Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (119)

Search Parameters:
Keywords = honey bee nutrition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 159 KB  
Editorial
Antioxidant and Antimicrobial Activity of Honey Bee Products—2nd Edition
by Ivana Tlak Gajger and Josipa Vlainić
Antioxidants 2026, 15(1), 99; https://doi.org/10.3390/antiox15010099 - 13 Jan 2026
Viewed by 229
Abstract
Antioxidants have acquired a central position in modern nutrition and preventive medicine, and honey bee products are increasingly recognized as complex natural matrices that provide a rich and diverse source of these compounds [...] Full article
13 pages, 1483 KB  
Article
Propolis as a Key Source of p-Coumaric Acid Permeating Honey and Sucrose Syrup Stores of Honey Bees
by Petra Urajová, Václav Krištůfek and Alena Krejčí
Insects 2025, 16(11), 1159; https://doi.org/10.3390/insects16111159 - 13 Nov 2025
Viewed by 662
Abstract
The natural phenolic compound p-coumaric acid supports honey bee health by enhancing detoxification, immunity and longevity. It also possesses antioxidant, anti-inflammatory and anticancer properties relevant to human health. While commonly detected in honey and pollen, it is absent from nectar and sucrose-based [...] Read more.
The natural phenolic compound p-coumaric acid supports honey bee health by enhancing detoxification, immunity and longevity. It also possesses antioxidant, anti-inflammatory and anticancer properties relevant to human health. While commonly detected in honey and pollen, it is absent from nectar and sucrose-based supplements typically used in beekeeping. Concerns have been raised whether supplemental saccharide feeding deprives bees of this essential phytochemical. In this study, we quantified p-coumaric acid in various bee-derived products and in supplementary sucrose syrup before and after feeding to bees, using HPLC-HRMS analysis. Although fresh sucrose syrup contained negligible amounts of p-coumaric acid, syrup stored in capped combs exhibited levels comparable to or higher than those in honey. We identified propolis in combs as the primary source of p-coumaric acid, diffusing into both honey and sucrose syrup during storage. Our findings demonstrate that supplemental feeding with sucrose syrup does not diminish the bees’ access to this key phytochemical and underscore the importance of a propolis-rich environment in bee health management. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Graphical abstract

