Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (862)

Search Parameters:
Keywords = homogenous catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 529 KiB  
Proceeding Paper
Emerging Catalysts and Techniques in Microalgae-Based Biodiesel Production
by Partha Protim Borthakur and Pranjal Sarmah
Chem. Proc. 2025, 17(1), 9; https://doi.org/10.3390/chemproc2025017009 - 13 Aug 2025
Viewed by 184
Abstract
The production of biodiesel from microalgae presents a sustainable and renewable solution to the growing global energy demands, with catalysts playing a critical role in optimizing the transesterification process. This study examines the emerging catalysts and innovative techniques utilized in converting microalgal lipids [...] Read more.
The production of biodiesel from microalgae presents a sustainable and renewable solution to the growing global energy demands, with catalysts playing a critical role in optimizing the transesterification process. This study examines the emerging catalysts and innovative techniques utilized in converting microalgal lipids into fatty acid methyl esters, emphasizing their impact on reaction efficiency, yield, and environmental sustainability. Sulfuric acid demonstrates excellent performance in in situ transesterification, while NaOH/zeolite achieves high biodiesel yields using ultrasound- and microwave-assisted methods. Metal oxides such as CuO, NiO, and MgO supported on zeolite, as well as ZnAl-layered double hydroxides (LDHs), further enhance reaction performance through their high activity and stability. Enzymatic catalysts, particularly immobilized lipases, provide a more environmentally friendly option, offering high yields (>90%) and the ability to operate under mild conditions. However, their high cost and limited reusability pose significant challenges. Ionic liquid catalysts, such as tetrabutylphosphonium carboxylate, streamline the process by eliminating the need for drying and lipid extraction, achieving yields as high as 98% from wet biomass. The key novelty of this work lies in its detailed focus on the use of ionic liquids and nanocatalysts in microalgae-based biodiesel production, which are often underrepresented in previous reviews that primarily discuss homogeneous and heterogeneous catalysts. Full article
Show Figures

Figure 1

22 pages, 1368 KiB  
Article
Liquid-Phase Hydrogenation over a Cu/SiO2 Catalyst of 5-hydroximethylfurfural to 2,5-bis(hydroxymethyl)furan Used in Sustainable Production of Biopolymers: Kinetic Modeling
by Juan Zelin, Hernán Antonio Duarte, Alberto Julio Marchi and Camilo Ignacio Meyer
Sustain. Chem. 2025, 6(3), 22; https://doi.org/10.3390/suschem6030022 - 6 Aug 2025
Viewed by 332
Abstract
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF [...] Read more.
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF to BHMF over a Cu/SiO2 catalyst prepared by precipitation–deposition (PD) at a constant pH. Physicochemical characterization, using different techniques, confirms that the Cu/SiO2–PD catalyst is formed by copper metallic nanoparticles of 3–5 nm in size highly dispersed on the SiO2 surface. Before the kinetic study, the Cu/SiO2-PD catalyst was evaluated in three solvents: tetrahydrofuran (THF), 2-propanol (2-POH), and water. The pattern of catalytic activity and BHMF yield for the different solvents was THF > 2-POH > H2O. In addition, selectivity to BHF was the highest in THF. Thus, THF was chosen for further kinetic study. Several experiments were carried out by varying the initial HMF concentration (C0HMF) between 0.02 and 0.26 M and the hydrogen pressure (PH2) between 200 and 1500 kPa. In all experiments, BHMF selectivity was 97–99%. By pseudo-homogeneous modeling, an apparent reaction order with respect to HFM close to 1 was estimated for a C0HMF between 0.02 M and 0.065 M, while when higher than 0.065 M, the apparent reaction order changed to 0. The apparent reaction order with respect to H2 was nearly 0 when C0HMF = 0.13 M, while for C0HMF = 0.04 M, it was close to 1. The reaction orders estimated suggest that HMF is strongly absorbed on the catalyst surface, and thus total active site coverage is reached when the C0HMF is higher than 0.065 M. Several Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic models were proposed, tested against experimental data, and statistically compared. The best fitting of the experimental data was obtained with an LHHW model that considered non-competitive H2 and HMF chemisorption and strong chemisorption of reactant and product molecules on copper metallic active sites. This model predicts both the catalytic performance of Cu/SiO2-PD and its deactivation during liquid-phase HMF hydrogenation. Full article
Show Figures

