Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,187)

Search Parameters:
Keywords = houses on water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2547 KiB  
Article
Mechanically Induced Pulpitis: A Rat Model That Preserves Animal Well-Being
by María Alexandra Bedoya, Gloria Cristina Moreno, Camilo Durán, Adriana Camacho, Angel Eduardo Pirela, Stefany Rojas Lozano, Maddy Mejía, Eddy Herrera, Luz-Stella Rodríguez Camacho, Lorenza Jaramillo and Nelly S. Roa
Biomedicines 2025, 13(8), 1925; https://doi.org/10.3390/biomedicines13081925 - 7 Aug 2025
Abstract
Background: Understanding the mechanisms underlying dental pain caused by pulpitis in humans has led to the development of animal models, such as the rat, which enable the study of the mechanisms underlying inflammation; the use of these models is considered ethically justified [...] Read more.
Background: Understanding the mechanisms underlying dental pain caused by pulpitis in humans has led to the development of animal models, such as the rat, which enable the study of the mechanisms underlying inflammation; the use of these models is considered ethically justified when the anticipated scientific benefits outweigh the potential impacts on animals in the harm/benefit balance. Objective: To develop a rat model of mechanically induced pulpitis and to evaluate the potential impact on animal well-being. Methods: Pulpitis was mechanically induced in male Lewis rats (13–16 weeks, 350–400 g) which were anesthetized and endotracheally intubated. Following pulp exposure, the cavity was sealed with either amalgam (n = 10) or zinc phosphate cement (n = 10). Following recovery and return to their housing, behavioral assessments and histological evaluations using Hematoxylin and Eosin (H&E) staining were conducted in separate cohorts at two time points: 3 h and 5 days following the procedure. Results: A standardized model of mechanically induced pulpitis was established and verified clinically and by histopathological analysis, which showed evidence of the inflammatory process and revealed no statistically significant differences in the scoring of pain, discomfort, or distress, nor in the measurements of food and water consumption or body weight. Conclusions: The behavioral assessments conducted in this study supported the implementation of a safe and easily reproducible model for future research aimed at elucidating the mechanisms underlying pulp inflammation. Full article
(This article belongs to the Special Issue Animal Models for the Study of Human Diseases)
Show Figures

Graphical abstract

12 pages, 596 KiB  
Article
Household Satisfaction and Drinking Water Quality in Rural Areas: A Comparison with Official Access Data
by Zhanerke Bolatova, Riza Sharapatova, Kaltay Kanagat, Yerlan Kabiyev, Ronny Berndtsson and Kamshat Tussupova
Sustainability 2025, 17(15), 7107; https://doi.org/10.3390/su17157107 - 5 Aug 2025
Abstract
Background: Access to safe and reliable water and sanitation remains a critical public health and development challenge, with rural and low-income communities being disproportionately affected by inadequate services and heightened exposure to waterborne diseases. Despite global efforts and infrastructure-based progress indicators, significant disparities [...] Read more.
Background: Access to safe and reliable water and sanitation remains a critical public health and development challenge, with rural and low-income communities being disproportionately affected by inadequate services and heightened exposure to waterborne diseases. Despite global efforts and infrastructure-based progress indicators, significant disparities persist, and these often overlook users’ perceptions of water quality, reliability, and safety. This study explores the determinants of household satisfaction with drinking water in rural areas, comparing subjective user feedback with official access data to reveal gaps in current monitoring approaches and support more equitable, user-centered water governance. Methods: This study was conducted in Kazakhstan’s Atyrau Region, where 1361 residents from 86 rural villages participated in a structured survey assessing household access to drinking water and perceptions of its quality. Data were analyzed using descriptive statistics and multinomial logistic regression to identify key predictors of user satisfaction, with results compared against official records to evaluate discrepancies between reported experiences and administrative data. Results: The field survey results revealed substantial discrepancies between official statistics and residents’ reports, with only 58.1% of respondents having in-house tap water access despite claims of universal coverage. Multinomial logistic regression analysis identified key predictors of user satisfaction, showing that uninterrupted supply and the absence of complaints about turbidity, odor, or taste significantly increased the likelihood of higher satisfaction levels with drinking water quality. Conclusions: This study underscores the critical need to align official water access statistics with household-level experiences, revealing that user satisfaction—strongly influenced by supply reliability and sensory water quality—is essential for achieving equitable and effective rural water governance. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