11 pages, 252 KB  
Article
Effects of Prey and Pollen Diets on the Reproduction and Longevity of Orius insidiosus (Say) (Hemiptera: Anthocoridae), a Key Thrips Predator
by Lovely Adhikary, Hugh Adam Smith and Sriyanka Lahiri
Insects 2025, 16(11), 1160; https://doi.org/10.3390/insects16111160 - 13 Nov 2025
Viewed by 673
Abstract
Orius insidiosus (Say) (Hemiptera: Anthocoridae) is an important biological control agent for various soft-bodied arthropod pests. The effective mass rearing and reliable field performance of any biocontrol agent can depend on the quality of its diet. While a combination of insect prey and [...] Read more.
Orius insidiosus (Say) (Hemiptera: Anthocoridae) is an important biological control agent for various soft-bodied arthropod pests. The effective mass rearing and reliable field performance of any biocontrol agent can depend on the quality of its diet. While a combination of insect prey and pollen has been tested previously, little information exists on how different prey and pollen types support survival and reproduction when provided alone. The current study evaluated adult longevity, reproductive span, and total and daily fecundity per female across five different diets. The first instar nymphs of O. insidiosus were reared on Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) eggs + honey, pest thrips Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) + honey, Typha latifolia L. (Poales: Typhaceae) pollen + honey, multifloral bee pollen + honey, and honey alone in laboratory conditions. The adults reared on E. kuehniella eggs + honey had the highest longevity, daily and total fecundity, and reproductive span, followed by those fed on S. dorsalis + honey. Two pollen diets supported reproduction and survival but were significantly less effective than insect-based diets; honey alone was insufficient to sustain reproduction. These results confirm the superior nutritional quality of E. kuehniella eggs for mass rearing while also showing that O. insidiosus can complete its lifecycle on pollen diets. Incorporating high-quality prey in the rearing system will improve colony productivity, whereas pollen supplements in the field may support predator persistence during periods of low pest density. This study contributes to optimizing both laboratory production and augmentation biological control programs using O. insidiosus. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
30 pages, 1806 KB  
Review
Bee-Derived Products in Aquaculture Nutrition: A Comprehensive Review of Impacts on Fish Performance, Health, and Product Quality
by Vittorio Lo Presti, Mauro Cavallaro and Ambra Rita Di Rosa
Animals 2025, 15(21), 3153; https://doi.org/10.3390/ani15213153 - 30 Oct 2025
Cited by 1 | Viewed by 788
Abstract
Aquaculture is expanding rapidly worldwide, but its sustainability is threatened by intensive production practices, environmental stressors and recurrent disease outbreaks. Natural feed additives are increasingly studied as alternatives to antibiotics and synthetic compounds. Among them, bee-derived products—pollen, bee bread, propolis, royal jelly, honey [...] Read more.
Aquaculture is expanding rapidly worldwide, but its sustainability is threatened by intensive production practices, environmental stressors and recurrent disease outbreaks. Natural feed additives are increasingly studied as alternatives to antibiotics and synthetic compounds. Among them, bee-derived products—pollen, bee bread, propolis, royal jelly, honey and fermented derivatives—represent a promising resource due to their richness in proteins, amino acids, fatty acids, vitamins, flavonoids and phenolic compounds with demonstrated antioxidant, antimicrobial and immunostimulant properties. Evidence from studies on species such as Nile tilapia, rainbow trout, European sea bass, meagre and African catfish indicates that dietary supplementation with bee products can improve growth performance, immune and antioxidant responses, stress tolerance and resistance to bacterial infections while, in some cases, enhancing the nutritional value and shelf-life of fish products. Prominent examples include ~45% higher growth in African catfish with 10–30 g kg−1 bee pollen, up to 93% protection in Nile tilapia fed 25 g kg−1 pollen against Aeromonas hydrophila, and increased trout fillet carotenoids with pollen-derived pigments (with overall growth unchanged and pigmentation lower than synthetic astaxanthin). Conversely, meagre fed 20–40 g kg−1 raw pollen showed reduced growth and digestibility with elevated intestinal stress markers, underscoring species- and dose-specific responses. Nevertheless, the available data remain fragmented and heterogeneous, reflecting differences in product type, origin, dosage and experimental design. This review critically analyses the current knowledge on bee products in aquaculture nutrition, identifies the main gaps and limitations, and outlines future research directions. By linking fish physiology, nutritional strategies and product quality, bee-derived products emerge as innovative tools for promoting fish health and resilience in sustainable aquaculture. Full article
Show Figures

Figure 1

11 pages, 798 KB  
Article
What Do Turkish Parents Think About Using Bee Products for Their Children?
by Selin İkiz, Merve Keskin and Figen Gürsoy
Foods 2025, 14(20), 3532; https://doi.org/10.3390/foods14203532 - 16 Oct 2025
Viewed by 1076
Abstract
Healthy nutrition is an essential factor in the growth and development of children. To support children’s developmental processes and protect them from diseases, their immune systems must be strengthened through a balanced diet. Bee products are natural substances with high nutritional value. Although [...] Read more.
Healthy nutrition is an essential factor in the growth and development of children. To support children’s developmental processes and protect them from diseases, their immune systems must be strengthened through a balanced diet. Bee products are natural substances with high nutritional value. Although various studies show the benefits of bee products on human health, there are uncertainties among parents regarding their use. Therefore, the study aimed to investigate parents’ awareness of using bee products for their children and to determine their perceptions about the effects of these products on their health. This qualitative study employed semi-structured interviews with 40 parents of children aged 4–6 years. It was found that the bee products consumed by their children were primarily honey, with some parents also using propolis and pollen. In cases where children did not want to consume bee products, parents mixed bee products with other foods to make them more palatable. Parents use natural products to support their children’s development and protect them from diseases, and generally prefer honey as a bee product. Full article
Show Figures

