resulted in 99.9% inactivation of β-coronavirus OC43. OC43 viral replication was inhibited by >90% after infected MRC-5 cells were treated with the formulations. Conclusion: The saline-based novel EC16m mucoadhesive nasal nanoformulations rapidly inactivated human coronavirus with mucociliary safety properties comparable to saline, a solution widely used for nasal applications. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 3107 KiB  
Article
Genetic Diversity and Detection of Respiratory Viruses Excluding SARS-CoV-2 during the COVID-19 Pandemic in Gabon, 2020–2021
by Georgelin Nguema Ondo, Yuri Ushijima, Haruka Abe, Saïdou Mahmoudou, Rodrigue Bikangui, Anne Marie Nkoma, Marien Juliet Veraldy Magossou Mbadinga, Ayong More, Maradona Daouda Agbanrin, Christelle M. Pemba, Romuald Beh Mba, Ayola Akim Adegnika, Bertrand Lell and Jiro Yasuda
Viruses 2024, 16(5), 698; https://doi.org/10.3390/v16050698 - 28 Apr 2024
Cited by 2 | Viewed by 2751
Abstract
Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data [...] Read more.
Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data are available. Herein, we provide the first data on the genetic diversity and detection of 18 major respiratory viruses in Gabon during the COVID-19 pandemic. Of 582 nasopharyngeal swab specimens collected from March 2020 to July 2021, which were SARS-CoV-2 negative, 156 were positive (26%) for the following viruses: enterovirus (20.3%), human rhinovirus (HRV) (4.6%), human coronavirus OC43 (1.2%), human adenovirus (0.9%), human metapneumovirus (hMPV) (0.5%), influenza A virus (IAV) (0.3%), and human parainfluenza viruses (0.5%). To determine the genetic diversity and transmission route of the viruses, phylogenetic analyses were performed using genome sequences of the detected viruses. The IAV strain detected in this study was genetically similar to strains isolated in the USA, whereas the hMPV strain belonging to the A2b subtype formed a cluster with Kenyan strains. This study provides the first complete genomic sequences of HRV, IAV, and hMPV detected in Gabon, and provides insight into the circulation of respiratory viruses in the country. Full article
Show Figures

Figure 1

13 pages, 3159 KiB  
Article
Development of Mouse Hepatitis Virus Chimeric Reporter Viruses Expressing the 3CLpro Proteases of Human Coronaviruses HKU1 and OC43 Reveals Susceptibility to Inactivation by Natural Inhibitors Baicalin and Baicalein
by Elise R. Huffman, Jared X. Franges, Jayden M. Doster, Alexis R. Armstrong, Yara S. Batista, Cameron M. Harrison, Jon D. Brooks, Morgan N. Thomas, Butler Student Virology Group, Sakshi Tomar, Christopher C. Stobart and Dia C. Beachboard
COVID 2024, 4(2), 208-220; https://doi.org/10.3390/covid4020016 - 9 Feb 2024
Viewed by 2140
Abstract
The recent emergence of SARS-CoV-2 in 2019 has highlighted the necessity of antiviral therapeutics for current and future emerging coronaviruses. Recently, the traditional herbal medicines baicalein, baicalin, and andrographolide have shown inhibition against the main protease of SARS-CoV-2. This provides a promising new [...] Read more.
The recent emergence of SARS-CoV-2 in 2019 has highlighted the necessity of antiviral therapeutics for current and future emerging coronaviruses. Recently, the traditional herbal medicines baicalein, baicalin, and andrographolide have shown inhibition against the main protease of SARS-CoV-2. This provides a promising new direction for COVID-19 therapeutics, but it remains unknown whether these three substances inhibit other human coronaviruses. In this study, we describe the development of novel chimeric mouse hepatitis virus (MHV) reporters that express firefly luciferase (FFL) and the 3CLpro proteases of human coronaviruses HKU1 and OC43. These chimeric viruses were used to determine if the phytochemicals baicalein, baicalin, and andrographolide are inhibitory against human coronavirus strains HKU1 and OC43. Our data show that both baicalein and baicalin exhibit inhibition towards the chimeric MHV strains. However, andrographolide induces cytotoxicity and failed to demonstrate selective toxicity towards the viruses. This study reports the development and use of a safe replicating reporter platform to investigate potential coronavirus 3CLpro inhibitors against common-cold human coronavirus strains HKU1 and OC43. Full article
Show Figures

