Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (888)

Search Parameters:
Keywords = histone deacetylases inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1680 KiB  
Review
Microtubule-Targeting Agents: Advances in Tubulin Binding and Small Molecule Therapy for Gliomas and Neurodegenerative Diseases
by Maya Ezzo and Sandrine Etienne-Manneville
Int. J. Mol. Sci. 2025, 26(15), 7652; https://doi.org/10.3390/ijms26157652 (registering DOI) - 7 Aug 2025
Abstract
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central [...] Read more.
Microtubules play a key role in cell division and cell migration. Thus, microtubule-targeting agents (MTAs) are pivotal in cancer therapy due to their ability to disrupt cell division microtubule dynamics. Traditionally divided into stabilizers and destabilizers, MTAs are increasingly being repurposed for central nervous system (CNS) applications, including brain malignancies such as gliomas and neurodegenerative diseases like Alzheimer’s and Parkinson’s. Microtubule-stabilizing agents, such as taxanes and epothilones, promote microtubule assembly and have shown efficacy in both tumour suppression and neuronal repair, though their CNS use is hindered by blood–brain barrier (BBB) permeability and neurotoxicity. Destabilizing agents, including colchicine-site and vinca domain binders, offer potent anticancer effects but pose greater risks for neuronal toxicity. This review highlights the mapping of nine distinct tubulin binding pockets—including classical (taxane, vinca, colchicine) and emerging (tumabulin, pironetin) sites—that offer new pharmacological entry points. We summarize the recent advances in structural biology and drug design, enabling MTAs to move beyond anti-mitotic roles, unlocking applications in both cancer and neurodegeneration for next-generation MTAs with enhanced specificity and BBB penetration. We further discuss the therapeutic potential of combination strategies, including MTAs with radiation, histone deacetylase (HDAC) inhibitors, or antibody–drug conjugates, that show synergistic effects in glioblastoma models. Furthermore, innovative delivery systems like nanoparticles and liposomes are enhancing CNS drug delivery. Overall, MTAs continue to evolve as multifunctional tools with expanding applications across oncology and neurology, with future therapies focusing on optimizing efficacy, reducing toxicity, and overcoming therapeutic resistance in brain-related diseases. Full article
(This article belongs to the Special Issue New Drugs Regulating Cytoskeletons in Human Health and Diseases)
Show Figures

Figure 1

34 pages, 1345 KiB  
Review
Unmasking Pediatric Asthma: Epigenetic Fingerprints and Markers of Respiratory Infections
by Alessandra Pandolfo, Rosalia Paola Gagliardo, Valentina Lazzara, Andrea Perri, Velia Malizia, Giuliana Ferrante, Amelia Licari, Stefania La Grutta and Giusy Daniela Albano
Int. J. Mol. Sci. 2025, 26(15), 7629; https://doi.org/10.3390/ijms26157629 - 6 Aug 2025
Abstract
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation [...] Read more.
Pediatric asthma is a multifactorial and heterogeneous disease determined by the dynamic interplay of genetic susceptibility, environmental exposures, and immune dysregulation. Recent advances have highlighted the pivotal role of epigenetic mechanisms, in particular, DNA methylation, histone modifications, and non-coding RNAs, in the regulation of inflammatory pathways contributing to asthma phenotypes and endotypes. This review examines the role of respiratory viruses such as respiratory syncytial virus (RSV), rhinovirus (RV), and other bacterial and fungal infections that are mediators of infection-induced epithelial inflammation that drive epithelial homeostatic imbalance and induce persistent epigenetic alterations. These alterations lead to immune dysregulation, remodeling of the airways, and resistance to corticosteroids. A focused analysis of T2-high and T2-low asthma endotypes highlights unique epigenetic landscapes directing cytokines and cellular recruitment and thereby supports phenotype-specific aspects of disease pathogenesis. Additionally, this review also considers the role of miRNAs in the control of post-transcriptional networks that are pivotal in asthma exacerbation and the severity of the disease. We discuss novel and emerging epigenetic therapies, such as DNA methyltransferase inhibitors, histone deacetylase inhibitors, miRNA-based treatments, and immunomodulatory probiotics, that are in preclinical or early clinical development and may support precision medicine in asthma. Collectively, the current findings highlight the translational relevance of including pathogen-related biomarkers and epigenomic data for stratifying pediatric asthma patients and for the personalization of therapeutic regimens. Epigenetic dysregulation has emerged as a novel and potentially transformative approach for mitigating chronic inflammation and long-term morbidity in children with asthma. Full article
(This article belongs to the Special Issue Molecular Research in Airway Diseases)
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 496
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