Figure 1

17 pages, 1621 KB  
Article
Effect of Diet Compositions on Colony Strength Parameters, and the Enzymatic Activity of Apis mellifera L. During Floral Scarcity
by Shams Ul Islam, Javeria Liaquat, Muhammad Anjum Aqueel, Asim Abbasi, Muhammad Arshad, Muhammad Shahid Rizwan, Muhammad Saqib, Nasir Masood, Nyasha J. Kavhiza, Saba Zafar, Graciela Dolores Avila-Quezada, Elsayed Fathi Abd_Allah, Dalal Saad Alharbi and Abeer Hashem
Insects 2025, 16(9), 967; https://doi.org/10.3390/insects16090967 - 16 Sep 2025
Viewed by 1114
Abstract
Dearth periods associated with less floral resources negatively impact Apis mellifera colony performance. Artificial diets offer nutritional supplements to sustain bee colonies under stressful conditions. An eight-week feeding trial was conducted using various artificial diets (eight diets, including a control diet), formulated with [...] Read more.
Dearth periods associated with less floral resources negatively impact Apis mellifera colony performance. Artificial diets offer nutritional supplements to sustain bee colonies under stressful conditions. An eight-week feeding trial was conducted using various artificial diets (eight diets, including a control diet), formulated with varying quantities of pulses, yeast, fenugreek powder, vegetable oil, dry apricot powder, and powdered sugar. Colony performance of bees subjected to different artificial diets was evaluated based on diet consumption, brood area, adult bee population, worker bee longevity, honey production, and enzymatic activity. Diet-7, which uniquely combined lupin, mung bean, and chickpea flours, proved the most efficacious and was the most consumed diet (84.29 ± 1.61 g), while diet-1 showed the lowest consumption (35.30 ± 1.08 g). Maximum brood area was recorded in colonies which were offered diet-7 (1385.95 ± 14.91 cm2), followed by diet-6, whereas the lowest was observed in the control (831.03 ± 18.95 cm2). The adult bee population was highest in diet-7 (21,594.50 ± 94.55 bees/hive), while lowest in the control (diet-0) (12,625.43 ± 385.06 bees/hive). Worker bee longevity was greatest in diet-7 (49.40 ± 0.41 days) and lowest in the control group (37.01 ± 0.39 days). Honey production was also highest in diet-7 (8.86 ± 0.21 kg), while lowest in the control (2.79 ± 0.35 kg). The results further showed that the enzymatic activities of bees were significantly improved due to diet-7, with the highest values for amylase (48.62 ± 0.23 U/mg), lipase (16.85 ± 0.20 U/mg), proteinase (25.21 ± 0.18 U/mg), and α-glucosidase (39.21 ± 0.21 U/mg). In conclusion, statistical analyses confirmed that diet-7 emerged as the most effective artificial diet, enhancing colony performance across all evaluated parameters. Future research should aim to optimize diet formulations and evaluate their effectiveness on colony health, including gut microbiome and immune function, across different seasons and ecological regions. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

22 pages, 4063 KB  
Article
Assessment of Bioactive Antioxidants and Anti-Inflammatory Properties of Apis cerana L. Honey from Thailand for the Enhancement of Human Health
by Udomsap Jaitham, Sumed Yadoung, Phannika Tongchai, Peerapong Jeeno, Pichamon Yana, Nid Lungmala, Kanlayanee Boonthawee, Kunrunya Sutan, Khanchai Danmek, Jakkrawut Maitip, Chuleui Jung, Bajaree Chuttong and Surat Hongsibsong
Molecules 2025, 30(18), 3684; https://doi.org/10.3390/molecules30183684 - 10 Sep 2025
Viewed by 1265
Abstract
Honey is renowned for its natural antioxidant properties, which help mitigate oxidative stress and lower the risk of diseases such as cardiovascular conditions, cancer, chronic inflammation, and immune dysfunction. This study investigated the antioxidant potential and bioactive compound profiles of 38 Apis cerana [...] Read more.
Honey is renowned for its natural antioxidant properties, which help mitigate oxidative stress and lower the risk of diseases such as cardiovascular conditions, cancer, chronic inflammation, and immune dysfunction. This study investigated the antioxidant potential and bioactive compound profiles of 38 Apis cerana L. honey samples from Thailand and 2 Manuka honey samples using DPPH, ABTS, and FRAP assays, along with the evaluation of total phenolic and flavonoid contents. The antioxidant activities measured showed a wide range of IC50 values, such as the DPPH assay, ranging from 1.59 ± 0.134 mg/L to 824.30 ± 0.64 mg/mL. Manuka honey exhibited the highest antioxidant activity. However, Apis cerana L. honey samples, such as sample no. 14, no. 16, and no. 20, showed comparable performance in the ABTS and FRAP. In addition, several samples of Apis cerana L. honey, such as no. 12, no. 14, and no. 21, also contain high levels of antioxidants, indicating that Apis cerana L. honey has potential as a health food. The results of this study indicate that Thai honey exhibits notable antioxidant capacity and contains significant levels of phenolic and flavonoid compounds, suggesting its potential as a natural dietary source for supporting oxidative stress management. These results indicate that some Apis cerana L. honey samples from Thailand have antioxidant properties comparable to Manuka honey. Although differences in floral origin, geographic origin, and bee species should be taken into account, Thai Apis cerana L. shows good potential as a natural source of beneficial bioactive compounds. This highlights its potential for use in functional foods and nutritional interventions targeting oxidative stress-related diseases. Full article
(This article belongs to the Special Issue Biological Activity and Chemical Composition of Honeybee Products)
Show Figures

