Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Clinical Response
2.3. Clinical Assessment of Circulating Tumor Burden
2.4. PBMC Collection and Processing
2.5. mRNA, miRNA, and Methylation Studies
2.6. Quantitative Real-Time PCR
2.7. Flow Cytometry
2.8. Calculation of the Proportion of Malignant Cells in a Sample
2.9. Detection of Genes Over-Expressed in Malignant Cells
2.10. Prediction of the Proportion of Malignant Cells Present in a Sample
2.11. Ingenuity Pathways and DAVID Functional Enrichment Analyses
2.12. Transcription Factor Binding Site Analysis
2.13. Identification of miRNA Target Genes
2.14. Statistical Tests
3. Results
3.1. Study Population and Assays
3.2. Markers of Malignant Cells
3.3. Functions and Processes Associated with Malignant Cells
3.4. Mechanisms of Dysregulation of the MCP Genes
3.5. A Gene Expression Signature of Residual Disease
3.6. Detection of Residual Disease
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagot, M. Cutaneous Lymphoma of the Sezary and Bouvrain Type. Progress in Physiopathologic and Therapeutic Outlook. Bull. L’academie Natl. Med. 1998, 182, 927–937; discussion 37–38. [Google Scholar]
- Bernengo, M.G.; Novelli, M.; Quaglino, P.; Lisa, F.; De Matteis, A.; Savoia, P.; Cappello, N.; Fierro, M.T. The Relevance of the CD4+ CD26− Subset in the Identification of Circulating Sézary Cells. Br. J. Dermatol. 2001, 144, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.; Dang, N.H.; Duvic, M.; Washington, L.T.; Huh, Y.O. Absence of Cd26 Expression Is a Useful Marker for Diagnosis of T-Cell Lymphoma in Peripheral Blood. Am. J. Clin. Pathol. 2001, 115, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Nestle, F.O.; Niederer, E.; Ludwig, E.; Laine, E.; Grundmann, H.; Grob, P.; Burg, G. Genotypic, Phenotypic and Functional Analysis of CD4+CD7+ and CD4+CD7− T Lymphocyte Subsets in Sezary Syndrome. Arch. Dermatol. Res. 1999, 291, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Vonderheid, E.C.; Bigler, R.D.; Kotecha, A.; Boselli, C.M.; Lessin, S.R.; Bernengo, M.G.; Polansky, M. Variable Cd7 Expression on T Cells in the Leukemic Phase of Cutaneous T Cell Lymphoma (Sezary Syndrome). J. Investig. Dermatol. 2001, 117, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Kari, L.; Loboda, A.; Nebozhyn, M.; Rook, A.H.; Vonderheid, E.C.; Nichols, C.; Virok, D.; Chang, C.; Horng, W.H.; Johnston, J.; et al. Classification and Prediction of Survival in Patients with the Leukemic Phase of Cutaneous T Cell Lymphoma. J. Exp. Med. 2003, 197, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Nebozhyn, M.; Loboda, A.; Kari, L.; Rook, A.H.; Vonderheid, E.C.; Lessin, S.; Berger, C.; Edelson, R.; Nichols, C.; Yousef, M.; et al. Quantitative Pcr on 5 Genes Reliably Identifies Ctcl Patients with 5% to 99% Circulating Tumor Cells with 90% Accuracy. Blood 2006, 107, 3189–3196. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.L.; Ferreira, S.; McKenzie, R.C.; Tosi, I.; Caesar, J.A.; Bagot, M.; Whittaker, S.J.; Mitchell, T.J. Regulation of T-Plastin Expression by Promoter Hypomethylation in Primary Cutaneous T-Cell Lymphoma. J. Investig. Dermatol. 2012, 132, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.H.; Gottlieb, S.L.; Wolfe, J.T.; Vowels, B.R.; Sood, S.S.; Niu, Z.; Lessin, S.R.; Fox, F.E. Pathogenesis of Cutaneous T-Cell Lymphoma: Implications for the Use of Recombinant Cytokines and Photopheresis. Clin. Exp. Immunol. 1997, 107 (Suppl. S1), 16–20. [Google Scholar] [PubMed]
