Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = hillslope erosion rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2624 KiB  
Article
Rill Erosion Due to Wildfire or Deforestation in Forestlands of Northern Iran
by Misagh Parhizkar, Manuel Esteban Lucas-Borja and Demetrio Antonio Zema
Forests 2024, 15(11), 1926; https://doi.org/10.3390/f15111926 - 31 Oct 2024
Cited by 3 | Viewed by 942
Abstract
Rill erosion, mostly affecting steep and long hillslopes, is one of the most severe effects of deforestation and wildfires in natural ecosystems. Specific monitoring and accurate but simple models are needed to assess the impacts of these forest disturbances on the rill detachment [...] Read more.
Rill erosion, mostly affecting steep and long hillslopes, is one of the most severe effects of deforestation and wildfires in natural ecosystems. Specific monitoring and accurate but simple models are needed to assess the impacts of these forest disturbances on the rill detachment process. To address this need, this study has simulated the rill detachment capacity (Dc) through flume experiments on samples of soils collected in hillslopes after deforestation and severe burning. The associations between Dc and organic matter (OM) and the aggregate stability of soil (WSA), two key parameters influencing the rill detachment process, have also been explored under the two soil conditions (deforested and burned soils) using multivariate statistical techniques. Finally, linear regression models to predict Dc from these soil parameters or the hydraulic and morphological variables (water flow rate, WFR, and soil slope, S), set in the flume experiments, have been proposed for both soil conditions. Higher Dc in samples from deforested sites compared to the burned soils (+35%) was measured. This Dc increase was associated with parallel decreases in OM (−15%) and WSA (−34%) after deforestation compared to the wildfire-affected sites. However, the discrimination in those soil properties between the two soil conditions was not sharp. Accurate linear equations (r2 > 0.76) interpolating Dc and the shear stress (τ) have been set to estimate the rill erodibility (Kr) to evaluate soil resistance in erosion models to be applied in deforested or burned sites. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

18 pages, 1519 KiB  
Article
Effect of Soil Erosion on Soil and Plant Properties with a Consequence on Related Ecosystem Services
by Radoslava Kanianska, Miriam Kizeková, Ľubica Jančová, Jozef Čunderlík and Zuzana Dugátová
Sustainability 2024, 16(16), 7037; https://doi.org/10.3390/su16167037 - 16 Aug 2024
Cited by 6 | Viewed by 3270
Abstract
Erosion is a process often driven by land management deteriorating or changing soil properties along the slopes, with consequences on ecosystem services. In a model area with Stagnic Cambisol, with two different types of land use (grassland—GL and arable land—AL), on an erosion [...] Read more.
Erosion is a process often driven by land management deteriorating or changing soil properties along the slopes, with consequences on ecosystem services. In a model area with Stagnic Cambisol, with two different types of land use (grassland—GL and arable land—AL), on an erosion transect in three different hillslope positions (upper, middle, and lower), in two different depths (0–10 and 35–45 cm), we observed the impact of soil erosion on soil and plant properties and ecosystem services by use of direct measurements and models. In GL, soil available potassium (SK), soil available phosphorus (SP) and pH increased both downward along the slope and in soil depth. A significantly (p < 0.01) higher content of plant nutrients (PN, PP, and PK) and shoot biomass was recorded in the lower part of the hillslope. In AL, soil parameters (pH, SOC, SN, and SOC/SN) reached the lowest values at the middle hillslope position at the shallowest depth. A relatively negligible annual average soil loss was recorded for GL (0.76 t/ha/yr). To the contrary, a very high rate of soil erosion was found for AL with maize silage. The actual soil moisture was 50% higher in GL compared to AL, which was reflected also in the soil water deficit index (SWDI) being more favorable for GL. Full article
(This article belongs to the Special Issue Geological Environment Monitoring and Early Warning Systems)
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Impact of Hillslope Agriculture on Soil Compaction and Seasonal Water Dynamics in a Temperate Vineyard
by Jasmina Defterdarović, Lana Filipović, Gabrijel Ondrašek, Igor Bogunović, Ivan Dugan, Vinod Phogat, Hailong He, Mehran Rezaei Rashti, Ehsan Tavakkoli, Thomas Baumgartl, Abolfazl Baghbani, Timothy I. McLaren and Vilim Filipović
Land 2024, 13(5), 588; https://doi.org/10.3390/land13050588 - 28 Apr 2024
Cited by 2 | Viewed by 1965
Abstract
Major losses of agricultural production and soils are caused by erosion, which is especially pronounced on hillslopes due to specific hydrological processes and heterogeneity. Therefore, the aim of this study was to assess the impact of agricultural management on the compaction, infiltration, and [...] Read more.
Major losses of agricultural production and soils are caused by erosion, which is especially pronounced on hillslopes due to specific hydrological processes and heterogeneity. Therefore, the aim of this study was to assess the impact of agricultural management on the compaction, infiltration, and seasonal water content dynamics of the hillslope. Measurements were made at the hilltop and footslope, i.e., soil water content and potential were measured using sensors, wick lysimeters were used to quantify water flux, while a mini-disk infiltrometer was used to measure the infiltration rate and calculate the unsaturated hydraulic conductivity (K_unsat). Soil texture showed differences between hillslope positions, i.e., at the hilltop after 50 cm depth, the soil is classified as silty clay loam, and from 75 cm onward, the soil is silty clay, while at the footslope, the soil is silt loam even at the deeper depths. The results show a higher K_unsat at the footslope as well as higher average water volumes collected in wick lysimeters compared to the hilltop. Average water volumes showed a statistically significant difference at p < 0.01 between the hilltop and the footslope. The soil water content and water potential sensors showed higher values at the footslope at all depths, i.e., 8.0% at 15 cm, 8.4% at 30 cm, and 27.3% at 45 cm. The results show that, even though the vineyard is located in a relatively small area, soil heterogeneity is present, affecting the water flow along the hillslope. This suggests the importance of observing water movement in the soil, especially today when facing extreme weather (e.g., short-term high-intensity rainfall events) in order to protect soil and water resources. Full article
(This article belongs to the Special Issue Ecosystem Disturbances and Soil Properties)
Show Figures