21 pages, 3446 KiB  
Article
Targeting the Kynureninase–HDAC6–Complement Axis as a Novel Therapeutic Strategy in Glioblastoma
by Arif Ul Hasan, Sachiko Sato, Mami Obara, Yukiko Kondo and Eiichi Taira
Epigenomes 2025, 9(3), 27; https://doi.org/10.3390/epigenomes9030027 - 28 Jul 2025
Viewed by 338
Abstract
Background/Objectives: Glioblastoma (GBM) is an aggressive brain tumor known for its profound heterogeneity and treatment resistance. Dysregulated complement signaling and epigenetic alterations have been implicated in GBM progression. This study identifies kynureninase (KYNU), a key enzyme in the kynurenine pathway, as a novel [...] Read more.
Background/Objectives: Glioblastoma (GBM) is an aggressive brain tumor known for its profound heterogeneity and treatment resistance. Dysregulated complement signaling and epigenetic alterations have been implicated in GBM progression. This study identifies kynureninase (KYNU), a key enzyme in the kynurenine pathway, as a novel regulator of complement components and investigates its interaction with histone deacetylase 6 (HDAC6) in the context of therapeutic targeting. Methods: KYNU expression, and its association with complement signaling in GBM, were analyzed using publicly available datasets (TCGA, GTEx, HPA). Pathway enrichment was performed via LinkedOmics. In vitro studies in GBM cell lines (U87, U251, T98G) assessed the effects of KYNU silencing and treatment with an HDAC6 inhibitor (tubastatin) and a BET inhibitor (apabetalone) on gene expression and cell viability. Results: Bioinformatic analyses revealed significant overexpression of KYNU in GBM tissues compared to normal brain tissue. KYNU expression was positively associated with genes involved in complement and coagulation cascades. In vitro experiments demonstrated that KYNU silencing reduced the expression of C3, C3AR1, and C5AR1 and suppressed GBM cell viability. Treatment with tubastatin, while reducing viability, paradoxically upregulated complement genes, suggesting potential limitations in therapeutic efficacy. However, this effect was mitigated by KYNU knockdown. Combined treatment with apabetalone and tubastatin effectively suppressed KYNU expression and enhanced cytotoxicity, particularly in cells with high complement expression. Conclusions: Our findings establish the KYNU–HDAC6–complement axis as a critical regulatory pathway in GBM. Targeting KYNU-mediated complement activation through combined epigenetic approaches—such as HDAC6 and BET inhibition—represents a promising strategy to overcome complement-driven resistance in GBM therapy. Full article
Show Figures

Figure 1

30 pages, 2320 KiB  
Review
HDACs and Their Inhibitors on Post-Translational Modifications: The Regulation of Cardiovascular Disease
by Siyi Yang, Yidong Sun and Wei Yu
Cells 2025, 14(14), 1116; https://doi.org/10.3390/cells14141116 - 20 Jul 2025
Viewed by 764
Abstract
Cardiovascular diseases (CVD), such as myocardial hypertrophy, heart failure, atherosclerosis, and myocardial ischemia/reperfusion (I/R) injury, are among the major threats to human health worldwide. Post-translational modifications alter the function of proteins through dynamic chemical modification after synthesis. This mechanism not only plays an [...] Read more.
Cardiovascular diseases (CVD), such as myocardial hypertrophy, heart failure, atherosclerosis, and myocardial ischemia/reperfusion (I/R) injury, are among the major threats to human health worldwide. Post-translational modifications alter the function of proteins through dynamic chemical modification after synthesis. This mechanism not only plays an important role in maintaining homeostasis and plays a crucial role in maintaining normal cardiovascular function, but is also closely related to the pathological state of various diseases. Histone deacetylases (HDACs) play an important role in the epigenetic regulation of gene expression, and play important roles in post-translational modification by catalyzing the deacetylation of key lysine residues in nucleosomal histones, which are closely associated with the occurrence and development of cardiovascular diseases. Recent studies indicate that HDAC inhibitors (HDACis) may represent a new class of drugs for the treatment of cardiovascular diseases by influencing post-translational modifications. In this review, we systematically summarize the mechanism of action of HDACs and HDACis in post-translational modifications related to common cardiovascular diseases, providing new ideas for the treatment of CVD, and explore possible future research directions on the relationship between HDAC and HDACi in post-translational modifications and cardiovascular diseases. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