Figure 1

22 pages, 12695 KB  
Article
Multidimensional Profiling of Senescence in Eastern Honey Bee, Apis cerana (Hymenoptera: Apidae), Workers: Morphology, Microstructure, and Transcriptomics
by Qiang Ma, Zachary Y. Huang, Qianmin Hai, Jun Zhang, Xiangyou Tang, Xiaoqun Dang, Jinshan Xu, Zhengang Ma and Zeyang Zhou
Insects 2025, 16(9), 902; https://doi.org/10.3390/insects16090902 - 28 Aug 2025
Viewed by 1536
Abstract
Worker honey bees are crucial for colony stability and ecosystem pollination. However, the cross-scale aging features and underlying mechanisms in the Eastern honey bee (Apis cerana) remain poorly understood. This study systematically investigated age-related changes in A. cerana workers across youth [...] Read more.
Worker honey bees are crucial for colony stability and ecosystem pollination. However, the cross-scale aging features and underlying mechanisms in the Eastern honey bee (Apis cerana) remain poorly understood. This study systematically investigated age-related changes in A. cerana workers across youth (1~5 days post-emergence, dpe), middle age (29 dpe), and old age (50 dpe) through integrated morphological, ultrastructural, and transcriptomic analyses. With increasing age, the phenotypic deterioration in the old bees (OBs) was significant: the body color brightness decreased by 16.7% compared to the young bees (YBs) (p < 0.001), and the hair density of the head, thorax, and abdomen declined by 63.5%, 97.2%, and 91.5%, respectively (p < 0.0001). The wing wear index (WWI) increased to 96.7% (p < 0.0001). The locomotor performance declined sharply, with only 6.7% of the OBs successfully reaching the feeding platform within 15 s (p < 0.0001). Ultrastructural analysis revealed sensory organ abrasion, flattened thoracic bristles, thickened cuticle, and 90.4% increased mitochondrial damage (p < 0.0001). The autophagosomes showed dynamic changes, with 81.8% reduction versus those of mid-aged bees (MBs) (p < 0.001), which suggests that mitochondrial dysfunction and autophagy dysregulation may be the core driving factors behind aging. Transcriptomics identified 67 differentially expressed genes enriched in lifespan regulation, glutathione metabolism, and lysosomal pathways. Fifteen key aging-related genes were identified, such as major royal jelly protein 3 (MRJP3), synaptic vesicle glycoprotein 2A (SV2A), and apidermin 3 (APD3), whose expression dynamics have been shown to be closely related to nutritional metabolism, behavioral perception, and the decline of epidermal barrier function. This work establishes the first multidimensional aging evaluation system for A. cerana, providing critical insights into bee senescence mechanisms and colony health optimization. Full article
(This article belongs to the Special Issue Current Advances in Pollinator Insects)
Show Figures

Graphical abstract

20 pages, 998 KB  
Article
Colony Nutrition Enhances Bee Resilience to Fungicides, While the Benefit of Propolis Supplementation Depends on Stress Conditions
by Yara Martins Molina Ferraz, Aline Yukari Kato, Tainá Angelica de Lima Freitas, Cássia Regina de Avelar Gomes, Thais Regina Ramos Alves, Matheus Franco Trivellato, Samir Moura Kadri, Ricardo de Oliveira Orsi, David De Jong, Jaqueline Dalbello Biller and Daniel Nicodemo
Agriculture 2025, 15(15), 1665; https://doi.org/10.3390/agriculture15151665 - 1 Aug 2025
Viewed by 1605
Abstract
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. [...] Read more.
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. Colonies were managed under food restriction or nutritional supplementation for 22 weeks. Newly emerged bees from each colony were then caged and fed protein diets consisting of honey-pollen patties contaminated or not with fungicide, and sucrose sugar syrup with or without aqueous green propolis extract. Bees from supplemented colonies showed greater body weight, higher hemolymph protein levels, and higher consumption of protein food after seven days in cages. Fungicide exposure reduced hemolymph protein levels, altered the expression of detoxification and immune-related genes, and significantly decreased bee survival. Interestingly, propolis supplementation alone changed gene expression patterns and slightly reduced longevity compared to bees not exposed to propolis or fungicide. However, under fungicide stress, bees that ingested propolis survived longer, indicating a protective effect. While colony nutritional supplementation clearly promotes honey bee resilience against fungicide exposure, feeding propolis also showed promising effects, though further studies are needed to determine an optimal dietary concentration. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Graphical abstract