Figure 1

14 pages, 6612 KiB  
Article
Remdesivir Derivative VV116 Is a Potential Broad-Spectrum Inhibitor of Both Human and Animal Coronaviruses
by Weiyong Liu, Min Zhang, Chengxiu Hu, Huijuan Song, Yi Mei, Yingle Liu and Qi Zhang
Viruses 2023, 15(12), 2295; https://doi.org/10.3390/v15122295 - 23 Nov 2023
Cited by 9 | Viewed by 2240
Abstract
Coronaviruses represent a significant threat to both human and animal health, encompassing a range of pathogenic strains responsible for illnesses, from the common cold to more severe diseases. VV116 is a deuterated derivative of Remdesivir with oral bioavailability that was found to potently [...] Read more.
Coronaviruses represent a significant threat to both human and animal health, encompassing a range of pathogenic strains responsible for illnesses, from the common cold to more severe diseases. VV116 is a deuterated derivative of Remdesivir with oral bioavailability that was found to potently inhibit SARS-CoV-2. In this work, we investigated the broad-spectrum antiviral activity of VV116 against a variety of human and animal coronaviruses. We examined the inhibitory effects of VV116 on the replication of the human coronaviruses HCoV-NL63, HCoV-229E, and HCoV-OC43, as well as the animal coronaviruses MHV, FIPV, FECV, and CCoV. The findings reveal that VV116 effectively inhibits viral replication across these strains without exhibiting cytotoxicity, indicating its potential for safe therapeutic use. Based on the results of a time-of-addition assay and an rNTP competitive inhibition assay, it is speculated that the inhibitory mechanism of VV116 against HCoV-NL63 is consistent with its inhibition of SARS-CoV-2. Our work presents VV116 as a promising candidate for broad-spectrum anti-coronavirus therapy, with implications for both human and animal health, and supports the expansion of its therapeutic applications as backed by detailed experimental data. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

14 pages, 289 KiB  
Article
Antiviral Potential of Specially Selected Bulgarian Propolis Extracts: In Vitro Activity against Structurally Different Viruses
by Neli Milenova Vilhelmova-Ilieva, Ivanka Nikolova Nikolova, Nadya Yordanova Nikolova, Zdravka Dimitrova Petrova, Madlena Stephanova Trepechova, Dora Ilieva Holechek, Mina Mihaylova Todorova, Mariyana Georgieva Topuzova, Ivan Georgiev Ivanov and Yulian Dimitrov Tumbarski
Life 2023, 13(7), 1611; https://doi.org/10.3390/life13071611 - 23 Jul 2023
Cited by 9 | Viewed by 3201
Abstract
Propolis is a natural mixture of resins, wax, and pollen from plant buds and flowers, enriched with enzymes and bee saliva. It also contains various essential oils, vitamins, mineral salts, trace elements, hormones, and ferments. It has been found that propolis possesses antimicrobial, [...] Read more.
Propolis is a natural mixture of resins, wax, and pollen from plant buds and flowers, enriched with enzymes and bee saliva. It also contains various essential oils, vitamins, mineral salts, trace elements, hormones, and ferments. It has been found that propolis possesses antimicrobial, antiviral, and anti-inflammatory properties. We have studied the antiviral activity of six extracts of Bulgarian propolis collected from six districts of Bulgaria. The study was conducted against structurally different viruses: human coronavirus strain OC-43 (HCoV OC-43) and human respiratory syncytial virus type 2 (HRSV-2) (enveloped RNA viruses), human herpes simplex virus type 1 (HSV-1) (enveloped DNA virus), human rhinovirus type 14 (HRV-14) (non-enveloped RNA virus) and human adenovirus type 5 (HadV-5) (non-enveloped DNA virus). The influence of the extracts on the internal replicative cycle of viruses was determined using the cytopathic effect (CPE) inhibition test. The virucidal activity, its impact on the stage of viral adsorption to the host cell, and its protective effect on healthy cells were evaluated using the final dilution method, making them the focal points of interest. The change in viral infectivity under the action of propolis extracts was compared with untreated controls, and Δlgs were determined. Most propolis samples administered during the viral replicative cycle demonstrated the strongest activity against HCoV OC-43 replication. The influence of propolis extracts on the viability of extracellular virions was expressed to a different degree in the various viruses studied, and the effect was significantly stronger in those with an envelope. Almost all extracts significantly inhibited the adsorption step of the herpes virus and, to a less extent, of the coronavirus to the host cell, and some of them applied before viral infection demonstrated a protective effect on healthy cells. Our results enlarge the knowledge about the action of propolis and could open new perspectives for its application in viral infection treatment. Full article
(This article belongs to the Special Issue Therapeutic Effects of Natural Products on Human Diseases)
17 pages, 1209 KiB  
Review
Human Coronavirus OC43 as a Low-Risk Model to Study COVID-19
by Mi Il Kim and Choongho Lee
Viruses 2023, 15(2), 578; https://doi.org/10.3390/v15020578 - 20 Feb 2023
Cited by 27 | Viewed by 11970
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had irreversible and devastating impacts on every aspect of human life. To better prepare for the next similar pandemic, a clear understanding of coronavirus biology is a prerequisite. Nevertheless, the high-risk nature of the causative agent [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic has had irreversible and devastating impacts on every aspect of human life. To better prepare for the next similar pandemic, a clear understanding of coronavirus biology is a prerequisite. Nevertheless, the high-risk nature of the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires the use of a cumbersome biosafety level-3 (BSL-3) confinement facility. To facilitate the development of preventive and therapeutic measures against SARS-CoV-2, one of the endemic strains of low-risk coronaviruses has gained attention as a useful research alternative: human coronavirus OC43 (HCoV-OC43). In this review, its history, classification, and clinical manifestations are first summarized. The characteristics of its viral genomes, genes, and evolution process are then further explained. In addition, the host factors necessary to support the life cycle of HCoV-OC43 and the innate, as well as adaptive, immunological responses to HCoV-OC43 infection are discussed. Finally, the development of in vitro and in vivo systems to study HCoV-OC43 and its application to the discovery of potential antivirals for COVID-19 by using HCoV-OC43 models are also presented. This review should serve as a concise guide for those who wish to use HCoV-OC43 to study coronaviruses in a low-risk research setting. Full article
(This article belongs to the Special Issue SARS-CoV-2 and Other Coronaviruses)
Show Figures

Figure 1

23 pages, 3522 KiB  
Article
Synthesis of Novel 1-Oxo-2,3,4-trisubstituted Tetrahydroisoquinoline Derivatives, Bearing Other Heterocyclic Moieties and Comparative Preliminary Study of Anti-Coronavirus Activity of Selected Compounds
by Meglena I. Kandinska, Nikola T. Burdzhiev, Diana V. Cheshmedzhieva, Sonia V. Ilieva, Peter P. Grozdanov, Neli Vilhelmova-Ilieva, Nadya Nikolova, Vesela V. Lozanova and Ivanka Nikolova
Molecules 2023, 28(3), 1495; https://doi.org/10.3390/molecules28031495 - 3 Feb 2023
Cited by 4 | Viewed by 2917
Abstract
A series of novel 1-oxo-2,3,4-trisubstituted tetrahydroisoquinoline (THIQ) derivatives bearing other heterocyclic moieties in their structure were synthesized based on the reaction between homophthalic anhydride and imines. Initial studies were carried out to establish the anti-coronavirus activity of some of the newly obtained THIQ-derivatives [...] Read more.
A series of novel 1-oxo-2,3,4-trisubstituted tetrahydroisoquinoline (THIQ) derivatives bearing other heterocyclic moieties in their structure were synthesized based on the reaction between homophthalic anhydride and imines. Initial studies were carried out to establish the anti-coronavirus activity of some of the newly obtained THIQ-derivatives against two strains of human coronavirus-229E and OC-43. Their antiviral activity was compared with that of their close analogues, piperidinones and thiomorpholinones, previously synthesized in our group, with aim to expand the range of the tested representative sample and to obtain valuable preliminary information about biological properties of a wider variety of compounds. Full article
(This article belongs to the Special Issue Synthesis of Tetrahydroisoquinoline and Protoberberine Derivatives)
Show Figures

Figure 1

10 pages, 2410 KiB  
Article
Comparative Study of Blue Light with Ultraviolet (UVC) Radiation on Betacoronavirus 1
by Kritika Vashishtha, Fengfeng Xi, Priya Dharmalingam and Alexandre Douplik
Appl. Sci. 2023, 13(3), 1426; https://doi.org/10.3390/app13031426 - 21 Jan 2023
Cited by 6 | Viewed by 3270
Abstract
The ongoing coronavirus pandemic requires more effective disinfection methods. Disinfection using ultraviolet light (UV), especially longer UVC wavelengths, such as 254 and 270/280 nm, has been proven to have virucidal properties, but its adverse effects on human skin and eyes limit its use [...] Read more.
The ongoing coronavirus pandemic requires more effective disinfection methods. Disinfection using ultraviolet light (UV), especially longer UVC wavelengths, such as 254 and 270/280 nm, has been proven to have virucidal properties, but its adverse effects on human skin and eyes limit its use to enclosed, unoccupied spaces. Several studies have shown the effectiveness of blue light (405 nm) against bacteria and fungi, but the virucidal property at 405 nm has not been much investigated. Based on previous studies, visible light mediates inactivation by absorbing the porphyrins and reacting with oxygen to produce reactive oxygen species (ROS). This causes oxidative damage to biomolecules, such as proteins, lipids, and nucleic acids, essential constituents of any virus. The virucidal potential of visible light has been speculated because the virus lacks porphyrins. This study demonstrated porphyrin-independent viral inactivation and conducted a comparative analysis of the effectiveness at 405 nm against other UVC wavelengths. The betacoronavirus 1 (strain OC43) was exposed to 405, 270/280, 254, and 222 nm, and its efficacy was determined using a median tissue culture infectious dose, i.e., TCID50. The results support the disinfection potential of visible light technology by providing a quantitative effect that can serve as the basic groundwork for future visible light inactivation technologies. In the future, blue light technology usage can be widened to hospitals, public places, aircraft cabins, and/or infectious laboratories for disinfection purposes. Full article
Show Figures