Figure 1

18 pages, 7820 KiB  
Article
The Loss of Soil Parent Material: Detecting and Measuring the Erosion of Saprolite
by Daniel L. Evans, Bernardo Cândido, Ricardo M. Coelho, Isabella C. De Maria, Jener F. L. de Moraes, Anette Eltner, Letícia L. Martins and Heitor Cantarella
Soil Syst. 2024, 8(2), 43; https://doi.org/10.3390/soilsystems8020043 - 9 Apr 2024
Cited by 2 | Viewed by 3210
Abstract
Soil parent material is a fundamental natural resource for the generation of new soils. Through weathering processes, soil parent materials provide many of the basic building blocks for soils and have a significant bearing on the physico-chemical makeup of the soil profile. Parent [...] Read more.
Soil parent material is a fundamental natural resource for the generation of new soils. Through weathering processes, soil parent materials provide many of the basic building blocks for soils and have a significant bearing on the physico-chemical makeup of the soil profile. Parent materials are critical for governing the stock, quality, and functionality of the soil they form. Most research on soil parent materials to date has aimed to establish and measure the processes by which soil is generated from them. Comparatively little work has been performed to assess the rates at which soil parent materials erode if they are exposed at the land surface. This is despite the threat that the erosion of soil parent materials poses to the process of soil formation and the loss of the essential ecosystem services those soils would have provided. A salient but unanswered question is whether the erosion of soil parent materials, when exposed at the land surface, outpaces the rates at which soils form from them. This study represents one of the first to detect and measure the loss of soil parent material. We applied Uncrewed Aerial Vehicle Structure-From-Motion (UAV-SfM) photogrammetry to detect, map, and quantify the erosion rates of an exposed saprolitic (i.e., weathered bedrock) surface on an agricultural hillslope in Brazil. We then utilized a global inventory of soil formation to compare these erosion rates with the rates at which soils form in equivalent lithologies and climatic contexts. We found that the measured saprolite erosion rates were between 14 and 3766 times faster than those of soil formation in similar climatic and lithological conditions. While these findings demonstrate that saprolite erosion can inhibit soil formation, our observations of above-ground vegetation on the exposed saprolitic surface suggests that weathered bedrock has the potential to sustain some biomass production even in the absence of traditional soils. This opens up a new avenue of enquiry within soil science: to what extent can saprolite and, by extension, soil parent materials deliver soil ecosystem services? Full article
Show Figures