Graphical abstract

9 pages, 1477 KiB  
Proceeding Paper
Preparation of Nanosized Mesoporous Metal Oxides
by Olena Korchuganova, Emiliia Tantsiura, Kamila Abuzarova and Alina M. Balu
Chem. Proc. 2025, 17(1), 7; https://doi.org/10.3390/chemproc2025017007 - 1 Aug 2025
Viewed by 99
Abstract
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles [...] Read more.
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles that form the catalyst. The particle sizes of oxides are set at the initial stage of their formation, as precursors of precipitation in the context of wet chemistry. The creation of optimal conditions is possible through the use of homogeneous precipitation, where the precipitant is formed within the solution itself as a result of a hydrolysis reaction. The resolution of this issue involved the utilization of urea in our experimental setup, obtaining the hydrolysis products of ammonia and carbon dioxide. Consequently, precipitation reactions can be utilized to obtain hydroxides, carbonates, or hydroxy carbonates of metals. The precursors were calcined, obtaining nanosized mesoporous oxides, which can have a wide range of applications. Nanosized 0.1–50 nm metal oxides were obtained, including those aluminum, iron, indium, zinc, nickel, and cobalt. Full article
Show Figures

Graphical abstract

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 877
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2890 KiB  
Review
Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries
by Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou and Yongjun Sun
Catalysts 2025, 15(7), 692; https://doi.org/10.3390/catal15070692 - 20 Jul 2025
Viewed by 474
Abstract
Reverse osmosis (RO) concentrated water can be effectively treated with catalytic ozone oxidation technology, an effective advanced oxidation process. In order to provide a thorough reference for the safe treatment and reuse of RO concentrated water, this paper examines the properties of RO [...] Read more.
Reverse osmosis (RO) concentrated water can be effectively treated with catalytic ozone oxidation technology, an effective advanced oxidation process. In order to provide a thorough reference for the safe treatment and reuse of RO concentrated water, this paper examines the properties of RO concentrated water, such as its high salt content, high levels of organic pollutants, and low biochemistry. It also examines the mechanism of its role in treating RO concentrated water and combs through its applications in municipal, petrochemical, coal chemical, industrial parks, and other industries. The study demonstrates that ozone oxidation technology can efficiently eliminate the organic matter that is difficult to break down in RO concentrated water and lower treatment energy consumption; however, issues with free radical inhibitor interference, catalyst recovery, and stability still affect its use. Future research into multi-technology synergistic processes, the development of stable and effective non-homogeneous catalysts, and the promotion of their use at the “zero discharge” scale for industrial wastewater are all imperative. Full article
(This article belongs to the Special Issue State-of-the-Art of Heterostructured Photocatalysts)
Show Figures

Graphical abstract

23 pages, 2494 KiB  
Article
Polyoxometalates Surrounded by Organic Cations or Immobilized on Functionalized Merrifield Resin as Catalysts for Oxidation of β-Myrcene and β-Caryophyllene
by Ali Al Hadi Haidar, Pascal Guillo and Dominique Agustin
Appl. Sci. 2025, 15(14), 7981; https://doi.org/10.3390/app15147981 - 17 Jul 2025
Viewed by 703
Abstract
Polyoxometalates (POMs) surrounded by organic cations and related systems composed of POMs immobilized on functionalized Merrifield resin (MR) were synthesized, characterized and tested as catalysts for the oxidation of two natural terpenes, β-myrcene and β-caryophyllene, using H2O2 and TBHP as [...] Read more.
Polyoxometalates (POMs) surrounded by organic cations and related systems composed of POMs immobilized on functionalized Merrifield resin (MR) were synthesized, characterized and tested as catalysts for the oxidation of two natural terpenes, β-myrcene and β-caryophyllene, using H2O2 and TBHP as green oxidants. The ionic immobilization enabled easy catalyst recovery and reuse. The results showed high conversion and selectivity, with some catalysts maintaining their efficiency for at least three runs without leaching. The catalytic performances of both homogeneous and heterogeneous systems, along with the necessary characterizations, are discussed. Full article
(This article belongs to the Special Issue Advances and Challenges in Biomass and Carbon Materials)
Show Figures