27 pages, 3379 KiB  
Article
Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment
by Andrew V. Kossenkov, Noor Dawany, Sonali Majumdar, Celia Chang, Calen Nichols, Maria Wysocka, Richard Piekarz, Michael K. Showe, Susan E. Bates, Alain H. Rook, Ellen J. Kim and Louise C. Showe
Cancers 2025, 17(14), 2380; https://doi.org/10.3390/cancers17142380 - 17 Jul 2025
Viewed by 425
Abstract
Background/Objectives: We examined the in vivo effects of successive treatments with the histone deacetylase (HDAC) inhibitor romidepsin in patients with cutaneous T-cell lymphoma (CTCL), using changes in gene expression in peripheral blood mononuclear cells (PBMCs). Methods: Exploiting data from a highly responsive CTCL [...] Read more.
Background/Objectives: We examined the in vivo effects of successive treatments with the histone deacetylase (HDAC) inhibitor romidepsin in patients with cutaneous T-cell lymphoma (CTCL), using changes in gene expression in peripheral blood mononuclear cells (PBMCs). Methods: Exploiting data from a highly responsive CTCL patient through 12 months of treatment, we identified a malignant cell predictor (MCP), a gene signature associated with the diminishing numbers of circulating malignant cells. Results: The MCP was successfully validated in the patient’s relapse sample 9 months after treatment was terminated and via an independent set of CTCL patient samples. Conclusions: The MCP set of genes contained novel CTCL markers, including membrane-associated proteins not normally expressed in lymphocytes. A subclass of those markers was also detectable in residual malignant cells undetected by flow cytometry in remission samples from a patient who relapsed 10 months later. We identified a subset of transcriptional regulators, miRNAs and methylation patterns associated with the effect of progressive treatments revealing potential mechanisms of transcriptional dysregulation and functional effects in the malignant cells. We demonstrate a role for transcriptional activator HLF, over-expressed in malignant cells, and downregulated transcriptional-suppressor and immune-modulator NFIL3, as regulators of CTCL-specific genes. Full article
(This article belongs to the Special Issue Cutaneous Lymphomas: From Pathology to Treatment)
Show Figures

Figure 1

18 pages, 3057 KiB  
Article
Valproic Acid Enhances the Anticancer Effect of L-Ascorbic Acid by Upregulating Sodium-Dependent Vitamin C Transporter 2 in Colorectal Cancer
by Kawalin Kantawong, Hakim Meutia Diva, Phuong T. Ho, Ahlim Lee, Misae Kiba, Mi-Gi Lee, Hee Kang, Taek-Kyun Lee and Sukchan Lee
Antioxidants 2025, 14(7), 864; https://doi.org/10.3390/antiox14070864 - 15 Jul 2025
Viewed by 937
Abstract
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. [...] Read more.
Vitamin C, also known as L-ascorbic acid (AA), functions as a pro-oxidant in cancer at high doses and exerts anticancer effects by generating reactive oxygen species (ROS) and selectively inducing damage to cancer cells. However, AA at low doses promotes cancer cell proliferation. The efficacy of high-dose AA therapy is frequently restricted by inadequate intracellular AA uptake, resulting from low expression of sodium-dependent vitamin C transporter 2 (SVCT2). In this study, we investigated whether valproic acid (VPA), a histone deacetylase inhibitor, could circumvent this constraint by increasing the expression of SVCT2 in colorectal cancer cells, including HCT-116 and DLD-1 with low SVCT2 levels. We found that VPA increased SVCT2 expression in both cell lines. Co-treatment with AA and VPA increased the number of apoptotic cells and enhanced intracellular AA uptake via VPA-upregulated SVCT2, followed by increased ROS production in both cell lines. Furthermore, the combination increased the synergistic anticancer effects and suppressed the hormetic dose response of AA in both cell lines. In a xenograft mouse model, co-treatment decreased tumor size and increased the tumor growth inhibition ratio compared to treatment with AA or VPA alone. Accordingly, VPA treatment enhanced SVCT2 expression in colorectal cancer cells, suppressed the hormetic dose-response effect of AA, and improved the potential of high-dose AA therapy as an anticancer agent. Full article
Show Figures