Figure 1

17 pages, 373 KiB  
Review
An Immunological Review of SARS-CoV-2 Infection and Vaccine Serology: Innate and Adaptive Responses to mRNA, Adenovirus, Inactivated and Protein Subunit Vaccines
by Suhaila A. Al-Sheboul, Brent Brown, Yasemin Shboul, Ingo Fricke, Chinua Imarogbe and Karem H. Alzoubi
Vaccines 2023, 11(1), 51; https://doi.org/10.3390/vaccines11010051 - 26 Dec 2022
Cited by 13 | Viewed by 4967
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which is defined by its positive-sense single-stranded RNA (ssRNA) structure. It is in the order Nidovirales, suborder Coronaviridae, genus Betacoronavirus, and sub-genus Sarbecovirus (lineage B), [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which is defined by its positive-sense single-stranded RNA (ssRNA) structure. It is in the order Nidovirales, suborder Coronaviridae, genus Betacoronavirus, and sub-genus Sarbecovirus (lineage B), together with two bat-derived strains with a 96% genomic homology with other bat coronaviruses (BatCoVand RaTG13). Thus far, two Alphacoronavirus strains, HCoV-229E and HCoV-NL63, along with five Betacoronaviruses, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2, have been recognized as human coronaviruses (HCoVs). SARS-CoV-2 has resulted in more than six million deaths worldwide since late 2019. The appearance of this novel virus is defined by its high and variable transmission rate (RT) and coexisting asymptomatic and symptomatic propagation within and across animal populations, which has a longer-lasting impact. Most current therapeutic methods aim to reduce the severity of COVID-19 hospitalization and virus symptoms, preventing the infection from progressing from acute to chronic in vulnerable populations. Now, pharmacological interventions including vaccines and others exist, with research ongoing. The only ethical approach to developing herd immunity is to develop and provide vaccines and therapeutics that can potentially improve on the innate and adaptive system responses at the same time. Therefore, several vaccines have been developed to provide acquired immunity to SARS-CoV-2 induced COVID-19-disease. The initial evaluations of the COVID-19 vaccines began in around 2020, followed by clinical trials carried out during the pandemic with ongoing population adverse effect monitoring by respective regulatory agencies. Therefore, durability and immunity provided by current vaccines requires further characterization with more extensive available data, as is presented in this paper. When utilized globally, these vaccines may create an unidentified pattern of antibody responses or memory B and T cell responses that need to be further researched, some of which can now be compared within laboratory and population studies here. Several COVID-19 vaccine immunogens have been presented in clinical trials to assess their safety and efficacy, inducing cellular antibody production through cellular B and T cell interactions that protect against infection. This response is defined by virus-specific antibodies (anti-N or anti-S antibodies), with B and T cell characterization undergoing extensive research. In this article, we review four types of contemporary COVID-19 vaccines, comparing their antibody profiles and cellular aspects involved in coronavirus immunology across several population studies. Full article
(This article belongs to the Special Issue Vaccine Related Immune Responses 2.0)
12 pages, 1909 KiB  
Article
Targeted Virome Sequencing Enhances Unbiased Detection and Genome Assembly of Known and Emerging Viruses—The Example of SARS-CoV-2
by Vasiliki Pogka, Gethsimani Papadopoulou, Vaia Valiakou, Dionyssios N. Sgouras, Andreas F. Mentis and Timokratis Karamitros
Viruses 2022, 14(6), 1272; https://doi.org/10.3390/v14061272 - 11 Jun 2022
Cited by 6 | Viewed by 4385
Abstract
Targeted virome enrichment and sequencing (VirCapSeq-VERT) utilizes a pool of oligos (baits) to enrich all known—up to 2015—vertebrate-infecting viruses, increasing their detection sensitivity. The hybridisation of the baits to the target sequences can be partial, thus enabling the detection and genomic reconstruction of [...] Read more.
Targeted virome enrichment and sequencing (VirCapSeq-VERT) utilizes a pool of oligos (baits) to enrich all known—up to 2015—vertebrate-infecting viruses, increasing their detection sensitivity. The hybridisation of the baits to the target sequences can be partial, thus enabling the detection and genomic reconstruction of novel pathogens with <40% genetic diversity compared to the strains used for the baits’ design. In this study, we deploy this method in multiplexed mixes of viral extracts, and we assess its performance in the unbiased detection of DNA and RNA viruses after cDNA synthesis. We further assess its efficiency in depleting various background genomic material. Finally, as a proof-of-concept, we explore the potential usage of the method for the characterization of unknown, emerging human viruses, such as SARS-CoV-2, which may not be included in the baits’ panel. We mixed positive samples of equimolar DNA/RNA viral extracts from SARS-CoV-2, coronavirus OC43, cytomegalovirus, influenza A virus H3N2, parvovirus B19, respiratory syncytial virus, adenovirus C and coxsackievirus A16. Targeted virome enrichment was performed on a dsDNA mix, followed by sequencing on the NextSeq500 (Illumina) and the portable MinION sequencer, to evaluate its usability as a point-of-care (PoC) application. Genome mapping assembly was performed using viral reference sequences. The untargeted libraries contained less than 1% of total reads mapped on most viral genomes, while RNA viruses remained undetected. In the targeted libraries, the percentage of viral-mapped reads were substantially increased, allowing full genome assembly in most cases. Targeted virome sequencing can enrich a broad range of viruses, potentially enabling the discovery of emerging viruses. Full article
(This article belongs to the Special Issue Metagenomics of Emerging Viruses)
Show Figures

Figure 1

16 pages, 3133 KiB  
Article
Montelukast Inhibits HCoV-OC43 Infection as a Viral Inactivator
by Yongkang Chen, Xiaohuan Wang, Huichun Shi and Peng Zou
Viruses 2022, 14(5), 861; https://doi.org/10.3390/v14050861 - 21 Apr 2022
Cited by 10 | Viewed by 3650
Abstract
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with [...] Read more.
Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection. Full article
(This article belongs to the Special Issue Viral Entry Inhibitors 2022)
Show Figures

Figure 1

14 pages, 1388 KiB  
Article
Antiviral Activity of Contemporary Contact Lens Care Solutions against Two Human Seasonal Coronavirus Strains
by Christiane Lourenco Nogueira, Scott Joseph Boegel, Manish Shukla, William Ngo, Lyndon Jones and Marc G. Aucoin
Pathogens 2022, 11(4), 472; https://doi.org/10.3390/pathogens11040472 - 15 Apr 2022
Cited by 8 | Viewed by 3515
Abstract
Background: Given that reports have suggested SARS-CoV-2 can be transmitted via conjunctiva, the ability of contact lens (CL) care products to reduce the infectiousness of two seasonal human coronavirus (HCoV) (HCoV-229E and HCoV-OC43) surrogates for SARS-CoV-2 was investigated. Methods: Biotrue and Boston Simplus [...] Read more.
Background: Given that reports have suggested SARS-CoV-2 can be transmitted via conjunctiva, the ability of contact lens (CL) care products to reduce the infectiousness of two seasonal human coronavirus (HCoV) (HCoV-229E and HCoV-OC43) surrogates for SARS-CoV-2 was investigated. Methods: Biotrue and Boston Simplus (Bausch&Lomb), OPTI-FREE Puremoist and Clear Care (Alcon), and cleadew and cleadew GP (Ophtecs) were tested. Their ability to inactivate HCoV was evaluated using contact times of 4 and 6 h as well as 1% and 10% of virus inoculum. Results: Non-oxidative systems (Biotrue, Boston Simplus, and OPTI-FREE) did not exhibit a significant log10 reduction compared to controls for the two viral strains for either incubation time (all p > 0.05) when 10% tests were performed. For the 1% test, while Boston Simplus and OPTI-FREE exhibited a significant log10 reduction of both HCoV-229E (after 6 h) and HCoV-OC43 (after either 4 or 6 h incubation), those products showed less than 1 log10 reduction of the two infectious viruses. Oxidative systems based on hydrogen peroxide or povidone-iodine showed a significant log10 reduction compared with the controls for both HCoV-229E and HCoV-OC43 in all tested conditions (all p < 0.01). Clear Care led to virus inactivation to below the limit of quantification for tests performed with 1% of inoculum after 6 h incubation, while cleadew and cleadew GP led to inactivation of the two viruses to below the limit of quantification in all tested conditions. Conclusion: Oxidative CL disinfection systems showed significant virucidal activity against HCoV-229E and HCoV-OC43, while non-oxidative systems showed minimal ability to inactivate the HCoV species examined. Full article
(This article belongs to the Special Issue Advances in Ocular Surface Infections)
Show Figures

Figure 1

14 pages, 1384 KiB  
Article
Inhibition of Respiratory RNA Viruses by a Composition of Ionophoric Polyphenols with Metal Ions
by Topaz Kreiser, Dor Zaguri, Shreya Sachdeva, Rachel Zamostiano, Josef Mograbi, Daniel Segal, Eran Bacharach and Ehud Gazit
Pharmaceuticals 2022, 15(3), 377; https://doi.org/10.3390/ph15030377 - 20 Mar 2022
Cited by 8 | Viewed by 10822
Abstract
Controlling the infectivity of respiratory RNA viruses is critical, especially during the current SARS-CoV-2 pandemic. There is an unmet need for therapeutic agents that can reduce viral replication, preferably independent of the accumulation of viral mutations. Zinc ions have an apparent activity as [...] Read more.
Controlling the infectivity of respiratory RNA viruses is critical, especially during the current SARS-CoV-2 pandemic. There is an unmet need for therapeutic agents that can reduce viral replication, preferably independent of the accumulation of viral mutations. Zinc ions have an apparent activity as modulators of intracellular viral RNA replication and thus, appear attractive in reducing viral RNA load and infectivity. However, the intracellular concentration of zinc is usually too low for achieving an optimal inhibitory effect. Various herbal polyphenols serve as excellent zinc ionophores with known antiviral properties. Here, we combined zinc picolinate with a collection of flavonoids, representing commonly used polyphenols. Copper was added to avoid ionic imbalance during treatment and to improve efficacy. Each component separately, as well as their combinations, did not interfere with the viability of cultured A549, H1299, or Vero cells in vitro as determined by MTT assay. The safe combinations were further evaluated to determine antiviral activity. Fluorescence-activated cell sorting and quantitative polymerase chain reaction were used to evaluate antiviral activity of the combinations. They revealed a remarkable (50–95%) decrease, in genome replication levels of a diverse group of respiratory RNA viruses, including the human coronavirus OC43 (HCoV-OC43; a betacoronavirus that causes the common cold), influenza A virus (IAV, strain A/Puerto Rico/8/34 H1N1), and human metapneumovirus (hMPV). Collectively, our results offer an orally bioavailable therapeutic approach that is non-toxic, naturally sourced, applicable to numerous RNA viruses, and potentially insensitive to new mutations and variants. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