Figure 1

22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 357
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Graphical abstract

20 pages, 2590 KiB  
Article
Application of Fused Filament Fabrication in Preparation of Ceramic Monolithic Catalysts for Oxidation of Gaseous Mixture of Volatile Aromatic Compounds
by Filip Car, Dominik Horvatić, Vesna Tomašić, Domagoj Vrsaljko and Zoran Gomzi
Catalysts 2025, 15(7), 677; https://doi.org/10.3390/catal15070677 - 11 Jul 2025
Viewed by 437
Abstract
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed [...] Read more.
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed ceramic monolithic carriers was investigated using fused filament fabrication. A mixed manganese and iron oxide, MnFeOx, was used as the catalytically active layer, which was applied to the monolithic substrate by wet impregnation. The approximate geometric surface area of the obtained carrier was determined to be 53.4 cm2, while the mass of the applied catalytically active layer was 50.3 mg. The activity of the prepared monolithic catalysts for the oxidation of BTEX was tested at different temperatures and space times. The results obtained were compared with those obtained with commercial monolithic catalysts made of ceramic cordierite with different channel dimensions, and with monolithic catalysts prepared by stereolithography. In the last part of the work, a kinetic analysis and the modeling of the monolithic reactor were carried out, comparing the experimental results with the theoretical results obtained with the 1D pseudo-homogeneous and 1D heterogeneous models. Although both models could describe the investigated experimental system very well, the 1D heterogeneous model is preferable, as it takes into account the heterogeneity of the reaction system and therefore provides a more realistic description. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

22 pages, 6102 KiB  
Review
Current Developments in Ozone Catalyst Preparation Techniques and Their Catalytic Oxidation Performance
by Jiajia Gao, Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou, Kinjal J. Shah and Yongjun Sun
Catalysts 2025, 15(7), 671; https://doi.org/10.3390/catal15070671 - 10 Jul 2025
Viewed by 463
Abstract
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of [...] Read more.
Through the use of heterogeneous catalysts, catalytic ozone oxidation technology, an effective and eco-friendly advanced oxidation process (AOP), facilitates the breakdown of ozone into reactive oxygen species (like ·OH) and greatly increases the mineralization efficiency of pollutants. This study examines the development of heterogeneous ozone catalysts through a critical evaluation of the five primary preparation techniques: ion exchange, sol–gel, coprecipitation, impregnation, and hydrothermal synthesis. Each preparation method’s inherent qualities, benefits, drawbacks, and performance variations are methodically investigated, with an emphasis on how they affect the breakdown of different resistant organic compounds. Even though heterogeneous catalysts are more stable and reusable than homogeneous catalysts, they continue to face issues like active component leaching, restricted mass transfer, and ambiguous mechanisms. In order to determine the key paths for catalyst selection in catalytic ozone treatment going forward, the main goal of this review is to provide an overview of the accomplishments in the field of the heterogeneous ozone catalyst treatment of wastewater that is difficult to degrade. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