Figure 1

20 pages, 623 KiB  
Review
Duchenne Muscular Dystrophy: Integrating Current Clinical Practice with Future Therapeutic and Diagnostic Horizons
by Costanza Montagna, Emiliano Maiani, Luisa Pieroni and Silvia Consalvi
Int. J. Mol. Sci. 2025, 26(14), 6742; https://doi.org/10.3390/ijms26146742 - 14 Jul 2025
Viewed by 1198
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle degeneration due to mutations in the dystrophin gene. Despite major advancements in understanding its pathophysiology, there is still no curative treatment. This review provides an up-to-date overview of current and [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe X-linked disorder characterized by progressive muscle degeneration due to mutations in the dystrophin gene. Despite major advancements in understanding its pathophysiology, there is still no curative treatment. This review provides an up-to-date overview of current and emerging therapeutic approaches—including antisense oligonucleotides, gene therapy, gene editing, corticosteroids, and histone deacetylases(HDAC) inhibitors—aimed at restoring dystrophin expression or mitigating disease progression. Special emphasis is placed on the importance of early diagnosis, the utility of genetic screening, and the innovations in pre-and post-natal testing. As the field advances toward personalized medicine, the integration of precision therapies with cutting-edge diagnostic technologies promises to improve both prognosis and quality of life for individuals with DMD. Full article
(This article belongs to the Special Issue New Advances in the Treatment and Diagnosis of Neuromuscular Diseases)
Show Figures

Figure 1

30 pages, 932 KiB  
Review
The Therapeutic Potential of Butyrate and Lauric Acid in Modulating Glial and Neuronal Activity in Alzheimer’s Disease
by Rathnayaka Mudiyanselage Uththara Sachinthanie Senarath, Lotta E. Oikari, Prashant Bharadwaj, Vijay Jayasena, Ralph N. Martins and Wanakulasuriya Mary Ann Dipika Binosha Fernando
Nutrients 2025, 17(14), 2286; https://doi.org/10.3390/nu17142286 - 10 Jul 2025
Viewed by 602
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β plaque accumulation, tau tangles, and extensive neuroinflammation. Neuroinflammation, driven by glial cells like microglia and astrocytes, plays a critical role in AD progression. Initially, these cells provide protective functions, such as debris [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β plaque accumulation, tau tangles, and extensive neuroinflammation. Neuroinflammation, driven by glial cells like microglia and astrocytes, plays a critical role in AD progression. Initially, these cells provide protective functions, such as debris clearance and neurotrophic support. However, as AD progresses, chronic activation of these cells exacerbates inflammation, contributing to synaptic dysfunction, neuronal loss, and cognitive decline. Microglia release pro-inflammatory cytokines and reactive oxygen species (ROS), while astrocytes undergo reactive astrogliosis, further impairing neuronal health. This maladaptive response from glial cells significantly accelerates disease pathology. Current AD treatments primarily aim at symptomatic relief, with limited success in disease modification. While amyloid-targeting therapies like Aducanumab and Lecanemab show some promise, their efficacy remains limited. In this context, natural compounds have gained attention for their potential to modulate neuroinflammation and promote neuroprotection. Among these, butyrate and lauric acid are particularly notable. Butyrate, produced by a healthy gut microbiome, acts as a histone deacetylase (HDAC) inhibitor, reducing pro-inflammatory cytokines and supporting neuronal health. Lauric acid, on the other hand, enhances mitochondrial function, reduces oxidative stress, and modulates inflammatory pathways, thereby supporting glial and neuronal health. Both compounds have been shown to decrease amyloid-β deposition, reduce neuroinflammation, and promote neuroprotection in AD models. This review explores the mechanisms through which butyrate and lauric acid modulate glial and neuronal activity, highlighting their potential as therapeutic agents for mitigating neuroinflammation and slowing AD progression. Full article
Show Figures