21 pages, 613 KB  
Article
Nutritional Composition, Volatile Profiles, and Biological Evaluation of Honeys from Melipona interrupta and Melipona seminigra from Amazonas State, Brazil
by Emilly J. S. P. de Lima, Carlos V. A. da Silva, Fernanda A. S. Rocha, Aline de M. Rodrigues, Samuel C. Costa, Rebeca S. França, Raiana S. Gurgel, Bárbara N. Batista, Patrícia M. Albuquerque, Waldireny R. Gomes, Hector H. F. Koolen and Giovana A. Bataglion
Plants 2025, 14(14), 2106; https://doi.org/10.3390/plants14142106 - 9 Jul 2025
Viewed by 1738
Abstract
Honey is a natural product produced by bees from the nectar of plants and has been widely used as a sweetener for centuries. In addition to its traditional use, it is also employed for other purposes due to its biological and nutraceutical properties. [...] Read more.
Honey is a natural product produced by bees from the nectar of plants and has been widely used as a sweetener for centuries. In addition to its traditional use, it is also employed for other purposes due to its biological and nutraceutical properties. Although honey production is mostly associated with bees of the genus Apis, species from other genera, such as Melipona, also produce it, albeit on a smaller scale. The honey produced by these two genera shows significant differences in its composition. Moreover, distinct geographical localizations, which, consequently, have different flora, guide the chemical compositions of these samples. Regarding the Amazon region, the amount of knowledge about the honey samples from Melipona species is still scarce. In this context, the present study aimed to characterize the volatile compositions of honey from Melipona interrupta and Melipona seminigra, as well as from the floral sources available, in addition to evaluating their nutritional aspects, antioxidant activity, and antibacterial activity. The analysis of chemical composition was performed using gas chromatography coupled to mass spectrometry (GC-MS). Antioxidant activity was determined by DPPH and ABTS assays, while antimicrobial activity was tested against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, Staphylococcus epidermidis, Enterococcus faecalis, Salmonella enterica, Serratia marcescens, Bacillus subtilis, Candida albicans, Candida tropicalis, and Candida parapsilosis. The results allowed the identification of volatiles present in the honey and floral sources. The samples displayed moderate antioxidant activity and slightly antibacterial activity (MIC) of 75 μg/mL against two bacterial strains tested, demonstrating potential antimicrobial activity. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Figure 1

15 pages, 605 KB  
Article
Volatile Profile of 16 Unifloral Pollen Taxa Collected by Honey Bees (Apis mellifera L.)
by Vasilios Liolios, Chrysoula Tananaki, Dimitrios Kanelis, Maria Anna Rodopoulou and Fotini Papadopoulou
Insects 2025, 16(7), 668; https://doi.org/10.3390/insects16070668 - 26 Jun 2025
Viewed by 1842
Abstract
Bee pollen’s aroma combined with other floral components serve various purposes, including attracting pollinators and signaling the availability of food sources. The present study aimed to comparatively analyze the volatile profiles of unifloral pollen taxa. Bee pollen loads were collected using pollen traps [...] Read more.
Bee pollen’s aroma combined with other floral components serve various purposes, including attracting pollinators and signaling the availability of food sources. The present study aimed to comparatively analyze the volatile profiles of unifloral pollen taxa. Bee pollen loads were collected using pollen traps and sorted based on their botanical origin, determined by color and pollen grain morphology. The separated pollen samples were analyzed using a Purge & Trap/GC-MS system, identifying the volatile profiles of pollen from 16 plant species. The analysis revealed distinguished differences in the total volatile organic compounds (VOCs) among the various pollen species. Notably, the pollen from Erica manipuliflora, Papaver rhoeas, and Sisymbrium irio contained the highest number of VOCs, with 54, 51, and 42 substances detected, respectively. Certain volatile compounds appeared to correlate with increased bee visitation. For instance, 4-methyl-5-nonanone was uniquely found in E. manipuliflora pollen, while isothiocyanate compounds were exclusively present in species of the Brassicaceae family. Therefore, given the significant impact of VOCs on honey bees’ preferences, it is essential to consider not only the nutritional value of bee pollen when evaluating its beekeeping value, but also its aroma profile. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