26 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 - 31 Jul 2025
Viewed by 237
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 284
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 233
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

11 pages, 1134 KiB  
Communication
Molecular Detection and Genotyping of Enterocytozoon bieneusi in Environmental Sources near Cattle Farms in Korea
by Haeseung Lee, Myungji Jo, Hyeyeon Kim, Kaifa Nazim, Seung-Hun Lee, Min-Goo Seo, Sang-Joon Park, Man Hee Rhee and Dongmi Kwak
Int. J. Mol. Sci. 2025, 26(15), 7270; https://doi.org/10.3390/ijms26157270 - 27 Jul 2025
Viewed by 301
Abstract
Enterocytozoon bieneusi, a microsporidian protozoan parasite, infects diverse hosts, including humans and livestock. Transmission occurs primarily through the fecal–oral route or exposure to contaminated environmental sources, such as water and soil. While its prevalence in animals is well documented, data on environmental [...] Read more.
Enterocytozoon bieneusi, a microsporidian protozoan parasite, infects diverse hosts, including humans and livestock. Transmission occurs primarily through the fecal–oral route or exposure to contaminated environmental sources, such as water and soil. While its prevalence in animals is well documented, data on environmental contamination—particularly in areas surrounding livestock farms—remain limited. Therefore, this study aims to investigate the presence of E. bieneusi in environmental sources near cattle farms in Korea, evaluating potential risks for zoonotic transmission. Overall, 364 environmental samples (soil and water) were collected from areas surrounding cattle farms and analyzed using nested PCR targeting the internal transcribed spacer region of E. bieneusi. One positive sample (0.3%) was identified in surface water near a shed housing Korean native cattle during autumn. Genotyping and phylogenetic analysis identified the sequence as originating from genotype BEB1, a Group 2 genotype commonly associated with ruminants and recognized for its zoonotic potential. While the detection rate was low, this represents the first report of E. bieneusi contamination in water near cattle housing and the first identification of BEB1 in environmental water in Korea. These findings highlight the potential for environmental transmission, emphasizing the need for further research and monitoring to inform strategies for public health and livestock biosecurity. Full article
(This article belongs to the Special Issue Microorganisms in the Environment)
Show Figures

Figure 1

22 pages, 3056 KiB  
Article
Recycled Glass and Plastic Waste in Sustainable Geopolymer Systems for Affordable Housing Solutions
by Zhao Qing Tang, Yat Choy Wong, Yali Li and Eryadi Kordi Masli
Recycling 2025, 10(4), 147; https://doi.org/10.3390/recycling10040147 - 27 Jul 2025
Viewed by 365
Abstract
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, [...] Read more.
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, with 10% recycled crushed glass (RCG) and recycled plastic waste (RPW) as partial coarse aggregate replacements. Compressive strength testing revealed that FA + S-based geopolymers (25FA + S) with 100% ordinary Portland cement (OPC) replacement achieved a 7-day strength of 24.6 MPa, representing a 98% improvement over control specimens. Slag-based geopolymers demonstrated water absorption properties comparable to OPC, indicating enhanced durability. Microstructural analyses using SEM, XRD, and EDS confirmed the formation of a dense aluminosilicate matrix, with slag promoting FA reactivity and reinforcing interfacial transition zone (ITZ). These effects contributed to superior mechanical performance and water resistance. Despite minor shrinkage-induced cracking, full OPC replacement with S or FA + S geopolymers outperformed control specimens, consistently exceeding the target strength of 15 MPa required for low-impact, single-story housing applications within seven days. These findings underscore the potential of geopolymer systems for rapid and sustainable construction, offering an effective solution for reducing carbon footprints and repurposing industrial waste. Full article
Show Figures