Figure 1

28 pages, 3171 KiB  
Article
Valproic Acid Reduces Invasiveness and Cellular Growth in 2D and 3D Glioblastoma Cell Lines
by Francesca Giordano, Martina Forestiero, Adele Elisabetta Leonetti, Giuseppina Daniela Naimo, Alessandro Marrone, Francesca De Amicis, Stefania Marsico, Loredana Mauro and Maria Luisa Panno
Int. J. Mol. Sci. 2025, 26(14), 6600; https://doi.org/10.3390/ijms26146600 - 9 Jul 2025
Viewed by 397
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug [...] Read more.
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug resistance. The histone deacetylase (HDAC) inhibitor valproic acid (VA) has been shown to be a potent antitumor and cytostatic agent. In this study, we tested the effects of VA on glioma cell proliferation, migration, and apoptosis using T98G monolayer and spheroid cells. T98G and U-87MG glioblastoma cell viability was determined by MTT. Cell cycle and ROS levels were analyzed by flow cytometry, and gene and protein levels were detected, respectively, by RT-PCR and immunoblotting. VA reduces cell viability in 2D and 3D T98G and U-87MG cells and blocks the cell cycle at the G0/G1 with decreased levels of cyclin D1. VA addresses apoptosis and ROS production. In addition, VA significantly decreases the mRNA levels of the mesenchymal markers, and it counteracts cell migration, also decreasing MMP2. The results confirm the inhibitory effect of VA on the growth of the T98G and U-87MG cell lines and its ability to counteract migration in both 2D and 3D cellular models. Full article
Show Figures

Figure 1

20 pages, 2556 KiB  
Article
High-Calorie Diets Exacerbate Lipopolysaccharide-Induced Pneumonia by Promoting Propionate-Mediated Neutrophil Extracellular Traps
by Yingqiu Sun, Hui Liu, Jiyu Jiang, Leyan Hu, Qingpu Ma, Shuxuan Li, Tiegang Liu and Xiaohong Gu
Nutrients 2025, 17(13), 2242; https://doi.org/10.3390/nu17132242 - 7 Jul 2025
Viewed by 573
Abstract
Objectives: High-calorie diets are linked to increased risks of chronic inflammation and immune dysfunction, yet their role in modulating pneumonia severity remains unclear. Focusing on the interactions among gut-originating short-chain fatty acids (SCFAs), neutrophil function, and histone deacetylases (HDACs), this research examined [...] Read more.
Objectives: High-calorie diets are linked to increased risks of chronic inflammation and immune dysfunction, yet their role in modulating pneumonia severity remains unclear. Focusing on the interactions among gut-originating short-chain fatty acids (SCFAs), neutrophil function, and histone deacetylases (HDACs), this research examined the exacerbating effects of a high-calorie diet on pneumonia in rats. Methods: Male Sprague-Dawley rats (3 weeks old, 110 ± 10 g) were allocated among four groups: normal diet (N), high-calorie diet (G), LPS-induced pneumonia (P), and high-calorie diet combined with lipopolysaccharide (LPS)-induced pneumonia (GP). LPS was administered via aerosolization for three days. Fecal, serum, and lung SCFA levels were quantified via GC-MS. Neutrophil extracellular traps (NETs) formation, neutrophil apoptosis, and HDAC activity were assessed using immunofluorescence, TUNEL assays, and qRT-PCR. Propionate supplementation and HDAC inhibitor (trichostatin A) interventions were applied to validate mechanistic pathways. Results: The group GP exhibited exacerbated lung inflammation, increased NETs release, and reduced neutrophil apoptosis compared to the group P. Propionate levels in feces, serum, and lung tissues decreased sharply in GP rats, correlating with elevated HDAC1/2/3/6 activity and reduced histone acetylation. Propionate supplementation or HDAC inhibition significantly attenuated lung injury, suppressed NETs, and restored neutrophil apoptosis. Conclusions: High-calorie diets exacerbate pneumonia by depleting gut-derived propionate, which drives HDAC-mediated NETs overproduction and impairs neutrophil apoptosis. Restoring propionate levels or targeting HDACs may offer therapeutic strategies for diet-aggravated respiratory diseases. Mechanistically, propionate-mediated HDAC inhibition demonstrates proof-of-concept efficacy in modulating H4 acetylation, warranting further investigation in disease-specific pneumonia models. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