- Rook, A.H.; Kubin, M.; Cassin, M.; Vonderheid, E.C.; Vowels, B.R.; Wolfe, J.T.; Wolf, S.F.; Singh, A.; Trinchieri, G.; Lessin, S.R. IL-12 Reverses Cytokine and Immune Abnormalities in Sezary Syndrome. J. Immunol. 1995, 154, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.H.; Kuzel, T.M.; Olsen, E.A. Cytokine Therapy of Cutaneous T-cell Lymphoma: Interferons, Interleukin-12, and Interleukin-2. Hematol. Oncol. Clin. 2003, 17, 1435–1448, ix. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Cheng, Q.; He, J. Hdac Inhibitors: Promising Agents for Leukemia Treatment. Biochem. Biophys. Res. Commun. 2023, 680, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.T.; Bates, S.; Geskin, L. Current Status of Hdac Inhibitors in Cutaneous T-Cell Lymphoma. Am. J. Clin. Dermatol. 2018, 19, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Iglesias, O.; Ruiz-Llorente, L.; Sanchez-Martinez, R.; Garcia, L.; Zambrano, A.; Aranda, A. Histone Deacetylase Inhibitors: Mechanism of Action and Therapeutic Use in Cancer. Clin. Transl. Oncol. 2008, 10, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, C.; Minucci, S.; Pelicci, P.G. Histone Deacetylases and Epigenetic Therapies of Hematological Malignancies. Pharmacol. Res. 2010, 62, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, M. Epigenetics in the Pathogenesis and Treatment of Cutaneous T-Cell Lymphoma. Front. Oncol. 2021, 11, 663961. [Google Scholar] [CrossRef] [PubMed]
- Arrighetti, N.; Corno, C.; Gatti, L. Drug Combinations with Hdac Inhibitors in Antitumor Therapy. Crit. Rev. Oncog. 2015, 20, 83–117. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, A.J.; Horwitz, S.M. Targeting Histone Deacetylases in T-Cell Lymphoma. Leuk. Lymphoma 2017, 58, 1306–1319. [Google Scholar] [CrossRef] [PubMed]
- Newbold, A.; Falkenberg, K.J.; Prince, H.M.; Johnstone, R.W. How Do Tumor Cells Respond to Hdac Inhibition? FEBS J. 2016, 283, 4032–4046. [Google Scholar] [CrossRef] [PubMed]
- Newbold, A.; Lindemann, R.K.; Cluse, L.A.; Whitecross, K.F.; Dear, A.E.; Johnstone, R.W. Characterisation of the Novel Apoptotic and Therapeutic Activities of the Histone Deacetylase Inhibitor Romidepsin. Mol. Cancer Ther. 2008, 7, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Basseville, A.; Violet, P.C.; Safari, M.; Sourbier, C.; Linehan, W.M.; Robey, R.W.; Levine, M.; Sackett, D.L.; Bates, S.E. A Histone Deacetylase Inhibitor Induces Acetyl-Coa Depletion Leading to Lethal Metabolic Stress in Ras-Pathway Activated Cells. Cancers 2022, 14, 2643. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Scotto, L.; Basseville, A.; Litman, T.; Xue, H.; Petrukhin, L.; Zhou, P.; Morales, D.V.; Damoci, C.; Zhu, M.; et al. Combined Hdac and Eif4a Inhibition: A Novel Epigenetic Therapy for Pancreatic Adenocarcinoma. biorxiv 2024. [Google Scholar] [CrossRef]
- Rosato, R.R.; Grant, S. Histone Deacetylase Inhibitors: Insights into Mechanisms of Lethality. Expert. Opin. Ther. Targets 2005, 9, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, T.C.; El-Osta, A. Will broad-Spectrum Histone Deacetylase Inhibitors be Superseded by more Specific Compounds? Leukemia 2007, 21, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, S.; Kim, E.J.; Prince, M.; Demierre, M.F.; Giver, C.; Lonial, S.; Piekarz, R.; Kim, Y.H.; Nichols, J.; Nix, D.; et al. Characterization of Cyclic Hematologic Changes Observed in Patients with Cutaneous T-Cell Lymphoma (Ctcl) Receiving Romidepsin, a Novel Histone Deacetylase (Hdac) Inhibitor. Blood 2009, 114, 3701. [Google Scholar] [CrossRef]
- Whittaker, S.; McCulloch, W.; Robak, T.; Baran, E. International Multicenter Phase II Study of the Hdac Inhibitor (Hdaci) Depsipeptide (Fk228) in Cutaneous T-Cell Lymphoma (Ctcl): Interim Report. J. Clin. Oncol. 2006, 24 (Suppl. S18), 3063. [Google Scholar] [CrossRef]
- Whittaker, S.J.; Demierre, M.F.; Kim, E.J.; Rook, A.H.; Lerner, A.; Duvic, M.; Scarisbrick, J.; Reddy, S.; Robak, T.; Becker, J.C.; et al. Final Results from a Multicenter, International, Pivotal Study of Romidepsin in Refractory Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2010, 28, 4485–4491. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J.H.; Reilly, J.F.; Ricker, J.L.; Richon, V.M.; et al. Phase 2 Trial of Oral Vorinostat (Suberoylanilide Hydroxamic Acid, Saha) for Refractory Cutaneous T-Cell Lymphoma (Ctcl). Blood 2007, 109, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Tetzlaff, M.T.; Gangar, P.; Clos, A.L.; Sui, D.; Talpur, R. Results of a Phase II Trial of Brentuximab Vedotin for Cd30+ Cutaneous T-Cell Lymphoma and Lymphomatoid Papulosis. J. Clin. Oncol. 2015, 33, 3759–3765. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M.; Zhang, C. Clinical and Laboratory Experience of Vorinostat (Suberoylanilide Hydroxamic Acid) in the Treatment of Cutaneous T-Cell Lymphoma. Br. J. Cancer 2006, 95 (Suppl. S1), S13–S19. [Google Scholar] [CrossRef]
- Chrisman, L.P.; Trimark, P.F.; Pang, Y.; Pease, D.R.; Martinez-Escala, M.E.; Nguyen, W.Q.; Fernandez, R.; Griffin, T.L.; Ayanruoh, L.; Hooper, M.J.; et al. Updated Cutaneous T-Cell Lymphoma Tnmb Staging Criteria Fail to Identify Patients with Sézary Syndrome with Low Blood Burden. Blood 2024, 144, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Kim, Y.H.; Rook, A.H.; Lerner, A.; Duvic, M.; Reddy, S.; Robak, T.; Becker, J.C.; Samtsov, A.; McCulloch, W.; et al. Clinically Significant Responses Achieved with Romidepsin across Disease Compartments in Patients with Cutaneous T-Cell Lymphoma. Leuk. Lymphoma 2015, 56, 2847–2854. [Google Scholar] [CrossRef] [PubMed]
- Wysocka, M.; Kossenkov, A.V.; Benoit, B.M.; Troxel, A.B.; Singer, E.; Schaffer, A.; Kim, B.; Dentchev, T.; Nagata, S.; Ise, T.; et al. CD164 and FCRL3 are Highly Expressed on CD4+CD26- T Cells in Sezary Syndrome Patients. J. Investig. Dermatol. 2014, 134, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, M.H.; Moins-Teisserenc, H.; Bagot, M.; Quaglino, P.; Whittaker, S. Flow Cytometry for the Assessment of Blood Tumour Burden in Cutaneous T-Cell Lymphoma: Towards a Standardized Approach. Br. J. Dermatol. 2022, 187, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering Splice Junctions with Rna-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential Gene and Transcript Expression Analysis of Rna-seq Experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Dennis, G., Jr.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003, 4, P3. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting Effective Microrna Target Sites in Mammalian Mrnas. Elife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Piekarz, R.L.; Frye, R.; Prince, H.M.; Kirschbaum, M.H.; Zain, J.; Allen, S.L.; Jaffe, E.S.; Ling, A.; Turner, M.; Peer, C.J.; et al. Phase 2 Trial of Romidepsin in Patients with Peripheral T-Cell Lymphoma. Blood 2011, 117, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; et al. Phase II Multi-Institutional Trial of the Histone Deacetylase Inhibitor Romidepsin as Monotherapy for Patients with Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2009, 27, 5410–5417. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Watanabe, R.; Teague, J.E.; Schlapbach, C.; Tawa, M.C.; Adams, N.; Dorosario, A.A.; Chaney, K.S.; Cutler, C.S.; Leboeuf, N.R.; et al. Skin Effector Memory T Cells Do Not Recirculate and Provide Immune Protection in Alemtuzumab-Treated Ctcl Patients. Sci. Transl. Med. 2012, 4, 117ra7. [Google Scholar] [CrossRef] [PubMed]
- Miyagaki, T.; Sugaya, M. Immunological Milieu in Mycosis Fungoides and Sezary Syndrome. J. Dermatol. 2014, 41, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Schug, N.; Braig, C.; Zimmermann, U.; Engel, J.; Winter, H.; Ruth, P.; Blin, N.; Pfister, M.; Kalbacher, H.; Knipper, M. Differential Expression of Otoferlin in Brain, Vestibular System, Immature and Mature Cochlea of The Rat. Eur. J. Neurosci. 2006, 24, 3372–3380. [Google Scholar] [CrossRef] [PubMed]
- Calvi, L.M.; Bromberg, O.; Rhee, Y.; Weber, J.M.; Smith, J.N.; Basil, M.J.; Frisch, B.J.; Bellido, T. Osteoblastic Expansion Induced by Parathyroid Hormone Receptor Signaling in Murine Osteocytes is not Sufficient to Increase Hematopoietic Stem Cells. Blood 2012, 119, 2489–2499. [Google Scholar] [CrossRef] [PubMed]
- Samimi, S.; Benoit, B.; Evans, K.; Wherry, E.J.; Showe, L.; Wysocka, M.; Rook, A.H. Increased Programmed Death-1 Expression on CD4+ T Cells in Cutaneous T-Cell Lymphoma: Implications for Immune Suppression. Arch. Dermatol. 2010, 146, 1382–1388. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Cheng, B.; Falchi, L.; Marchi, E.; Sawas, A.; Bhagat, G.; O’Connor, O.A. Survival Benefit in Patients with Peripheral T-Cell Lymphomas after Treatments with Novel Therapies and Clinical Trials. Hematol. Oncol. 2020, 38, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.; Matusiak, M.; Gutierrez, B.R.; Bhate, S.S.; Barlow, G.L.; Jiang, S.; Demeter, J.; Smythe, K.S.; Pierce, R.H.; Fling, S.P.; et al. Immune cell topography predicts response to PD-1 Blockade in Cutaneous T Cell Lymphoma. Nat. Commun. 2021, 12, 6726. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, M.A.; Swanson, B.J. Mucins in Cancer: Protection and Control of the Cell Surface. Nat. Rev. Cancer 2004, 4, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Stroopinsky, D.; Yin, L.; Rosenblatt, J.; Alam, M.; Bhargava, P.; Clark, R.A.; Kupper, T.S.; Palmer, K.; Coll, M.D.; et al. Mucin 1 is a Potential Therapeutic Target in Cutaneous T-Cell Lymphoma. Blood 2015, 126, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Washington, A.; Leaf, R.K.; Bhargava, P.; Clark, R.A.; Kupper, T.S.; Stroopinsky, D.; Pyzer, A.; Cole, L.; Nahas, M.; et al. Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Mol. Cancer Ther. 2017, 16, 2304–2314. [Google Scholar] [CrossRef] [PubMed]
- Kohnken, R.; Mishra, A. MicroRNAs in Cutaneous T-Cell Lymphoma: The Future of Therapy. J. Investig. Dermatol. 2019, 139, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using David Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Gachon, F. Physiological Function of PARbZip Circadian Clock-Controlled Transcription Factors. Ann. Med. 2007, 39, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Bégué, E.; Jean-Louis, F.; Bagot, M.; Jauliac, S.; Cayuela, J.-M.; Laroche, L.; Parquet, N.; Bachelez, H.; Bensussan, A.; Courtois, G.; et al. Inducible Expression and Pathophysiological Functions of T-Plastin in Cutaneous T-Cell Lymphoma. Blood 2012, 120, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Izykowska, K. Methylation Patterns of Cutaneous T-Cell Lymphomas. Exp. Dermatol. 2020, 30, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Mohajeri Khorasani, A.; Morshedzadeh, F.; Saffarzadeh, N.; Ghaderian, S.M.H.; Ghafouri-Fard, S.; Mousavi, P. HLF is a Promising Prognostic, Immunological, and Therapeutic Biomarker in Human Tumors. Biochem. Biophys. Rep. 2024, 38, 101725. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, P.; Wang, J.; Zhang, J.; Ma, Q.; Jiang, Y.; Wu, Y.; Han, T.; Xiang, D. Hlf Regulates Ferroptosis, Development and Chemoresistance of Triple-Negative Breast Cancer by Activating Tumor Cell-Macrophage Crosstalk. J. Hematol. Oncol. 2022, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Sohn, H.; Jang, S.W.; Lee, G.R. The Transcription Factor Nfil3 Controls Regulatory T-Cell Function and Stability. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kashiwada, M.; Cassel, S.L.; Colgan, J.D.; Rothman, P.B. Nfil3/E4bp4 Controls Type 2 T Helper Cell Cytokine Expression. EMBO J. 2011, 30, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Booken, N.; Gratchev, A.; Utikal, J.; Weiss, C.; Yu, X.; Qadoumi, M.; Schmuth, M.; Sepp, N.; Nashan, D.; Rass, K.; et al. Sezary Syndrome is a Unique Cutaneous T-Cell Lymphoma as Identified by an Expanded Gene Signature Including Diagnostic Marker Molecules Cdo1 and Dnm3. Leukemia 2008, 22, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Poenitz, N.; Simon-Ackermann, J.; Gratchev, A.; Qadoumi, M.; Klemke, C.D.; Stadler, R.; Kremer, A.; Radenhausen, M.; Henke, U.; Assaf, C.; et al. Overexpression of C-Myb in Leukaemic and Non-Leukaemic Variants of Cutaneous T-Cell Lymphoma. Dermatology 2005, 211, 84–92. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, R.; Slieker, R.C.; Boonk, S.E.; Zoutman, W.H.; Goeman, J.J.; Bagot, M.; Michel, L.; Tensen, C.P.; Willemze, R.; Heijmans, B.T.; et al. Epigenomic Analysis of Sezary Syndrome Defines Patterns of Aberrant DNA Methylation and Identifies Diagnostic Markers. J. Investig. Dermatol. 2016, 136, 1876–1884. [Google Scholar] [CrossRef] [PubMed]
- Andreae, L.C.; Peukert, D.; Lumsden, A.; Gilthorpe, J.D. Analysis of Lrrn1 Expression and Its Relationship to Neuromeric Boundaries During Chick Neural Development. Neural Dev. 2007, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Rhee, D.K.; Marcelino, J.; Baker, M.; Gong, Y.; Smits, P.; Lefebvre, V.; Jay, G.D.; Stewart, M.; Wang, H.; Warman, M.L.; et al. The Secreted Glycoprotein Lubricin Protects Cartilage Surfaces and Inhibits Synovial Cell Overgrowth. J. Clin. Investig. 2005, 115, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Novince, C.M.; Koh, A.J.; Michalski, M.N.; Marchesan, J.T.; Wang, J.; Jung, Y.; Berry, J.E.; Eber, M.R.; Rosol, T.J.; Taichman, R.S.; et al. Proteoglycan 4, a Novel Immunomodulatory Factor, Regulates Parathyroid Hormone Actions on Hematopoietic Cells. Am. J. Pathol. 2011, 179, 2431–2442. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Yang, X.; Li, Q.; Ma, Y.; Cui, S.; He, D.; Lin, X.; Schwartz, R.J.; Chang, J. Protein tyrosine phosphatase-like A Regulates Myoblast Proliferation and Differentiation Through MyoG and the Cell Cycling Signaling Pathway. Mol. Cell Biol. 2012, 32, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Muto, J.; Zhang, L.-J.; Adase, C.A.; Sanford, J.A.; Takahashi, T.; Nakatsuji, T.; Usdin, T.B.; Gallo, R.L. The Parathyroid Hormone Second Receptor Pth2r and its Ligand Tuberoinfundibular Peptide of 39 Residues Tip39 Regulate Intracellular Calcium and Influence Keratinocyte Differentiation. J. Investig. Dermatol. 2016, 136, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Depreter, B.; De Moerloose, B.; Vandepoele, K.; Uyttebroeck, A.; Van Damme, A.; Terras, E.; Denys, B.; Dedeken, L.; Dresse, M.-F.; Van der Werff Ten Bosch, J.; et al. Deciphering Molecular Heterogeneity in Pediatric Aml Using a Cancer vs. Normal Transcriptomic Approach. Pediatr. Res. 2021, 89, 1695–1705. [Google Scholar] [PubMed]
- Yasunaga, S.; Grati, M.; Chardenoux, S.; Smith, T.N.; Friedman, T.B.; Lalwani, A.K.; Wilcox, E.R.; Petit, C. OTOF Encodes Multiple Long and Short Isoforms: Genetic Evidence That the Long Ones Underlie Recessive Deafness Dfnb9. Am. J. Human. Genet. 2000, 67, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Lee-Prudhoe, J.E.; Jorgensen, B.; Ihrke, G.; Doyonnas, R.; Zannettino, A.C.; Buckle, V.J.; Ward, C.J.; Simmons, P.J.; Watt, S.M. Relationship Between Novel Isoforms, Functionally Important Domains, and Subcellular Distribution of cd164/Endolyn. J. Biol. Chem. 2001, 276, 2139–2152. [Google Scholar] [CrossRef] [PubMed]
- Schlom, J. The Muc1-C Oncoprotein as a Target in Hematologic Malignancies. Cancer Biol. Ther. 2010, 10, 492–494. [Google Scholar] [CrossRef] [PubMed]
- Curry, J.M.; Thompson, K.J.; Rao, S.G.; Besmer, D.M.; Murphy, A.M.; Grdzelishvili, V.Z.; Ahrens, W.A.; McKillop, I.H.; Sindram, D.; Iannitti, D.A.; et al. The Use of a Novel Muc1 Antibody to Identify Cancer Stem Cells and Circulating Muc1 in Mice and Patients with Pancreatic Cancer. J. Surg. Oncol. 2013, 107, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; et al. Osteoblastic Cells Regulate the Haematopoietic Stem Cell Niche. Nature 2003, 425, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Benoit, B.M.; Jariwala, N.; O’Connor, G.; Oetjen, L.K.; Whelan, T.M.; Werth, A.; Troxel, A.B.; Sicard, H.; Zhu, L.; Miller, C.; et al. Cd164 Identifies Cd4(+) T Cells Highly Expressing Genes Associated with Malignancy in Sezary Syndrome: The Sezary Signature Genes, Fcrl3, Tox, and Mir-214. Arch. Dermatol. Res. 2017, 309, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Buus, T.B.; Willerslev-Olsen, A.; Fredholm, S.; Blumel, E.; Nastasi, C.; Gluud, M.; Hu, T.; Lindahl, L.M.; Iversen, L.; Fogh, H.; et al. Single-Cell Heterogeneity in Sezary Syndrome. Blood Adv. 2018, 2, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, A.; Khojah, A.; Marin, W.; Khramtsov, A.; Khramtsova, G.; Costin, C.; Morgan, G.; Ramesh, P.; Klein-Gitelman, M.S.; Le Poole, I.C.; et al. Increased Otoferlin Expression in B Cells Is Associated with Muscle Weakness in Untreated Juvenile Dermatomyositis: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 10553. [Google Scholar] [CrossRef] [PubMed]
- Jillella, A.P.; Murren, J.R.; Hamid, K.K.; Longley, B.J.; Edelson, R.L.; Cooper, D.L. P-Glycoprotein Expression and Multidrug Resistance in Cutaneous T-Cell Lymphoma. Cancer Investig. 2000, 18, 609–613. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, R.; Dijkman, R.; Vermeer, M.H.; Out-Luiting, J.J.; van der Raaij-Helmer, E.M.; Willemze, R.; Tensen, C.P. Aberrant Expression of the Tyrosine Kinase Receptor Epha4 and the Transcription Factor Twist in Sezary Syndrome Identified by Gene Expression Analysis. Cancer Res. 2004, 64, 5578–5586. [Google Scholar] [CrossRef] [PubMed]
- Horna, P.; Wang, S.A.; Wolniak, K.L.; Psarra, K.; Almeida, J.; Illingworth, A.J.; Johansson, U.; Craig, F.E.; Torres, R. Flow Cytometric Evaluation of Peripheral Blood for Suspected Sézary Syndrome or Mycosis Fungoides: International Guidelines for Assay Characteristics. Cytom. Part B Clin. Cytom. 2021, 100, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Dulmage, B.O.; Geskin, L.J. Lessons Learned from Gene Expression Profiling of Cutaneous T-Cell Lymphoma. Br. J. Dermatol. 2013, 169, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, K.; Doyle, A.; Wahlestedt, M.; Subramaniam, A.; Debnath, S.; Chen, J.; Soneji, S.; Van Handel, B.; Mikkola, H.K.A.; Miharada, K.; et al. Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool During Regeneration. Cell Rep. 2017, 21, 3514–3523. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, A.; Zengarini, C.; Agostinelli, C.; Motta, G.; Sabattini, E.; Pileri, A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024, 13, 584. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Monti, S.; Aires, D.J.; Duvic, M.; Golub, T.; Jones, D.A.; Kupper, T.S. Lesional Gene Expression Profiling in Cutaneous T-Cell Lymphoma Reveals Natural Clusters Associated with Disease Outcome. Blood 2007, 110, 3015–3027. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Zhang, X.; Wang, S.; Shu, G.; Yin, G. A Pan-Cancer Characterization of Immune-Related Nfil3 Identifies Potential Predictive Biomarker. J. Cancer 2024, 15, 1271–1286. [Google Scholar] [CrossRef] [PubMed]
- MacGillavry, H.D.; Cornelis, J.; van der Kallen, L.R.; Sassen, M.M.; Verhaagen, J.; Smit, A.B.; van Kesteren, R.E. Genome-Wide Gene Expression and Promoter Binding Analysis Identifies Nfil3 as a Repressor of C/Ebp Target Genes in Neuronal Outgrowth. Mol. Cell Neurosci. 2011, 46, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Keniry, M.; Dearth, R.K.; Persans, M.; Parsons, R. New Frontiers for the Nfil3 Bzip Transcription Factor in Cancer, Metabolism and Beyond. Discoveries 2014, 2, e15. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kossenkov, A.V.; Dawany, N.; Majumdar, S.; Chang, C.; Nichols, C.; Wysocka, M.; Piekarz, R.; Showe, M.K.; Bates, S.E.; Rook, A.H.; et al. Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment. Cancers 2025, 17, 2380. https://doi.org/10.3390/cancers17142380
Kossenkov AV, Dawany N, Majumdar S, Chang C, Nichols C, Wysocka M, Piekarz R, Showe MK, Bates SE, Rook AH, et al. Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment. Cancers. 2025; 17(14):2380. https://doi.org/10.3390/cancers17142380
Chicago/Turabian StyleKossenkov, Andrew V., Noor Dawany, Sonali Majumdar, Celia Chang, Calen Nichols, Maria Wysocka, Richard Piekarz, Michael K. Showe, Susan E. Bates, Alain H. Rook, and et al. 2025. "Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment" Cancers 17, no. 14: 2380. https://doi.org/10.3390/cancers17142380
APA StyleKossenkov, A. V., Dawany, N., Majumdar, S., Chang, C., Nichols, C., Wysocka, M., Piekarz, R., Showe, M. K., Bates, S. E., Rook, A. H., Kim, E. J., & Showe, L. C. (2025). Cutaneous T-Cell Lymphoma: Yin-Yang Effects of Transcription Factors HLF and NFIL3 in Regulation of Malignant T-Cell Markers in the Context of HDAC Inhibitor Romidepsin Treatment. Cancers, 17(14), 2380. https://doi.org/10.3390/cancers17142380