Figure 1

44 pages, 15871 KiB  
Article
Space Gene Quantification and Mapping of Traditional Settlements in Jiangnan Water Town: Evidence from Yubei Village in the Nanxi River Basin
by Yuhao Huang, Zibin Ye, Qian Zhang, Yile Chen and Wenkun Wu
Buildings 2025, 15(14), 2571; https://doi.org/10.3390/buildings15142571 - 21 Jul 2025
Viewed by 341
Abstract
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. [...] Read more.
The spatial genes of rural settlements show a lot of different traditional settlement traits, which makes them a great starting point for studying rural spatial morphology. However, qualitative and macro-regional statistical indicators are usually used to find and extract rural settlement spatial genes. Taking Yubei Village in the Nanxi River Basin as an example, this study combined remote sensing images, real-time drone mapping, GIS (geographic information system), and space syntax, extracted 12 key indicators from five dimensions (landform and water features (environment), boundary morphology, spatial structure, street scale, and building scale), and quantitatively “decoded” the spatial genes of the settlement. The results showed that (1) the settlement is a “three mountains and one water” pattern, with cultivated land accounting for 37.4% and forest land accounting for 34.3% of the area within the 500 m buffer zone, while the landscape spatial diversity index (LSDI) is 0.708. (2) The boundary morphology is compact and agglomerated, and locally complex but overall orderly, with an aspect ratio of 1.04, a comprehensive morphological index of 1.53, and a comprehensive fractal dimension of 1.31. (3) The settlement is a “clan core–radial lane” network: the global integration degree of the axis to the holy hall is the highest (0.707), and the local integration degree R3 peak of the six-room ancestral hall reaches 2.255. Most lane widths are concentrated between 1.2 and 2.8 m, and the eaves are mostly higher than 4 m, forming a typical “narrow lanes and high houses” water town streetscape. (4) The architectural style is a combination of black bricks and gray tiles, gable roofs and horsehead walls, and “I”-shaped planes (63.95%). This study ultimately constructed a settlement space gene map and digital library, providing a replicable quantitative process for the diagnosis of Jiangnan water town settlements and heritage protection planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

16 pages, 2467 KiB  
Article
Optimal Collector Tilt Angle to Maximize Solar Fraction in Residential Heating Systems: A Numerical Study for Temperate Climates
by Krzysztof Kupiec and Barbara Król
Sustainability 2025, 17(14), 6385; https://doi.org/10.3390/su17146385 - 11 Jul 2025
Viewed by 337
Abstract
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt [...] Read more.
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt angles on the annual solar fraction (SF) of a solar heating system designed for a typical single-family house located in Kraków, Poland (50° N latitude). A numerical model based on the f-Chart method was employed to simulate system performance under varying collector areas, storage tank volumes, heat exchanger characteristics, and DHW proportions. The analysis revealed that although total annual irradiation decreases with increasing tilt angle, the SF reaches a maximum at a tilt angle of approximately 60°, which is about 10° higher than the local geographic latitude. This configuration offers a favorable balance between winter energy gain and summer overheating mitigation. The results align with empirical recommendations in the literature and offer practical guidance for optimizing fixed-tilt solar heating systems in temperate climates. Full article
Show Figures

Figure 1

14 pages, 2432 KiB  
Article
Charge Reduction and Performance Analysis of a Heat Pump Water Heater Using R290 as a Refrigerant—A Field Study
by Ahmed Elatar, Joseph Rendall, Jian Sun, Jamieson Brechtl and Kashif Nawaz
Energies 2025, 18(14), 3661; https://doi.org/10.3390/en18143661 - 10 Jul 2025
Viewed by 446
Abstract
Heat pump water heaters (HPWHs) are a proven technology for water heating that has been commercialized. The adoption of HPWHs for domestic and commercial water heating is growing rapidly because of their superior performance compared with alternative water heating methods. Whereas most existing [...] Read more.
Heat pump water heaters (HPWHs) are a proven technology for water heating that has been commercialized. The adoption of HPWHs for domestic and commercial water heating is growing rapidly because of their superior performance compared with alternative water heating methods. Whereas most existing systems use R-134a as a working refrigerant, R290 has gained major attention owing to its superior thermodynamic properties. The goal of the current study is to assess the performance of residential HPWH with R290 as a direct refrigerant replacement for R134a. Two units of a 50 gal HPWH were used in this experimental study. A baseline unit contained R134a refrigerant, and a prototype unit contained R290 refrigerant. The prototype unit was developed through the modification of a commercially available HPWH unit to achieve a low charge of R290 refrigerant. Another major modification was the replacement of the baseline compressor with a compressor designed for R290. Tests were conducted in a field environment (a research and demonstration house) using programmed drawn profiles daily. The prototype that reduced the charge by 43–47% provided displayed performance comparable to the baseline unit regarding first-hour rating (FHR) and the uniform energy factor (UEF). Full article
(This article belongs to the Special Issue Heat Transfer and Fluid Flows for Industry Applications)
Show Figures