Figure 1

14 pages, 3577 KiB  
Article
Infiltration-Based Variability of Soil Erodibility Parameters Evaluated with the Jet Erosion Test
by Aaron A. Akin, Gia Nguyen and Aleksey Y. Sheshukov
Water 2024, 16(7), 981; https://doi.org/10.3390/w16070981 - 28 Mar 2024
Cited by 1 | Viewed by 1592
Abstract
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes for better mitigation. It is imperative to accurately predict soil erosion [...] Read more.
Soil erosion by water on agricultural hillslopes leads to numerous environmental problems including reservoir sedimentation, loss of agricultural land, declines in drinking water quality, and requires deep understanding of underlying physical processes for better mitigation. It is imperative to accurately predict soil erosion caused by overland flow processes so that soil conservation efforts can be undertaken proactively before large-scale sedimentation problems arise. Soil detachment is often described by the excess shear stress equation that contains two physical soil erodibility parameters, erodibility coefficient, and critical shear stress. These parameters are normally assumed to be constant but can change across varying soil texture classes as well as during surface runoff events due to changes in soil cohesion and potential dependency on soil moisture content. These changes may significantly affect soil erosion rates at the field and watershed scale. In this study, the erodibility parameters of three soil types (sandy loam, clay loam, and silty clay loam) were analyzed using a laboratory mini-Jet Erosion Test (JET) to determine the effect of soil sample infiltration and moisture condition. Results from the experiments depicted a dynamic relationship between the soil erodibility parameters and amount of infiltrated mass of water. Data analysis displayed that for soils of different texture critical shear stress exhibited local minimum with higher values for very dry and saturated soils, while erodibility coefficient tended to increase with the increase of mass of soil water. Utilizing these dynamic soil erodibility parameters did not result in a significant difference in soil erosion rates when compared to using the averaged soil erodibility parameters taken from the experiment but the range of potential erosion rates increases with the increase of applied sheer stress to soil surface. The erosion rates with the experiment-based coefficients were found to be higher than with the baseline WEPP-based coefficients. These results highlight the importance of evaluating the effect of intrastorm dependent factors during surface runoff events, such as antecedent soil moisture content, time to peak from the start of runoff, soil cohesion, etc., on soil erodibility parameters to accurately calculate erosion rates, especially for initially dry soils or during earlier stages of surface runoff when critical shear stresses were highly affected. Further assessment of such factors with JET or other laboratory and field tests is recommended. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

24 pages, 13116 KiB  
Article
Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds
by Seung Sook Shin, Sang Deog Park and Gihong Kim
Remote Sens. 2024, 16(5), 932; https://doi.org/10.3390/rs16050932 - 6 Mar 2024
Cited by 7 | Viewed by 2905
Abstract
The second-largest wildfire in the history of South Korea occurred in 2022 due to strong winds and dry climates. Quantitative evaluation of soil erosion is necessary to prevent subsequent sediment disasters in the wildfire areas. The erosion rates in two watersheds affected by [...] Read more.
The second-largest wildfire in the history of South Korea occurred in 2022 due to strong winds and dry climates. Quantitative evaluation of soil erosion is necessary to prevent subsequent sediment disasters in the wildfire areas. The erosion rates in two watersheds affected by the wildfires were assessed using the revised universal soil loss equation (RUSLE), a globally popular model, and the soil erosion model for mountain areas (SEMMA) developed in South Korea. The GIS-based models required the integration of maps of the erosivity factor, erodibility factor, length and slope factors, and cover and practice factors. The rainfall erosivity factor considering the 50-year and 80-year probability of rainfall increased from coastal to mountainous areas. For the LS factors, the traditional version (TV) was initially used, and the flow accumulation version (FAV) was additionally considered. The cover factor of the RUSLE and the vegetation index of the SEMMA were calculated using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images acquired before and after the wildfire. After one year following the wildfire, the NDVI increased compared to during the year of the wildfire. Although the RUSLE considered a low value of the P factor (0.28) for post-fire watersheds, it overestimated the erosion rate by from 3 to 15 times compared to the SEMMA. The erosion risk with the SEMMA simulation decreased with the elapsed time via the vegetation recovery and stabilization of topsoil. While the FAV of RUSLE oversimulated by 1.65~2.31 times compared to the TV, the FAV of SEMMA only increased by 1.03~1.19 times compared to the TV. The heavy rainfall of the 50-year probability due to Typhoon Khanun in 2023 generated rill and gully erosions, landslides, and sediment damage in the post-fire watershed on forest roads for transmission tower construction or logging. Both the RUSLE and SEMMA for the TV and FAV predicted high erosion risks for disturbed hillslopes; however, their accuracy varied in terms of the intensity and extent. According to a comparative analysis of the simulation results of the two models and the actual erosion situations caused by heavy rain, the FAV of SEMMA was found to simulate spatial heterogeneity and a reasonable erosion rate. Full article
(This article belongs to the Special Issue Remote Sensing of Soil Erosion in Forest Area)
Show Figures