18 pages, 2872 KiB  
Article
Numerical Simulation and Optimization of Industrial-Scale Fluidized Bed Reactor Coupling Biomass Catalytic Pyrolysis Kinetics
by Ruobing Lin, Siyu Wang, Yujie Tao, Xiujuan Feng and Huiyan Zhang
Energies 2025, 18(14), 3601; https://doi.org/10.3390/en18143601 - 8 Jul 2025
Viewed by 280
Abstract
The application of fluidized bed reactors to biomass fast pyrolysis is regarded as a promising technology for enabling high-value utilization of biomass. This work established a three-dimensional numerical model of an industrial-scale fluidized bed reactor for biomass catalytic pyrolysis, employing the multiphase particle-in-cell [...] Read more.
The application of fluidized bed reactors to biomass fast pyrolysis is regarded as a promising technology for enabling high-value utilization of biomass. This work established a three-dimensional numerical model of an industrial-scale fluidized bed reactor for biomass catalytic pyrolysis, employing the multiphase particle-in-cell method (MP-PIC) and coupling catalytic pyrolysis kinetics. Primary gas flow rate and biomass–catalyst injection modes were optimized to further improve the performance of the reactor. The model received additional validation from experimental data, primarily to ensure prediction accuracy. The results revealed that an optimal primary gas flow rate of 4 kg/s achieved a peak catalytic efficiency of 71.3%. Using maximum high-quality liquid fuels and adopting a relatively dispersed inlet mode with opposite jetting for biomass and catalyst promoted uniform particle distribution and thermal homogeneity in the dense phase zone, further increasing the catalytic efficiency to 75.6%. With the integration of the multiphase particle-in-cell (MP-PIC) method with catalytic pyrolysis kinetics at the industrial-scale, this work could provide theoretical guidance for designing fluidized bed catalytic pyrolysis reactors and optimizing biomass catalytic pyrolysis processes. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

47 pages, 13613 KiB  
Article
Colorless Polyimides with Low Linear Coefficients of Thermal Expansion and Their Controlled Soft Adhesion/Easy Removability on Glass Substrates: Role of Modified One-Pot Polymerization Method
by Masatoshi Hasegawa, Takehiro Shinoda, Kanata Nakadai, Junichi Ishii, Tetsuo Okuyama, Kaya Tokuda, Hiroyuki Wakui, Naoki Watanabe and Kota Kitamura
Polymers 2025, 17(13), 1887; https://doi.org/10.3390/polym17131887 - 7 Jul 2025
Viewed by 608
Abstract
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) [...] Read more.
This study presents colorless polyimides (PIs) suitable for use as plastic substrates in flexible displays, designed to be compatible with controlled soft adhesion and easy delamination (temporary adhesion) processes. For this purpose, we focused on a PI system derived from norbornane-2-spiro-α-cyclopentanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride (CpODA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB). This system was selected with the aim of exhibiting excellent optical transparency and low linear coefficient of thermal expansion (CTE) properties. However, fabricating this PI film via the conventional two-step process was challenging because of crack formation. In contrast, modified one-pot polymerization at 200 °C using a combined catalyst resulted in a homogeneous solution of PI with an exceptionally high molecular weight, yielding a flexible cast film. The solubility of PI plays a crucial role in its success. This study delves into the mechanism behind the significant catalytic effect on enhancing molecular weight. The CpODA/TFMB PI cast film simultaneously achieved very high optical transparency, an extremely high glass transition temperature (Tg = 411 °C), a significantly low linear coefficient of thermal expansion (CTE = 16.7 ppm/K), and sufficient film toughness, despite the trade-off between low CTE and high film toughness. The CpODA/TFMB system was modified by copolymerization with minor contents of another cycloaliphatic tetracarboxylic dianhydride, 5,5′-(1,4-phenylene)-exo-bis(hexahydro-4,7-methanoisobenzofuran-cis-exo-1,3-dione) (BzDAxx). This approach was effective in improving the film toughness without sacrificing the low CTE and other target properties. The peel strengths (σpeel) of laminates comprising surface-modified glass substrates and various colorless PI films were measured to evaluate the compatibility with the temporary adhesion process. Most colorless PI films studied were found to be incompatible. Additionally, no correlation between σpeel and PI structure was observed, making it challenging to identify the structural factors influencing σpeel control. Surprisingly, a strong correlation was observed between σpeel and CTE of the PI films, suggesting that the observed solid–solid lamination is closely linked to the unexpectedly high surface mobility of the PI films. The laminate using CpODA(90);BzDAxx(10)/TFMB copolymer exhibited suitable adhesion strength for the temporary adhesion process, while meeting other target properties. The modified one-pot polymerization method significantly contributed to the development of colorless PIs suitable for plastic substrates. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