13 pages, 616 KB  
Review
Strategies to Mitigate the Adverse Impacts of Viral Infections on Honey Bee (Apis mellifera L.) Colonies
by Ivana Tlak Gajger, Hossam F. Abou-Shaara and Maja Ivana Smodiš Škerl
Insects 2025, 16(5), 509; https://doi.org/10.3390/insects16050509 - 10 May 2025
Cited by 2 | Viewed by 2612
Abstract
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics [...] Read more.
Honey bees (Apis mellifera) play a crucial role in global food production through the pollination of various crops. These vital insects are susceptible to a range of viral pathogens that can disrupt their normal behavior and physiology, ultimately affecting colony dynamics and survival. There are diverse viruses that infect honey bees at different life stages, with a year-round prevalence. There are multiple pathways through which viruses can be transmitted among colonies. Notably, there is also a lack of commercial treatments against viral infections in bees, but some promising strategies exist to mitigate their negative effects, including vector control, and the implementation of good beekeeping practices and biosecurity measures. While methods for treating infected colonies have garnered attention, they receive less focus compared to aspects like transmission methods and seasonal prevalence of viruses. This article aims to review the aforementioned strategies in light of the available literature. It presents succinct and practical approaches categorized based on their potential direct or indirect effects on viruses, providing beekeepers and researchers with an overview of both fully established and still-developing methods. Controlling the ectoparasitic Varroa destructor mite population, which significantly impacts viral prevalence and virulence in bees, is crucial for reducing infections. Practical approaches such as selectively breeding honey bee populations resistant to viruses and ensuring proper nutrition are important strategies. Moreover, genetic methods have also been proposed and tested. The article not only emphasizes these methods but also discusses knowledge gaps and suggests future solutions to improve the health and productivity of honey bee colonies. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

16 pages, 3433 KB  
Article
Azoxystrobin-Induced Physiological and Biochemical Alterations in Apis mellifera Workers of Different Ages
by Xinle Duan, Wenlong Tong, Bingfang Tao, Huanjing Yao, Manqiong Xiong, Huiping Liu, Shaokang Huang and Jianghong Li
Insects 2025, 16(5), 449; https://doi.org/10.3390/insects16050449 - 24 Apr 2025
Cited by 1 | Viewed by 1408
Abstract
Fungal diseases of agricultural crops cause severe economic losses to the growers. For the control of these diseases, azoxystrobin is one of the recommended fungicides. This fungicide is systemic in action and is expected to reach the floral part of the treated crop [...] Read more.
Fungal diseases of agricultural crops cause severe economic losses to the growers. For the control of these diseases, azoxystrobin is one of the recommended fungicides. This fungicide is systemic in action and is expected to reach the floral part of the treated crop and its residue in the pollen and nectar, the natural food sources of honey bees, which could be collected and fed on by honey bees, thus affecting their health. The purpose of this study was to determine the physiological and chemical changes caused by this fungicide in honey bee workers (Apis mellifera L). Workers of this honey bee at 1, 8, and 21 days old were treated with 125, 167, and 250 mg/L concentrations of azoxystrobin for seven days; their survival rates, activities of carboxylesterase (CarE), glutathione S-transferases (GSTs), cytochrome P450 enzyme (CYP450), catalase (CAT), and superoxide dismutase (SOD) enzymes, and the expression levels of immune (Aba, Api, Def1, and Hym) and nutrition genes (Ilp1, Ilp2, and Vg) were detected. Our findings revealed that azoxystrobin affected the survival of workers, particularly 1- and 21-day-old workers, who responded to azoxystrobin stress with increased activities of detoxification and protective enzymes, which might have physiological costs. Additionally, azoxystrobin affected the expression of immune and nutrition genes, with a decreased expression trend in 21-day-old workers compared to the 1- and 8-day-old workers, leading to reduced resistance to external stressors and increased mortality rates. These findings provide important insights into the adverse effects of azoxystrobin on workers of different ages and emphasize the potential risks of this chemical to colony stability and individual health. This study recommends an urgent ban on such a harmful fungicide being used for fungi control in agriculture, especially during plant flowering. Full article
(This article belongs to the Special Issue Bee Health and Beehive Management in a Changing World)
Show Figures