Graphical abstract

16 pages, 5206 KiB  
Article
Characteristics of the Sediment Transport Process in Vegetation Hillslopes under Different Flow Rates
by Mingjie Luo, Chengzhong Pan, Jun Peng and Li Wang
Water 2023, 15(16), 2922; https://doi.org/10.3390/w15162922 - 13 Aug 2023
Cited by 3 | Viewed by 1571
Abstract
Vegetation filter strips (VFSs) have always been an important measure to control agricultural soil erosion, especially in mountainous and hilly areas with more sloping farmland. To investigate the mechanism of the sediment-trapping process by VFSs, a series of tests were conducted with four [...] Read more.
Vegetation filter strips (VFSs) have always been an important measure to control agricultural soil erosion, especially in mountainous and hilly areas with more sloping farmland. To investigate the mechanism of the sediment-trapping process by VFSs, a series of tests were conducted with four gradients of flow rate, 7.5–45 L min−1 m−1, and two different sediment concentrations of 40 and 120 g L−1. The whole process of overland flow was monitored, and sediment and particle size samples from the inflow and outflow were collected and measured. The results showed that the changes in sediment concentration did not significantly affect the corresponding coefficients in the power function relationship between overland flow rate and velocity. Using the Reynolds number alone cannot effectively indicate the flow pattern of overland flow on vegetation hillslopes. The peak particle size and linear function were effective in describing the relationship between sediment particle composition and delivery rate during the sediment-trapping process by VFSs. During the sediment-trapping process, the sediment-trapping capacity of VFSs continued to decrease. The increase in sediment discharge was accompanied by a higher proportion of coarse particles. Under the same flow rate conditions, when the sediment concentration was higher, the coarse particles and their proportion also increased faster. Therefore, using only a certain particle size threshold to distinguish suspended and transported sediment may lead to inaccurate estimation of the sediment-trapping performance of VFSs. This study deepened the understanding of the mechanism of water–sediment processes on vegetation hillslopes and promoted the widespread and efficient application of VFSs management technology. Full article
Show Figures

Figure 1

13 pages, 2217 KiB  
Article
Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil
by Edivaldo L. Thomaz and Julliane P. Kurasz
Soil Syst. 2023, 7(2), 60; https://doi.org/10.3390/soilsystems7020060 - 7 Jun 2023
Cited by 5 | Viewed by 2416
Abstract
In the 1960s, a conservationist agricultural practice known as a “no-tillage system” was adopted. Several benefits such as soil erosion reduction and soil carbon sequestration, among others, could be ascribed to no-till systems. Therefore, it is important to evaluate the long-term sustainability of [...] Read more.
In the 1960s, a conservationist agricultural practice known as a “no-tillage system” was adopted. Several benefits such as soil erosion reduction and soil carbon sequestration, among others, could be ascribed to no-till systems. Therefore, it is important to evaluate the long-term sustainability of this agricultural system in different environments. This study has the objective to evaluate the soil organic carbon dynamic in a no-till system (40-year) and on a rolling landscape in Southern Brazil. A systematic grid with four transversal–longitudinal transects was used for soil sampling. Soil samples from 0–20, 20–40, and 40–60 cm depths were collected (16 trenches × 3 depths × 1 sample per soil layer = 48), and a forest nearby was used as control (4 trenches × 3 depths × 1 sample = 12). The soil at the forest site showed 20% more carbon stock than no-till at the 0–20 cm soil depth. However, the entire no-till soil profile (0–60 cm) showed similar soil carbon as forest soil. The soil carbon stock (0–20 cm) in no-till was depleted at a rate of 0.06 kg C m−2 year−1, summing up to a carbon loss of 2.43 kg C m−2. In addition, the non-uniform hillslope affected the soil carbon redistribution through the landscape, since the convex hillslope was more depleted in carbon by 37% (15.87 kg C m−2) when compared to the concave sector (25.27 kg C m−2). On average, the soil carbon loss in the subtropical agroecosystem was much lower than those reported in literature, as well as our initial expectations. In addition, the no-till system was capable of preserving soil carbon in the deepest soil layers. However, presently, the no-till system is losing more carbon in the topsoil at a rate greater than the soil carbon input. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation)
Show Figures