29 pages, 7438 KiB  
Article
Comparison of High-Efficiency MgO/Na2CO3 and MgO/K2CO3 as Heterogeneous Solid Base Catalysts for Biodiesel Production from Soybean Oil
by Xiangyang Li, Xunxiang Jia, Weiji Li, Shufan Jia, Siwei Zhang, Jiliang Song and Jiao Wang
Molecules 2025, 30(13), 2876; https://doi.org/10.3390/molecules30132876 - 7 Jul 2025
Viewed by 457
Abstract
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 [...] Read more.
As a renewable alternative to fossil fuels, the industrial production of biodiesel urgently requires the development of efficient and recyclable solid base catalysts. In this study, the physicochemical properties and catalytic performance differences between MgO/Na2CO3 and MgO/K2CO3 catalysts were systematically compared using soybean oil as the raw material. By regulating the calcination temperature (500–700 °C), alcohol-to-oil ratio (3:1–24:1), and metal carbonate loading (10–50%), combined with N2 adsorption–desorption, CO2-TPD, XRD, SEM-EDS, and cycling experiments, the regulatory mechanisms of the ionic radius differences between sodium and potassium on the catalyst structure and performance were revealed. The results showed that MgO/Na2CO3-600 °C achieved a FAME yield of 97.5% under optimal conditions, which was 1.7% higher than MgO/K2CO3-600 °C (95.8%); this was attributed to its higher specific surface area (148.6 m2/g vs. 126.3 m2/g), homogeneous mesoporous structure, and strong basic site density. In addition, the cycle stability of MgO/K2CO3 was significantly lower, retaining only 65.2% of the yield after five cycles, while that of MgO/Na2CO3 was 88.2%. This stability difference stems from the disparity in their solubility in the reaction system. K2CO3 has a higher solubility in methanol (3.25 g/100 g at 60 °C compared to 1.15 g/100 g for Na2CO3), which is also reflected in the ion leaching rate (27.7% for K+ versus 18.9% for Na+). This study confirms that Na+ incorporation into the MgO lattice can optimize the distribution of active sites. Although K+ surface enrichment can enhance structural stability, the higher leaching rate leads to a rapid decline in catalyst activity, providing a theoretical basis for balancing catalyst activity and durability in sustainable biodiesel production. Full article
(This article belongs to the Special Issue Catalytic Green Reductions and Oxidations, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 5044 KiB  
Review
Cocktail of Catalysts: A Dynamic Advance in Modern Catalysis
by Mikhail P. Egorov, Vladimir Ya. Lee and Igor V. Alabugin
Chemistry 2025, 7(4), 109; https://doi.org/10.3390/chemistry7040109 - 26 Jun 2025
Viewed by 898
Abstract
Cocktail-type catalysis represents a significant shift in the understanding of catalytic processes, recognizing that multiple interconverting species—such as metal complexes, clusters, and nanoparticles—can coexist and cooperate within a single reaction environment. Originating from mechanistic studies on palladium-catalyzed systems, this concept challenges the classical [...] Read more.
Cocktail-type catalysis represents a significant shift in the understanding of catalytic processes, recognizing that multiple interconverting species—such as metal complexes, clusters, and nanoparticles—can coexist and cooperate within a single reaction environment. Originating from mechanistic studies on palladium-catalyzed systems, this concept challenges the classical division between homogeneous and heterogeneous catalysis. Instead, it introduces a dynamic framework where catalysts adapt and evolve under reaction conditions, often enhancing efficiency, selectivity, and durability. Using advanced spectroscopic, microscopic, and computational techniques, researchers have visualized the formation and transformation of catalytic species in real time. The cocktail-type approach has since been extended to platinum, nickel, copper, and other transition metals, revealing a general principle in catalysis. This approach not only resolves long-standing mechanistic inconsistencies, but also opens new directions for catalyst design, green chemistry, and sustainable industrial applications. Embracing the complexity of catalytic systems may redefine future strategies in both fundamental research and applied catalysis. Full article
(This article belongs to the Special Issue Celebrating the 50th Anniversary of Professor Valentine Ananikov)
Show Figures