Figure 1

16 pages, 1246 KB  
Article
Suitability of Artificial Diets Containing Various Types of Pollen Grains to Helicoverpa armigera (Hübner, 1808): Nutritional Performance and Digestive Enzyme Response
by Fatemeh Kefayat, Seyed Ali Hemmati, Arash Rasekh, Fatemeh Nasernakhaei and Lukasz L. Stelinski
Insects 2025, 16(4), 429; https://doi.org/10.3390/insects16040429 - 19 Apr 2025
Cited by 3 | Viewed by 1132
Abstract
The development of an effective artificial diet is essential for the mass rearing of insects used in pest management programs, including augmentative biological control, insecticide resistance monitoring, and sterile insect release. This study evaluated the consumption, utilization, and enzymatic responses of the polyphagous [...] Read more.
The development of an effective artificial diet is essential for the mass rearing of insects used in pest management programs, including augmentative biological control, insecticide resistance monitoring, and sterile insect release. This study evaluated the consumption, utilization, and enzymatic responses of the polyphagous pest Helicoverpa armigera (Hübner, 1808) (Lepidoptera: Noctuidae) when reared on meridic diets supplemented with different pollen grains. The control diet followed a well-established meridic formulation, while the eight experimental diets incorporated pollen from the honey bee, rapeseed, maize, sunflower, hollyhock, glossy shower, saffron, and date palm. The findings indicate that pollen supplementation enhances the quality of artificial diets for H. armigera. Larvae fed on the date palm pollen-supplemented diet exhibited significantly higher weight gain, efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), and relative growth rate (RGR) compared to those fed on the control diet. The highest relative consumption rate (RCR) was observed in larvae fed on the sunflower pollen-supplemented diet. Additionally, pollen-supplemented diets influenced the amylolytic and proteolytic enzyme activities of H. armigera larvae in a diet-dependent manner. Nutritional analysis of the pollen types revealed significant variations in the sugar, lipid, and protein contents. Cluster analysis further identified the date palm pollen-supplemented diet as the most nutritionally beneficial, suggesting its potential application in the large-scale production of H. armigera. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

23 pages, 1448 KB  
Article
Portuguese Monofloral Honeys: Molecular Insights and Biochemical Characterization
by Mariana Silva, Miguel Maia, Márcia Carvalho and Ana Novo Barros
Molecules 2025, 30(8), 1808; https://doi.org/10.3390/molecules30081808 - 17 Apr 2025
Cited by 1 | Viewed by 1784
Abstract
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are [...] Read more.
Honey is a multifaceted substance whose composition is intricately affected by various biotic and abiotic elements generated in the bee colony’s surroundings, including botanical and geographical origins, climatic conditions, soil characteristics, and beekeeping techniques. Monofloral honeys are identified by pollen analysis and are derived from the nectar of a predominant plant species, exhibiting rich sensory and nutritional profiles, making them food matrices with unique characteristics and excellent qualities. To explore the monofloral honey potential harvested in different regions of Portugal, a comprehensive study was conducted including the determination of phenolic composition and the assessment of biological activities. In addition to this evaluation, the inter simple sequence repeat (ISSR) was used to help differentiate honeys by botanical origin. The phenolic content and the antioxidant capacity were evaluated by spectrophotometric methods, observing, in general, differences between monofloral honeys. The honey from Citrus sinensis (Silves) exhibited the lowest phenolic content, including total phenols, ortho-diphenols, and flavonoids, whereas honeydew (Vinhais) showed the highest values. Regarding the antioxidant capacity, honey from Lavandula stoechas (Almodôvar) presented the lowest values, while honeydew (Vinhais) displayed the highest values for both DPPH and FRAP assays. In relation to the ABTS assay, the honey from Metrosideros excelsa (Aveiro) exhibited the lowest values, whereas the honey from Eucalyptus spp. (Arouca) showed the highest. The ISSR marker analysis allows the distribution of the samples based on the honey’s botanical origin, suggesting its potential role in honey authentication. Full article
Show Figures

Figure 1

Back to TopTop