Figure 1

16 pages, 3272 KiB  
Article
Laboratory-Scaled Investigation into Combined Impacts of Temporal Rainfall Patterns and Intensive Tillage on Soil and Water Loss
by Yong Wang, Yulian Jin, Jiaqi Wang, Zhenzhen Ma, Xing Liu and Xinlan Liang
Agronomy 2023, 13(6), 1472; https://doi.org/10.3390/agronomy13061472 - 26 May 2023
Cited by 5 | Viewed by 2090
Abstract
Many studies have focused on the impacts of rainfall duration and intensity, while overlooking the role of rainfall patterns on intensive tillage erosion in hilly agricultural landscapes. The objective of this study was to determine the combined effects of rainfall patterns and tillage [...] Read more.
Many studies have focused on the impacts of rainfall duration and intensity, while overlooking the role of rainfall patterns on intensive tillage erosion in hilly agricultural landscapes. The objective of this study was to determine the combined effects of rainfall patterns and tillage erosion on surface runoff and soil loss on sloping farmland in the purple soil area of China. Five simulated rainfall patterns (constant, rising, falling, rising–falling, and falling–rising) with the same total precipitation were designed, and the intensive tillage treatment (IT) and no-tillage treatment (NT) were subjected to simulated rainfall using rectangular steel tanks (2 m × 5 m) with a slope of 15°. To analyse the differences in the hydrological characteristics induced by tillage erosion, we calculated the flow velocity (V), Reynolds number (Re), Froude number (Fr), and Darcy–Weisbach resistance coefficient (f). The results indicate that significant differences in surface runoff and sediment yield were found among different rainfall patterns and rainfall stages (p < 0.05). The falling pattern and falling–rising pattern had a shorter time gap between the rainfall initiation and runoff occurrence as well as a larger sediment yield than those of the other rainfall patterns. The value of f varied from 0.30 to 9.05 for the IT and 0.48 to 11.57 for the NT and exhibited an approximately inverse trend to V and Fr over the course of the rainfall events. Compared with the NT, the mean sediment yield rates from the IT increased the dynamic range of 8.34–16.21% among the different rainfall patterns. The net contributions of the IT ranged from 2.77% to 46.39% in terms of surface runoff and 10.14–78.95% in terms of sediment yield on sloping farmland. The surface runoff and sediment yield were positively correlated with rainfall intensity, V, and Fr, but negatively correlated with f irrespective of tillage operation (p < 0.05). The results showed that the tillage erosion effects on soil and water loss were closely related to rainfall patterns in hilly agricultural landscapes. Our study not only sheds light on the mechanism of tillage erosion and rainfall erosion but also provides useful insights for developing tillage water erosion prediction models to evaluate soil and water loss on cultivated hillslopes. Full article
Show Figures

Figure 1

15 pages, 1478 KiB  
Article
Modified Numerical Method for Improving the Calculation of Rill Detachment Rate
by Yuhan Huang, Mingquan Zhao, Dan Wan, Tingwu Lei, Fahu Li and Wei Wang
Water 2023, 15(10), 1875; https://doi.org/10.3390/w15101875 - 15 May 2023
Viewed by 2141
Abstract
A rational calculation of the rill detachment rate (RDR) and an accurate simulation of the rill detachment process are important for determining the model parameters of hillslope erosion. Here, we found a difference between RDRs calculated using different methods that cannot be ignored. [...] Read more.
A rational calculation of the rill detachment rate (RDR) and an accurate simulation of the rill detachment process are important for determining the model parameters of hillslope erosion. Here, we found a difference between RDRs calculated using different methods that cannot be ignored. This study proposes a modified numerical method based on the dataset of the measured sediment concentrations along the rill length over a saturated loess soil slope to improve the calculation of RDR. For the saturated loess soil slope, the modified numerical RDR reduced the relative error from 58.3% to 4.6%, thereby demonstrating the efficiency of the modified numerical method. Furthermore, datasets of previous studies on different soil types and rill width verified the accuracy and applicability of the modified numerical method. A measurement strategy with more sampling points set at the forepart of the rill is proposed to enhance the calculation accuracy of RDR in accordance with the absolute error distribution between numerical and modified numerical RDRs. This study contributes to the literature by correcting previous data, improving data for subsequent measurements, and supplying a basis for the accurate estimation of RDR for rill erosion modeling. Full article
(This article belongs to the Special Issue Rainfall and Water Flow-Induced Soil Erosion-Volume 2.0)
Show Figures