17 pages, 4373 KiB  
Article
Discovery and Characterization of Novel Non-Hydroxamate HDAC11 Inhibitors
by Aleksandra Kopranovic and Franz-Josef Meyer-Almes
Int. J. Mol. Sci. 2025, 26(13), 5950; https://doi.org/10.3390/ijms26135950 - 20 Jun 2025
Viewed by 402
Abstract
Histone deacetylase 11 (HDAC11), the sole member of class IV HDACs, has gained prominence due to its unique enzymatic profile and pathological relevance in cancer, neurodegenerative, inflammatory diseases, and metabolic disorders. However, only a limited number of selective HDAC11 inhibitors have been identified, [...] Read more.
Histone deacetylase 11 (HDAC11), the sole member of class IV HDACs, has gained prominence due to its unique enzymatic profile and pathological relevance in cancer, neurodegenerative, inflammatory diseases, and metabolic disorders. However, only a limited number of selective HDAC11 inhibitors have been identified, and many of these contain a potentially mutagenic hydroxamic acid as a zinc-chelating motif. Consequently, there is an imperative to identify potent and selective non-hydroxamate HDAC11 inhibitors with improved physicochemical properties. In this study, we conducted an extensive experimental high-throughput screening of 10,281 structurally diverse compounds to identify novel HDAC11 inhibitors. Two promising candidates, caffeic acid phenethyl ester (CAPE) and compound 9SPC045H03, both lacking a hydroxamic acid warhead, were discovered, showing micromolar inhibitory potency (IC50 = 1.5 and 2.3 µM, respectively), fast and reversible binding, and remarkable isozyme selectivity. Molecular docking revealed distinct zinc-chelating mechanisms involving either carbonyl oxygen (CAPE) or pyridine nitrogen (9SPC045H03), in contrast to canonical hydroxamates. Both compounds are drug-like and exhibit favorable physicochemical and pharmacokinetic profiles, particularly beneficial water solubility and good adsorption, making them valuable starting points for further optimization. These findings open new avenues for the development of selective, non-hydroxamate HDAC11 inhibitors with potential therapeutic applications. Full article
(This article belongs to the Special Issue Advances in Protein Structure-Function and Drug Discovery)
Show Figures

Graphical abstract

22 pages, 6977 KiB  
Article
Exploration of Bromodomain Proteins as Drug Targets for Niemann–Pick Type C Disease
by Martina Parente, Amélie Barthelemy, Claudia Tonini, Sara Caputo, Alessandra Sacchi, Stefano Leone, Marco Segatto, Frank W. Pfrieger and Valentina Pallottini
Int. J. Mol. Sci. 2025, 26(12), 5769; https://doi.org/10.3390/ijms26125769 - 16 Jun 2025
Viewed by 451
Abstract
Defects in lysosomal cholesterol handling provoke fatal disorders presenting neurovisceral symptoms with variable onset and life spans. A prime example is Niemann–Pick type C disease (NPCD), where cholesterol export from the endosomal–lysosomal system is impaired due to variants of either NPC intracellular cholesterol [...] Read more.
Defects in lysosomal cholesterol handling provoke fatal disorders presenting neurovisceral symptoms with variable onset and life spans. A prime example is Niemann–Pick type C disease (NPCD), where cholesterol export from the endosomal–lysosomal system is impaired due to variants of either NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2). Therapeutic options for NPCD are limited to palliative care and disease-modifying drugs, and there is a need for new treatments. Here, we explored bromodomain and extra-terminal domain (BET) proteins as new drug targets for NPCD using patient-derived skin fibroblasts. Treatment with JQ1, a prototype BET protein inhibitor, raised the level of NPC1 protein, diminished lysosomal expansion and cholesterol accumulation, and induced extracellular release of lysosomal components in a dose-, time-, and patient-dependent manner. Lastly, JQ1 enhanced and reduced cholesterol accumulation induced by pharmacologic inhibition of NPC1 and of histone deacetylase (HDAC) activity, respectively. Taken together, bromodomain proteins should be further explored as therapeutic drug targets for lysosomal diseases like NPCD, and as new components regulating lysosomal function and cholesterol metabolism. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