Figure 1

24 pages, 6218 KiB  
Article
The Design and Data Analysis of an Underwater Seismic Wave System
by Dawei Xiao, Qin Zhu, Jingzhuo Zhang, Taotao Xie and Qing Ji
Sensors 2025, 25(13), 4155; https://doi.org/10.3390/s25134155 - 3 Jul 2025
Viewed by 430
Abstract
Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage [...] Read more.
Ship seismic wave signals represent one of the most critical physical field characteristics of vessels. To achieve the high-precision detection of ship seismic wave field signals in marine environments, an underwater seismic wave signal detection system was designed. The system adopts a three-stage architecture consisting of watertight instrument housing, a communication circuit, and a buoy to realize high-capacity real-time data transmissions. The host computer performs the collaborative optimization of multi-modal hardware architecture and adaptive signal processing algorithms, enabling the detection of ship targets in oceanic environments. Through verification in a water tank and sea trials, the system successfully measured seismic wave signals. An improved ALE-LOFAR (Adaptive Line Enhancer–Low-Frequency Analysis) joint framework, combined with DEMON (Demodulation of Envelope Modulation) demodulation technology, was proposed to conduct the spectral feature analysis of ship seismic wave signals, yielding the low-frequency signal characteristics of vessels. This scheme provides an important method for the covert monitoring of shallow-sea targets, providing early warnings of illegal fishing and ensuring underwater security. Full article
(This article belongs to the Special Issue Acoustic Sensing for Condition Monitoring)
Show Figures

Figure 1

23 pages, 608 KiB  
Article
Assessing Municipal Performance in Serbia: A TOPSIS-Based Analysis of Economic Vitality and Public Safety Dynamics
by Tomasz Skrzyński and Aleksander Wasiuta
Sustainability 2025, 17(13), 5838; https://doi.org/10.3390/su17135838 - 25 Jun 2025
Viewed by 367
Abstract
This study applies the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method combined with entropy-based weighting to systematically rank Serbian municipalities regarding economic vitality, infrastructure quality, and socio-economic stability. By developing a composite municipal performance index, the research explores the [...] Read more.
This study applies the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method combined with entropy-based weighting to systematically rank Serbian municipalities regarding economic vitality, infrastructure quality, and socio-economic stability. By developing a composite municipal performance index, the research explores the extent to which stronger economic standings relate to public safety outcomes. Infrastructure factors—including road conditions, housing quality, and water supply—are assessed through correlation and t-tests to evaluate their influence on municipal economic rankings. An ordinary least squares (OLS) regression model also examines how education and health expenditures per capita contribute to broader socio-economic resilience. The findings reveal a moderately strong, though nonlinear, negative relationship between economic performance and crime rates, with road infrastructure emerging as a consistently significant driver of economic strength. Investments in education and health initially correlate with greater municipal stability but show signs of diminishing marginal impact over time. These insights contribute to understanding the complex interplay between governance, infrastructure, and safety in transitional economies, highlighting the value of integrated data-driven approaches for regional development planning. Full article
Show Figures