Figure 1

12 pages, 5939 KiB  
Communication
Study of a Steady-State Landscape Using Remote Sensing and Topographic Analysis
by Xueliang Wang, Yanjie Zhang, John J. Clague, Songfeng Guo, Qisong Jiao, Junfei Wang, Juanjuan Sun, Wenxin Fang and Shengwen Qi
Remote Sens. 2023, 15(10), 2583; https://doi.org/10.3390/rs15102583 - 15 May 2023
Viewed by 2034
Abstract
The current limited approaches to calculating hillslope erosion rate hamper the study of the relationships among the rates of hillslope erosion, river incision, and tectonic uplift and hence the discussion of steady-state landscape evolution. In this paper, we use remote sensing and geochronological [...] Read more.
The current limited approaches to calculating hillslope erosion rate hamper the study of the relationships among the rates of hillslope erosion, river incision, and tectonic uplift and hence the discussion of steady-state landscape evolution. In this paper, we use remote sensing and geochronological methods to calculate the upper and lower bounding hillslope erosion rates in the Qilian Shan range, Tibet. Our analysis focuses on five convex landslide sediment units derived from the weathered hillslopes at Qingyang Mountain on the tectonically active northeastern Tibetan Plateau. These sediment units range in thickness from 5.5 to 12.8 m and in volume from 119 × 103 to 260 × 103 m3. Based on field observations, measurements extracted from high-resolution DEMs, and optical stimulated luminescence (OSL) ages on fluvial terraces, we obtain lower and upper bounding rates of 0.13 ± 0.03 and 0.21 ± 0.04 mm/yr, respectively. Finally, we calculate incision rates, ranging from 0.21 ± 0.02 to 0.39 ± 0.01 mm/yr, from heights of a dated fluvial terrace above the present river and the time of abandonment of the associated bedrock strath estimated from OSL ages. The rates of hillslope erosion and river incision at Qingyang Mountain and the tectonic uplift of the Qilian Mountains are estimated to be within a factor of two over the past 117 ka, suggesting that a state of dynamic equilibrium has likely existed on this timescale. Full article
Show Figures

Graphical abstract

12 pages, 1620 KiB  
Article
Response of Soil Detachment Rate to Sediment Load and Model Examination: A Key Process Simulation of Rill Erosion on Steep Loessial Hillslopes
by Nan Shen, Zhanli Wang, Fengbao Zhang and Chunhong Zhou
Int. J. Environ. Res. Public Health 2023, 20(4), 2839; https://doi.org/10.3390/ijerph20042839 - 6 Feb 2023
Cited by 6 | Viewed by 2025
Abstract
The rate of soil detachment by water flow indicates soil erosion intensity directly. The exact relation between soil detachment rate and actual sediment load in water flow, however, is still unclear, and the existing relationships have not been adequately tested. The aims of [...] Read more.
The rate of soil detachment by water flow indicates soil erosion intensity directly. The exact relation between soil detachment rate and actual sediment load in water flow, however, is still unclear, and the existing relationships have not been adequately tested. The aims of the present study were to investigate the response of soil detachment rate to sediment load using rill flume data with loessial soil and to quantitatively examine the soil detachment equations in the WEPP and EUROSEM soil erosion models. Six slopes were combined with seven flow discharges to measure detachment rates under seven sediment loads using a rill flume with a soil-feeding hopper. Significant differences were found among the soil detachment rate by different sediment loads in low sediment load levels, but an insensitive response of soil detachment rate to sediment load was found under high levels of sediment load. The soil detachment rate was proved to be negatively linearly correlated with sediment load. The rill detachment equation in the WEPP model predicted the soil detachment rate by rill flow very well under our experiment condition. The soil detachment equation in the EUROSEM model underestimated the detachment rates under controlled conditions, but removing the setting velocity from the equation greatly improved prediction. Further experiments that could reflect the dynamic convective detachment and deposition process need to be conducted to compare with the present examination results and to further understand rill erosion processes. Full article
(This article belongs to the Special Issue Soil Degradation, Soil Remediation and Sustainable Development)
Show Figures