24 pages, 1889 KiB  
Review
Classical and Next-Generation Vaccine Platforms to SARS-CoV-2: Biotechnological Strategies and Genomic Variants
by Rachel Siqueira de Queiroz Simões and David Rodríguez-Lázaro
Int. J. Environ. Res. Public Health 2022, 19(4), 2392; https://doi.org/10.3390/ijerph19042392 - 18 Feb 2022
Cited by 16 | Viewed by 5810
Abstract
Several coronaviruses (CoVs) have been identified as human pathogens, including the α-CoVs strains HCoV-229E and HCoV-NL63 and the β-CoVs strains HCoV-HKU1 and HCoV-OC43. SARS-CoV, MERS-CoV, and SARS-CoV-2 are also classified as β-coronavirus. New SARS-CoV-2 spike genomic variants are responsible for human-to-human and interspecies [...] Read more.
Several coronaviruses (CoVs) have been identified as human pathogens, including the α-CoVs strains HCoV-229E and HCoV-NL63 and the β-CoVs strains HCoV-HKU1 and HCoV-OC43. SARS-CoV, MERS-CoV, and SARS-CoV-2 are also classified as β-coronavirus. New SARS-CoV-2 spike genomic variants are responsible for human-to-human and interspecies transmissibility, consequences of adaptations of strains from animals to humans. The receptor-binding domain (RBD) of SARS-CoV-2 binds to receptor ACE2 in humans and animal species with high affinity, suggesting there have been adaptive genomic variants. New genomic variants including the incorporation, replacement, or deletion of the amino acids at a variety of positions in the S protein have been documented and are associated with the emergence of new strains adapted to different hosts. Interactions between mutated residues and RBD have been demonstrated by structural modelling of variants including D614G, B.1.1.7, B1.351, P.1, P2; other genomic variants allow escape from antibodies generated by vaccines. Epidemiological and molecular tools are being used for real-time tracking of pathogen evolution and particularly new SARS-CoV-2 variants. COVID-19 vaccines obtained from classical and next-generation vaccine production platforms have entered clinicals trials. Biotechnology strategies of the first generation (attenuated and inactivated virus–CoronaVac, CoVaxin; BBIBP-CorV), second generation (replicating-incompetent vector vaccines–ChAdOx-1; Ad5-nCoV; Sputnik V; JNJ-78436735 vaccine-replicating-competent vector, protein subunits, virus-like particles–NVX-CoV2373 vaccine), and third generation (nucleic-acid vaccines–INO-4800 (DNA); mRNA-1273 and BNT 162b (RNA vaccines) have been used. Additionally, dendritic cells (LV-SMENP-DC) and artificial antigen-presenting (aAPC) cells modified with lentiviral vector have also been developed to inhibit viral activity. Recombinant vaccines against COVID-19 are continuously being applied, and new clinical trials have been tested by interchangeability studies of viral vaccines developed by classical and next-generation platforms. Full article
Show Figures

Figure 1

Back to TopTop