Figure 1

11 pages, 255 KiB  
Article
Assessment of Risk Factors for Cryptosporidium Infection in Hospitalized Patients from Romania
by Rodica Georgiana Dărăbuș, Marius Stelian Ilie, Diana Maria Darabuș, Voichița Lăzureanu, Ovidiu Roșca and Tudor Rareș Olariu
J. Clin. Med. 2025, 14(13), 4481; https://doi.org/10.3390/jcm14134481 - 24 Jun 2025
Viewed by 376
Abstract
Background/Objectives: This study aimed to identify and analyze the risk factors associated with Cryptosporidium infection in hospitalized patients in western Romania. Methods: A total of 312 patients, aged between 2 months and 90 years and residing in both urban and rural communities, [...] Read more.
Background/Objectives: This study aimed to identify and analyze the risk factors associated with Cryptosporidium infection in hospitalized patients in western Romania. Methods: A total of 312 patients, aged between 2 months and 90 years and residing in both urban and rural communities, were included. Stool samples were collected and analyzed using the CerTest Crypto qualitative chromatographic test and the modified Ziehl–Neelsen staining method (Henricksen & Pohlenz). Risk factors were assessed through a questionnaire completed by patients or by the parents of pediatric patients. Results: The overall prevalence of Cryptosporidium infection was 5.77%. Among the evaluated risk factors, only the area of residence showed a statistically significant association (p < 0.05), with a higher prevalence in urban areas (9.2%) compared to rural areas (3.6%). Other factors—including age, gender, contact with animals, pet ownership, handwashing after animal contact, type of housing, fruit washing habits, use of potable water, use of public transportation, international travel, and visits to playgrounds or swimming pools—were not significantly associated with infection. Conclusions: These findings suggest that urban residency may be a significant factor in Cryptosporidium transmission and may inform future research and the development of targeted public health strategies. Full article
(This article belongs to the Section Infectious Diseases)
17 pages, 753 KiB  
Article
Blue–Green Infrastructure Effectiveness for Urban Stormwater Management: A Multi-Scale Residential Case Study
by Joanna Boguniewicz-Zabłocka and Ewelina Łukasiewicz
Land 2025, 14(7), 1340; https://doi.org/10.3390/land14071340 - 24 Jun 2025
Viewed by 618
Abstract
Climate change, urbanization, and extreme weather events such as heavy rainfall and drought present major challenges for urban water management. This paper proposes a framework to evaluate the effectiveness of blue–green infrastructure (BGI) as a sustainable stormwater management solution across different residential development [...] Read more.
Climate change, urbanization, and extreme weather events such as heavy rainfall and drought present major challenges for urban water management. This paper proposes a framework to evaluate the effectiveness of blue–green infrastructure (BGI) as a sustainable stormwater management solution across different residential development scales. Two contrasting case studies are examined: a small terraced housing catchment and a large housing estate. A multi-criteria analysis (MCA) supports a structured comparison of BGI effectiveness, while a complementary SWOT analysis informs strategic implementation approaches. The results demonstrate the practical applicability of the framework and underscore that successful stormwater management requires both innovative technologies and reform in urban planning governance. This study offers valuable insights into building climate-resilient cities. Full article
(This article belongs to the Special Issue Urban Ecosystem Services: 6th Edition)
Show Figures

Figure 1

31 pages, 3525 KiB  
Article
A Whole-Life Carbon Assessment of a Single-Family House in North India Using BIM-LCA Integration
by Deepak Kumar, Kranti Kumar Maurya, Shailendra K. Mandal, Nandini Halder, Basit Afaq Mir, Anissa Nurdiawati and Sami G. Al-Ghamdi
Buildings 2025, 15(13), 2195; https://doi.org/10.3390/buildings15132195 - 23 Jun 2025
Viewed by 560
Abstract
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) [...] Read more.
As the population increases, the growing demand for residential housing escalates construction activities, significantly impacting global warming by contributing 42% of primary energy use and 39% of global greenhouse gas (GHG) emissions. This study addresses a gap in research on lifecycle assessment (LCA) for Indian residential buildings by evaluating the full cradle-to-grave carbon footprint of a typical single-family house in Northern India. A BIM-based LCA framework was applied to a 110 m2 single-family dwelling over a 60-year life span. Operational use performance and climate analysis was evaluated via cove tool. The total carbon footprint over a 60-year lifespan was approximately 5884 kg CO2e, with operational energy use accounting for about 87% and embodied carbon approximately 11%. Additional impacts came from maintenance and replacements. Energy usage was calculated as 71.76 kWh/m2/year and water usage as 232.2 m3/year. Energy consumption was the biggest driver of emissions, but substantial impacts also stemmed from material production. Cement-based components and steel were the largest embodied carbon contributors. Under the business-as-usual (BAU) scenario, the operational emissions reach approximately 668,000 kg CO2e with HVAC and 482,000 kg CO2e without HVAC. The findings highlight the necessity of integrating embodied carbon considerations alongside operational energy efficiency in India’s building codes, emphasizing reductions in energy consumption and the adoption of low-carbon materials to mitigate the environmental impact of residential buildings. Future work should focus on the dynamic modeling of electricity decarbonization, improved regional datasets, and scenario-based LCA to better support India’s transition to net-zero emissions by 2070. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop