Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (175)

Search Parameters:
Keywords = histogram of oriented gradients (HOG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2943 KiB  
Article
Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone
by Yun Seop Yu, Seongjo Wie, Hojin Lee, Jeongwoo Lee and Nam Ho Kim
Appl. Sci. 2025, 15(15), 8381; https://doi.org/10.3390/app15158381 - 28 Jul 2025
Viewed by 196
Abstract
In this study, four types of fall detection systems for seniors living alone using x-y scatter and Doppler range images measured from frequency-modulated continuous wave (FMCW) millimeter-wave (mmWave) sensors were introduced. Despite advancements in fall detection, existing long short-term memory (LSTM)-based approaches often [...] Read more.
In this study, four types of fall detection systems for seniors living alone using x-y scatter and Doppler range images measured from frequency-modulated continuous wave (FMCW) millimeter-wave (mmWave) sensors were introduced. Despite advancements in fall detection, existing long short-term memory (LSTM)-based approaches often struggle with effectively distinguishing falls from similar activities of daily living (ADLs) due to their uniform treatment of all time steps, potentially overlooking critical motion cues. To address this limitation, an attention mechanism has been integrated. Data was collected from seven participants, resulting in a dataset of 669 samples, including 285 falls and 384 ADLs with walking, lying, inactivity, and sitting. Four LSTM-based architectures for fall detection were proposed and evaluated: Raw-LSTM, Raw-LSTM-Attention, HOG-LSTM, and HOG-LSTM-Attention. The histogram of oriented gradient (HOG) method was used for feature extraction, while LSTM networks captured temporal dependencies. The attention mechanism further enhanced model performance by focusing on relevant input features. The Raw-LSTM model processed raw mmWave radar images through LSTM layers and dense layers for classification. The Raw-LSTM-Attention model extended Raw-LSTM with an added self-attention mechanism within the traditional attention framework. The HOG-LSTM model included an additional preprocessing step upon the RAW-LSTM model where HOG features were extracted and classified using an SVM. The HOG-LSTM-Attention model built upon the HOG-LSTM model by incorporating a self-attention mechanism to enhance the model’s ability to accurately classify activities. Evaluation metrics such as Sensitivity, Precision, Accuracy, and F1-Score were used to compare four architectural models. The results showed that the HOG-LSTM-Attention model achieved the highest performance, with an Accuracy of 95.3% and an F1-Score of 95.5%. Optimal self-attention configuration was found at a 2:64 ratio of number of attention heads to channels for keys and queries. Full article
Show Figures

Figure 1

21 pages, 3448 KiB  
Article
A Welding Defect Detection Model Based on Hybrid-Enhanced Multi-Granularity Spatiotemporal Representation Learning
by Chenbo Shi, Shaojia Yan, Lei Wang, Changsheng Zhu, Yue Yu, Xiangteng Zang, Aiping Liu, Chun Zhang and Xiaobing Feng
Sensors 2025, 25(15), 4656; https://doi.org/10.3390/s25154656 - 27 Jul 2025
Viewed by 360
Abstract
Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability [...] Read more.
Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model’s interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability. Full article
(This article belongs to the Topic Applied Computing and Machine Intelligence (ACMI))
Show Figures

Figure 1

13 pages, 2266 KiB  
Article
The Detection and Classification of Grape Leaf Diseases with an Improved Hybrid Model Based on Feature Engineering and AI
by Fatih Atesoglu and Harun Bingol
AgriEngineering 2025, 7(7), 228; https://doi.org/10.3390/agriengineering7070228 - 9 Jul 2025
Viewed by 394
Abstract
There are many products obtained from grapes. The early detection of diseases in an economically important fruit is important, and the spread of disease significantly increases financial losses. In recent years, it is known that artificial intelligence techniques have achieved very successful results [...] Read more.
There are many products obtained from grapes. The early detection of diseases in an economically important fruit is important, and the spread of disease significantly increases financial losses. In recent years, it is known that artificial intelligence techniques have achieved very successful results in image classification. Therefore, the early detection and classification of grape diseases with the latest artificial intelligence techniques and feature reduction techniques was carried out within the scope of this study. The most well-known convolutional neural network (CNN) architectures, texture-based Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) methods, Neighborhood Component Analysis (NCA), feature reduction methods, and machine learning (ML) techniques are the methods used in this article. The proposed hybrid model was compared with two texture-based and four CNN models. The features from the most successful CNN model and texture-based architectures were combined. The NCA method was used to select the best features from the obtained feature map, and the model was classified using the best-known ML classifiers. Our proposed model achieved an accuracy value of 99.1%. This value shows that our model can be used in the detection of grape diseases. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

26 pages, 92114 KiB  
Article
Multi-Modal Remote Sensing Image Registration Method Combining Scale-Invariant Feature Transform with Co-Occurrence Filter and Histogram of Oriented Gradients Features
by Yi Yang, Shuo Liu, Haitao Zhang, Dacheng Li and Ling Ma
Remote Sens. 2025, 17(13), 2246; https://doi.org/10.3390/rs17132246 - 30 Jun 2025
Viewed by 399
Abstract
Multi-modal remote sensing images often exhibit complex and nonlinear radiation differences which significantly hinder the performance of traditional feature-based image registration methods such as Scale-Invariant Feature Transform (SIFT). In contrast, structural features—such as edges and contours—remain relatively consistent across modalities. To address this [...] Read more.
Multi-modal remote sensing images often exhibit complex and nonlinear radiation differences which significantly hinder the performance of traditional feature-based image registration methods such as Scale-Invariant Feature Transform (SIFT). In contrast, structural features—such as edges and contours—remain relatively consistent across modalities. To address this challenge, we propose a novel multi-modal image registration method, Cof-SIFT, which integrates a co-occurrence filter with SIFT. By replacing the traditional Gaussian filter with a co-occurrence filter, Cof-SIFT effectively suppresses texture variations while preserving structural information, thereby enhancing robustness to cross-modal differences. To further improve image registration accuracy, we introduce an extended approach, Cof-SIFT_HOG, which extracts Histogram of Oriented Gradients (HOG) features from the image gradient magnitude map of corresponding points and refines their positions based on HOG similarity. This refinement yields more precise alignment between the reference and image to be registered. We evaluated Cof-SIFT and Cof-SIFT_HOG on a diverse set of multi-modal remote sensing image pairs. The experimental results demonstrate that both methods outperform existing approaches, including SIFT, COFSM, SAR-SIFT, PSO-SIFT, and OS-SIFT, in terms of robustness and registration accuracy. Notably, Cof-SIFT_HOG achieves the highest overall performance, confirming the effectiveness of the proposed structural-preserving and corresponding point location refinement strategies in cross-modal registration tasks. Full article
Show Figures

Figure 1

25 pages, 5305 KiB  
Article
Pears Internal Quality Inspection Based on X-Ray Imaging and Multi-Criteria Decision Fusion Model
by Zeqing Yang, Jiahui Zhang, Zhimeng Li, Ning Hu and Zhengpan Qi
Agriculture 2025, 15(12), 1315; https://doi.org/10.3390/agriculture15121315 - 19 Jun 2025
Viewed by 353
Abstract
Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address these challenges, this study investigates a non-destructive [...] Read more.
Pears are susceptible to internal defects during growth and post-harvest handling, compromising their quality and market value. Traditional detection methods, such as manual inspection and physicochemical analysis, face limitations in efficiency, objectivity, and non-destructiveness. To address these challenges, this study investigates a non-destructive approach integrating X-ray imaging and multi-criteria decision (MCD) theory for non-destructive internal defect detection in pears. Internal defects were identified by analyzing grayscale variations in X-ray images. The proposed method combines manual feature-based classifiers, including Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG), with a deep convolutional neural network (DCNN) model within an MCD-based fusion framework. Experimental results demonstrated that the fused model achieved a detection accuracy of 97.1%, significantly outperforming individual classifiers. This approach effectively reduced misclassification caused by structural similarities in X-ray images. The study confirms the efficacy of X-ray imaging coupled with multi-classifier fusion for accurate and non-destructive internal quality evaluation of pears, offering practical value for fruit grading and post-harvest management in the pear industry. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 9181 KiB  
Article
HyADS: A Hybrid Lightweight Anomaly Detection Framework for Edge-Based Industrial Systems with Limited Data
by Xingrao Ma, Yiting Yang, Di Shao, Fong Chi Kit and Chengzu Dong
Electronics 2025, 14(11), 2250; https://doi.org/10.3390/electronics14112250 - 31 May 2025
Cited by 1 | Viewed by 563
Abstract
Industrial defect detection in edge computing environments faces critical challenges in balancing accuracy, efficiency, and adaptability under data scarcity. To address these limitations, we propose the Hybrid Anomaly Detection System (HyADS), a novel lightweight framework for edge-based industrial defect detection. HyADS integrates three [...] Read more.
Industrial defect detection in edge computing environments faces critical challenges in balancing accuracy, efficiency, and adaptability under data scarcity. To address these limitations, we propose the Hybrid Anomaly Detection System (HyADS), a novel lightweight framework for edge-based industrial defect detection. HyADS integrates three synergistic modules: (1) a feature extractor that integrates Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) to capture robust texture features, (2) a lightweight U-net autoencoder that reconstructs normal patterns while preserving spatial details to highlight small-scale defects, and (3) an adaptive patch matching module inspired by memory bank retrieval principles to accurately localize local outliers. These components are synergistically fused and then fed into a segmentation head that unifies global reconstruction errors and local anomaly maps into pixel-accurate defect masks. Extensive experiments on the MVTec AD, NEU, and Severstal datasets demonstrate state-of-the-art performance. Notably, HyADS achieves state-of-the-art F1 scores (94.1% on MVTec) in anomaly detection and IoU scores (85.5% on NEU/82.8% on Seversta) in segmentation. Designed for edge deployment, this framework achieves real-time inference (40–45 FPS on an RTX 4080 GPU) with minimal computational overheads, providing a practical solution for industrial quality control in resource-constrained environments. Full article
Show Figures

Figure 1

20 pages, 7366 KiB  
Article
Histogram of Polarization Gradient for Target Tracking in Infrared DoFP Polarization Thermal Imaging
by Jianguo Yang, Dian Sheng, Weiqi Jin and Li Li
Remote Sens. 2025, 17(5), 907; https://doi.org/10.3390/rs17050907 - 4 Mar 2025
Viewed by 692
Abstract
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram [...] Read more.
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram of polarization gradient (HPG) feature descriptor that enables efficient feature representation of polarization mosaic images. First, a polarization distance calculation model based on normalized cross-correlation (NCC) and local variance is constructed, which enhances the robustness of gradient feature extraction through dynamic weight adjustment. Second, a sparse Laplacian filter is introduced to achieve refined gradient feature representation. Subsequently, adaptive polarization channel correlation weights and the second-order gradient are utilized to reconstruct the degree of linear polarization (DoLP). Finally, the gradient and DoLP sign information are ingeniously integrated to enhance the capability of directional expression, thus providing a new theoretical perspective for polarization mosaic image structure analysis. The experimental results obtained using a self-developed long-wave infrared DoFP polarization thermal imaging system demonstrate that, within the same FBACF tracking framework, the proposed HPG feature descriptor significantly outperforms traditional grayscale {8.22%, 2.93%}, histogram of oriented gradient (HOG) {5.86%, 2.41%}, and mosaic gradient histogram (MGH) {27.19%, 18.11%} feature descriptors in terms of precision and success rate. The processing speed of approximately 20 fps meets the requirements for real-time tracking applications, providing a novel technical solution for polarization imaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Target Detection)
Show Figures

Figure 1

17 pages, 1978 KiB  
Article
Lightweight Deepfake Detection Based on Multi-Feature Fusion
by Siddiqui Muhammad Yasir and Hyun Kim
Appl. Sci. 2025, 15(4), 1954; https://doi.org/10.3390/app15041954 - 13 Feb 2025
Cited by 3 | Viewed by 2766
Abstract
Deepfake technology utilizes deep learning (DL)-based face manipulation techniques to seamlessly replace faces in videos, creating highly realistic but artificially generated content. Although this technology has beneficial applications in media and entertainment, misuse of its capabilities may lead to serious risks, including identity [...] Read more.
Deepfake technology utilizes deep learning (DL)-based face manipulation techniques to seamlessly replace faces in videos, creating highly realistic but artificially generated content. Although this technology has beneficial applications in media and entertainment, misuse of its capabilities may lead to serious risks, including identity theft, cyberbullying, and false information. The integration of DL with visual cognition has resulted in important technological improvements, particularly in addressing privacy risks caused by artificially generated “deepfake” images on digital media platforms. In this study, we propose an efficient and lightweight method for detecting deepfake images and videos, making it suitable for devices with limited computational resources. In order to reduce the computational burden usually associated with DL models, our method integrates machine learning classifiers in combination with keyframing approaches and texture analysis. Moreover, the features extracted with a histogram of oriented gradients (HOG), local binary pattern (LBP), and KAZE bands were integrated to evaluate using random forest, extreme gradient boosting, extra trees, and support vector classifier algorithms. Our findings show a feature-level fusion of HOG, LBP, and KAZE features improves accuracy to 92% and 96% on FaceForensics++ and Celeb-DF(v2), respectively. Full article
(This article belongs to the Collection Trends and Prospects in Multimedia)
Show Figures

Figure 1

24 pages, 3877 KiB  
Article
A Hybrid Approach for Sports Activity Recognition Using Key Body Descriptors and Hybrid Deep Learning Classifier
by Muhammad Tayyab, Sulaiman Abdullah Alateyah, Mohammed Alnusayri, Mohammed Alatiyyah, Dina Abdulaziz AlHammadi, Ahmad Jalal and Hui Liu
Sensors 2025, 25(2), 441; https://doi.org/10.3390/s25020441 - 13 Jan 2025
Cited by 8 | Viewed by 1185
Abstract
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), [...] Read more.
This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features. Feature fusion was employed to enhance the discriminative power of the extracted data and the physical parameters calculated by different feature extraction techniques. The system utilized a hybrid CNN (Convolutional Neural Network) + RNN (Recurrent Neural Network) classifier for event recognition, with Grey Wolf Optimization (GWO) for feature selection. Experimental results showed significant accuracy, achieving 98.5% on the UCF-101 dataset and 99.2% on the YouTube dataset. Compared to state-of-the-art methods, our approach achieved better performance in event recognition. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

28 pages, 46346 KiB  
Article
Optimizing Image Feature Extraction with Convolutional Neural Networks for Chicken Meat Detection Applications
by Azeddine Mjahad, Antonio Polo-Aguado, Luis Llorens-Serrano and Alfredo Rosado-Muñoz
Appl. Sci. 2025, 15(2), 733; https://doi.org/10.3390/app15020733 - 13 Jan 2025
Cited by 2 | Viewed by 1824
Abstract
The food industry continuously prioritizes methods and technologies to ensure product quality and safety. Traditional approaches, which rely on conventional algorithms that utilize predefined features, have exhibited limitations in representing the intricate characteristics of food items. Recently, a significant shift has emerged with [...] Read more.
The food industry continuously prioritizes methods and technologies to ensure product quality and safety. Traditional approaches, which rely on conventional algorithms that utilize predefined features, have exhibited limitations in representing the intricate characteristics of food items. Recently, a significant shift has emerged with the introduction of convolutional neural networks (CNNs). These networks have emerged as powerful and versatile tools for feature extraction, standing out as a preferred choice in the field of deep learning. The main objective of this study is to evaluate the effectiveness of convolutional neural networks (CNNs) when applied to the classification of chicken meat products by comparing different image preprocessing approaches. This study was carried out in three phases. In the first phase, the original images were used without applying traditional filters or color modifications, processing them solely with a CNN. In the second phase, color filters were applied to help separate the images based on their chromatic characteristics, while still using a CNN for processing. Finally, in the third phase, additional filters, such as Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP), and saliency, were incorporated to extract complementary features from the images, without discontinuing the use of a CNN for processing. Experimental images, sourced from the Pygsa Group databases, underwent preprocessing using these filters before being input into a CNN-based classification architecture. The results show that the developed models outperformed conventional methods, significantly improving the ability to differentiate between chicken meat types, such as yellow wing, white wing, yellow thigh, and white thigh, with the training accuracy reaching 100%. This highlights the potential of CNNs, especially when combined with advanced architectures, for efficient detection and analysis of complex food matrices. In conclusion, these techniques can be applied to food quality control and other detection and analysis domains. Full article
(This article belongs to the Special Issue Technical Advances in Food and Agricultural Product Quality Detection)
Show Figures

Figure 1

20 pages, 7090 KiB  
Article
An Infrared and Visible Image Alignment Method Based on Gradient Distribution Properties and Scale-Invariant Features in Electric Power Scenes
by Lin Zhu, Yuxing Mao, Chunxu Chen and Lanjia Ning
J. Imaging 2025, 11(1), 23; https://doi.org/10.3390/jimaging11010023 - 13 Jan 2025
Viewed by 1113
Abstract
In grid intelligent inspection systems, automatic registration of infrared and visible light images in power scenes is a crucial research technology. Since there are obvious differences in key attributes between visible and infrared images, direct alignment is often difficult to achieve the expected [...] Read more.
In grid intelligent inspection systems, automatic registration of infrared and visible light images in power scenes is a crucial research technology. Since there are obvious differences in key attributes between visible and infrared images, direct alignment is often difficult to achieve the expected results. To overcome the high difficulty of aligning infrared and visible light images, an image alignment method is proposed in this paper. First, we use the Sobel operator to extract the edge information of the image pair. Second, the feature points in the edges are recognised by a curvature scale space (CSS) corner detector. Third, the Histogram of Orientation Gradients (HOG) is extracted as the gradient distribution characteristics of the feature points, which are normalised with the Scale Invariant Feature Transform (SIFT) algorithm to form feature descriptors. Finally, initial matching and accurate matching are achieved by the improved fast approximate nearest-neighbour matching method and adaptive thresholding, respectively. Experiments show that this method can robustly match the feature points of image pairs under rotation, scale, and viewpoint differences, and achieves excellent matching results. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
Show Figures

Graphical abstract

9 pages, 3908 KiB  
Proceeding Paper
Automated Glaucoma Detection in Fundus Images Using Comprehensive Feature Extraction and Advanced Classification Techniques
by Vijaya Kumar Velpula, Jyothisri Vadlamudi, Purna Prakash Kasaraneni and Yellapragada Venkata Pavan Kumar
Eng. Proc. 2024, 82(1), 33; https://doi.org/10.3390/ecsa-11-20437 - 25 Nov 2024
Cited by 2 | Viewed by 738
Abstract
Glaucoma, a primary cause of irreversible blindness, necessitates early detection to prevent significant vision loss. In the literature, fundus imaging is identified as a key tool in diagnosing glaucoma, which captures detailed retina images. However, the manual analysis of these images can be [...] Read more.
Glaucoma, a primary cause of irreversible blindness, necessitates early detection to prevent significant vision loss. In the literature, fundus imaging is identified as a key tool in diagnosing glaucoma, which captures detailed retina images. However, the manual analysis of these images can be time-consuming and subjective. Thus, this paper presents an automated system for glaucoma detection using fundus images, combining diverse feature extraction methods with advanced classifiers, specifically Support Vector Machine (SVM) and AdaBoost. The pre-processing step incorporated image enhancement via Contrast-Limited Adaptive Histogram Equalization (CLAHE) to enhance image quality and feature extraction. This work investigated individual features such as the histogram of oriented gradients (HOG), local binary patterns (LBP), chip histogram features, and the gray-level co-occurrence matrix (GLCM), as well as their various combinations, including HOG + LBP + chip histogram + GLCM, HOG + LBP + chip histogram, and others. These features were utilized with SVM and Adaboost classifiers to improve classification performance. For validation, the ACRIMA dataset, a public fundus image collection comprising 369 glaucoma-affected and 309 normal images, was used in this work, with 80% of the data allocated for training and 20% for testing. The results of the proposed study show that different feature sets yielded varying accuracies with the SVM and Adaboost classifiers. For instance, the combination of LBP + chip histogram achieved the highest accuracy of 99.29% with Adaboost, while the same combination yielded a 65.25% accuracy with SVM. The individual feature LBP alone achieved 97.87% with Adaboost and 98.58% with SVM. Furthermore, the combination of GLCM + LBP provided a 98.58% accuracy with Adaboost and 97.87% with SVM. The results demonstrate that CLAHE and combined feature sets significantly enhance detection accuracy, providing a reliable tool for early and precise glaucoma diagnosis, thus facilitating timely intervention and improved patient outcomes. Full article
Show Figures

Figure 1

20 pages, 5608 KiB  
Article
Cross-Granularity Infrared Image Segmentation Network for Nighttime Marine Observations
by Hu Xu, Yang Yu, Xiaomin Zhang and Ju He
J. Mar. Sci. Eng. 2024, 12(11), 2082; https://doi.org/10.3390/jmse12112082 - 18 Nov 2024
Cited by 1 | Viewed by 1195
Abstract
Infrared image segmentation in marine environments is crucial for enhancing nighttime observations and ensuring maritime safety. While recent advancements in deep learning have significantly improved segmentation accuracy, challenges remain due to nighttime marine scenes including low contrast and noise backgrounds. This paper introduces [...] Read more.
Infrared image segmentation in marine environments is crucial for enhancing nighttime observations and ensuring maritime safety. While recent advancements in deep learning have significantly improved segmentation accuracy, challenges remain due to nighttime marine scenes including low contrast and noise backgrounds. This paper introduces a cross-granularity infrared image segmentation network CGSegNet designed to address these challenges specifically for infrared images. The proposed method designs a hybrid feature framework with cross-granularity to enhance segmentation performance in complex water surface scenarios. To suppress feature semantic disparity against different feature granularity, we propose an adaptive multi-scale fusion module (AMF) that combines local granularity extraction with global context granularity. Additionally, incorporating a handcrafted histogram of oriented gradients (HOG) features, we designed a novel HOG feature fusion module to improve edge detection accuracy under low-contrast conditions. Comprehensive experiments conducted on the public infrared segmentation dataset demonstrate that our method outperforms state-of-the-art techniques, achieving superior segmentation results compared to professional infrared image segmentation methods. The results highlight the potential of our approach in facilitating accurate infrared image segmentation for nighttime marine observation, with implications for maritime safety and environmental monitoring. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6259 KiB  
Article
Spectrogram-Based Arrhythmia Classification Using Three-Channel Deep Learning Model with Feature Fusion
by Alaa Eleyan, Fatih Bayram and Gülden Eleyan
Appl. Sci. 2024, 14(21), 9936; https://doi.org/10.3390/app14219936 - 30 Oct 2024
Cited by 7 | Viewed by 2491
Abstract
This paper introduces a novel deep learning model for ECG signal classification using feature fusion. The proposed methodology transforms the ECG time series into a spectrogram image using a short-time Fourier transform (STFT). This spectrogram is further processed to generate a histogram of [...] Read more.
This paper introduces a novel deep learning model for ECG signal classification using feature fusion. The proposed methodology transforms the ECG time series into a spectrogram image using a short-time Fourier transform (STFT). This spectrogram is further processed to generate a histogram of oriented gradients (HOG) and local binary pattern (LBP) features. Three separate 2D convolutional neural networks (CNNs) then analyze these three image representations in parallel. To enhance performance, the extracted features are concatenated before feeding them into a gated recurrent unit (GRU) model. The proposed approach is extensively evaluated on two ECG datasets (MIT-BIH + BIDMC and MIT-BIH) with three and five classes, respectively. The experimental results demonstrate that the proposed approach achieves superior classification accuracy compared to existing algorithms in the literature. This suggests that the model has the potential to be a valuable tool for accurate ECG signal classification, aiding in the diagnosis and treatment of various cardiovascular disorders. Full article
(This article belongs to the Topic Applications in Image Analysis and Pattern Recognition)
Show Figures

Figure 1

28 pages, 7535 KiB  
Article
A New Computer-Aided Diagnosis System for Breast Cancer Detection from Thermograms Using Metaheuristic Algorithms and Explainable AI
by Hanane Dihmani, Abdelmajid Bousselham and Omar Bouattane
Algorithms 2024, 17(10), 462; https://doi.org/10.3390/a17100462 - 18 Oct 2024
Cited by 5 | Viewed by 2245
Abstract
Advances in the early detection of breast cancer and treatment improvements have significantly increased survival rates. Traditional screening methods, including mammography, MRI, ultrasound, and biopsies, while effective, often come with high costs and risks. Recently, thermal imaging has gained attention due to its [...] Read more.
Advances in the early detection of breast cancer and treatment improvements have significantly increased survival rates. Traditional screening methods, including mammography, MRI, ultrasound, and biopsies, while effective, often come with high costs and risks. Recently, thermal imaging has gained attention due to its minimal risks compared to mammography, although it is not widely adopted as a primary detection tool since it depends on identifying skin temperature changes and lesions. The advent of machine learning (ML) and deep learning (DL) has enhanced the effectiveness of breast cancer detection and diagnosis using this technology. In this study, a novel interpretable computer aided diagnosis (CAD) system for breast cancer detection is proposed, leveraging Explainable Artificial Intelligence (XAI) throughout its various phases. To achieve these goals, we proposed a new multi-objective optimization approach named the Hybrid Particle Swarm Optimization algorithm (HPSO) and Hybrid Spider Monkey Optimization algorithm (HSMO). These algorithms simultaneously combined the continuous and binary representations of PSO and SMO to effectively manage trade-offs between accuracy, feature selection, and hyperparameter tuning. We evaluated several CAD models and investigated the impact of handcrafted methods such as Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), Gabor Filters, and Edge Detection. We further shed light on the effect of feature selection and optimization on feature attribution and model decision-making processes using the SHapley Additive exPlanations (SHAP) framework, with a particular emphasis on cancer classification using the DMR-IR dataset. The results of our experiments demonstrate in all trials that the performance of the model is improved. With HSMO, our models achieved an accuracy of 98.27% and F1-score of 98.15% while selecting only 25.78% of the HOG features. This approach not only boosts the performance of CAD models but also ensures comprehensive interpretability. This method emerges as a promising and transparent tool for early breast cancer diagnosis. Full article
Show Figures

Figure 1

Back to TopTop