Figure 1

17 pages, 2590 KiB  
Article
Enhanced Oxidation of Carbamazepine Using Mn(II)-Activated Peracetic Acid: A Novel Advanced Oxidation Process Involving the Significant Role of Ligand Effects
by Xue Yang, Hai Yu, Liang Hong, Zhihang Huang, Qinda Zeng, Xiao Yao and Yinyuan Qiu
Molecules 2025, 30(13), 2690; https://doi.org/10.3390/molecules30132690 - 21 Jun 2025
Cited by 1 | Viewed by 423
Abstract
In recent years, extensive attention has been paid to advanced oxidation processes (AOPs) with peracetic acid (PAA), a widely used disinfectant, using transition metal ions for the degradation of organic contaminants within water environments. Mn(II) has been widely used as an effective homogeneous [...] Read more.
In recent years, extensive attention has been paid to advanced oxidation processes (AOPs) with peracetic acid (PAA), a widely used disinfectant, using transition metal ions for the degradation of organic contaminants within water environments. Mn(II) has been widely used as an effective homogeneous transition metal catalyst for oxidant activation, but it has shown poor performances with PAA. Since the stability of manganese species can be enhanced through the addition of ligands, this study systematically investigated a novel AOP for the oxidation of carbamazepine (CBZ) using an Mn(II)/PAA system with several different ligands added. The reactive species were explored through UV-vis spectrometry, scavengers, and probe compounds. The results suggest that Mn(III)–ligand complexes and other high-valent Mn species (Mn(V)) were generated and contributed obviously toward efficient CBZ oxidation, while radicals like CH3CO2 and CH3CO3 were minor contributors. The oxidation efficiency of Mn(II)/PAA/ligands depended highly on ligand species, as ethylene diamine tetraacetic acid (EDTA) and oxalate (SO) could promote the oxidation of CBZ, while pyrophosphate (PPP) showed modest enhancement. The results obtained here might contribute to the removal of residue pharmaceuticals under manganese-rich waters and also shed light on PAA-based AOPs that could help broaden our present knowledge of manganese chemistry for decontamination in water treatment. Full article
(This article belongs to the Special Issue Advanced Oxidation/Reduction Processes in Water Treatment)
Show Figures

Graphical abstract

16 pages, 4000 KiB  
Article
Microstructure Engineered Nanoporous Copper for Enhanced Catalytic Degradation of Organic Pollutants in Wastewater
by Taskeen Zahra, Saleem Abbas, Junfei Ou, Tuti Mariana Lim and Aumber Abbas
Materials 2025, 18(13), 2929; https://doi.org/10.3390/ma18132929 - 20 Jun 2025
Cited by 1 | Viewed by 1142
Abstract
Advanced oxidation processes offer bright potential for eliminating organic pollutants from wastewater, where the development of efficient catalysts revolves around deep understanding of the microstructure–property–performance relationship. In this study, we explore how microstructural engineering influences the catalytic performance of nanoporous copper (NPC) in [...] Read more.
Advanced oxidation processes offer bright potential for eliminating organic pollutants from wastewater, where the development of efficient catalysts revolves around deep understanding of the microstructure–property–performance relationship. In this study, we explore how microstructural engineering influences the catalytic performance of nanoporous copper (NPC) in degrading organic contaminants. By systematically tailoring the NPC microstructure, we achieve tunable three-dimensional porous architectures with nanoscale pores and macroscopic grains. This results in a homogeneous, bicontinuous pore–ligament network that is crucial for the oxidative degradation of the model pollutant methylene blue in the presence of hydrogen peroxide. The catalytic efficiency is assessed using ultraviolet–visible spectroscopy, which reveals first-order degradation kinetics with a rate constant κ = 44 × 10−3 min−1, a 30-fold improvement over bulk copper foil, and a fourfold increase over copper nanoparticles. The superior performance is attributed to the high surface area, abundant active sites, and multiscale porosity of NPC. Additionally, the high step-edge density, nanoscale curvature, and enhanced crystallinity contribute to the catalyst’s remarkable stability and reactivity. This study not only provides insights into microstructure–property–performance relationships in nanoporous catalysts but also offers an effective strategy for designing efficient and scalable materials for wastewater treatment and environmental applications. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

Back to TopTop