47 pages, 2976 KiB  
Review
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review
by Marco Meleiro and Rui Henrique
Int. J. Mol. Sci. 2025, 26(12), 5634; https://doi.org/10.3390/ijms26125634 - 12 Jun 2025
Viewed by 1359
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical contributors to GBM pathobiology, including aberrant DNA methylation, histone modifications, and non-coding RNA (ncRNA) dysregulation. These mechanisms drive oncogenesis, therapy resistance, and immune evasion. This scoping review evaluates the current state of knowledge on epigenetic modifications in GBM, synthesizing findings from original articles and preclinical and clinical trials published over the last decade. Particular attention is given to MGMT promoter hypermethylation status as a biomarker for temozolomide (TMZ) sensitivity, histone deacetylation and methylation as modulators of chromatin structure, and microRNAs as regulators of pathways such as apoptosis and angiogenesis. Therapeutically, epigenetic drugs, like DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis), appear as promising approaches in preclinical models and early trials. Emerging RNA-based therapies targeting dysregulated ncRNAs represent a novel approach to reprogram the tumor epigenome. Combination therapies, pairing epigenetic agents with immune checkpoint inhibitors or chemotherapy, are explored for their potential to enhance treatment response. Despite these advancements, challenges such as tumor heterogeneity, the blood–brain barrier (BBB), and off-target effects remain significant. Future directions emphasize integrative omics approaches to identify patient-specific targets and refine therapies. This article thus highlights the potential of epigenetics in reshaping GBM treatment paradigms. Full article
(This article belongs to the Special Issue Glioblastoma: Molecular Pathogenesis and Treatment)
Show Figures

Graphical abstract

22 pages, 30677 KiB  
Article
Mitochondrial Translation Inhibition Uncovers a Critical Metabolic–Epigenetic Interface in Renal Cell Carcinoma
by Kazumi Eckenstein, Beyza Cengiz, Matthew E. K. Chang, Jessie May Cartier, Mark R. Flory and George V. Thomas
Metabolites 2025, 15(6), 393; https://doi.org/10.3390/metabo15060393 - 12 Jun 2025
Viewed by 636
Abstract
Background/Objectives: Renal cell carcinoma (RCC) exhibits distinctive metabolic vulnerabilities that may be therapeutically targeted. This study investigates how tigecycline, an FDA-approved antibiotic that inhibits mitochondrial translation, affects RCC cells and explores potential combinatorial approaches to enhance its efficacy. Methods: We employed comprehensive metabolomic [...] Read more.
Background/Objectives: Renal cell carcinoma (RCC) exhibits distinctive metabolic vulnerabilities that may be therapeutically targeted. This study investigates how tigecycline, an FDA-approved antibiotic that inhibits mitochondrial translation, affects RCC cells and explores potential combinatorial approaches to enhance its efficacy. Methods: We employed comprehensive metabolomic profiling, subcellular proteomics, and functional assays to characterize the effects of tigecycline on RCC cell lines, patient-derived organoids, and xenograft models. The synergistic potential of tigecycline with the histone deacetylase inhibitor entinostat was evaluated using combination index analysis. Results: Tigecycline selectively inhibited mitochondrial translation in RCC cells, reducing mitochondrially-encoded proteins while sparing nuclear-encoded components, profoundly disrupting mitochondrial bioenergetics and reducing tumor growth in xenograft models. Subcellular proteomic analyses revealed that tigecycline treatment triggered a significant accumulation of multiple histone variants concurrent with cell cycle arrest. Based on this discovery, combined treatment with tigecycline and entinostat demonstrated remarkable synergism across RCC cell lines and patient-derived. Conclusions: Our findings identify a promising therapeutic opportunity by targeting the crosstalk between mitochondrial function and epigenetic homeostasis in RCC, with the potential for rapid clinical translation given the established pharmacological profiles of both agents. Full article
Show Figures

Figure 1

Back to TopTop