Figure 1

14 pages, 14058 KiB  
Article
Measuring Sediment Transport Capacity of Concentrated Flow with Erosion Feeding Method
by Liqin Qu, Tingwu Lei, Chenyan Zhou and Xiusheng Yang
Land 2023, 12(2), 411; https://doi.org/10.3390/land12020411 - 3 Feb 2023
Cited by 5 | Viewed by 2298
Abstract
Sediment transport capacity in rills is an important parameter for erosion modeling on hillslopes. It is difficult to measure, especially at gentle slopes with limited rill length. In this study, a special flume with variable slope gradients in upper and lower sections was [...] Read more.
Sediment transport capacity in rills is an important parameter for erosion modeling on hillslopes. It is difficult to measure, especially at gentle slopes with limited rill length. In this study, a special flume with variable slope gradients in upper and lower sections was implemented to measure the sediment transport capacity. The upper flume section with a higher slope gradient generates faster water flow that could scout more sediment to feed the water flow in the rill. The rest of the flume is set at the designated slopes to measure the transport capacity in different slope and runoff conditions. A series of flume experiments were conducted with silt-loam soil to verify the method. The sediment transport capacity was measured under slope gradients of 5°, 10°, 15°, 20°, and 25° and a flow rate of 2, 4, 8, and 16 L min−1. The measured sediment transport capacity values were compared with reference measurements from other rill erosion experiments with similar materials and setups. At high slope gradients of 15°, 20°, and 25°, the newly suggested method produced almost the same transport capacity values. Under the low slope gradients of 5° and 10°, the maximum sediment concentrations from the 8 m long flume with the uniform gradients in the previous experiments, rill erosion with an 8 m long flume produced were about 36% lower than the values measured with the new method, which is insufficient to make the flow reach sediment transport capacity. The sediment transport capacities at lower slopes measured with the new method followed the same trend as those at higher slopes. The new method can supply enough sediments to ensure the flow approach transport capacity measurement and, therefore, provides a feasible approach for estimating sediment transport capacity for conditions with relatively gentle slopes. Full article
Show Figures

Figure 1

14 pages, 1499 KiB  
Article
Impacts of Grass Coverage and Arrangement Patterns on Runoff and Sediment Yield in Slope-Gully System of the Loess Plateau, China
by Wenfeng Ding, Xiekang Wang, Guanhua Zhang, Xi Meng and Zhiwei Ye
Water 2023, 15(1), 133; https://doi.org/10.3390/w15010133 - 30 Dec 2022
Cited by 7 | Viewed by 2987
Abstract
Both vegetation coverage rates and arrangement patterns have important influences on erosion. Very little previous research focuses on the impacts of spatial vegetation distribution patterns on erosion. The slope-gully system was taken as the research object, which is composed of a 5.0 m [...] Read more.
Both vegetation coverage rates and arrangement patterns have important influences on erosion. Very little previous research focuses on the impacts of spatial vegetation distribution patterns on erosion. The slope-gully system was taken as the research object, which is composed of a 5.0 m long hillslope with a slope gradient of 20° and a 3.0 m long gully slope with a gradient of 50°. A series of scouring experiments with two inflow discharges (3.2 L min−1, 5.2 L min−1) was carried out. The effects of the flow discharges, spatial grass arrangement patterns (US, MS, and DS represent the presence of grass covering on up-hillslope, middle-hillslope, and down-hillslope, respectively) and grass coverage rates (0%, 30%, 50%, 70%, and 90%) on runoff and sediment were studied in this paper. The results indicated that either runoff or sediment yielding was significantly decreased with the grass coverage rates increasing and with the variation of grass arrangement patterns on a hillslope. While grass coverage had more effectiveness in controlling erosion compared with runoff reduction, and DS can control erosion more effectively than US and MS erosion controlling. For the gully slope, erosion significantly increased with the grass coverage rates increasing no matter how the grass arrangement patterns on the hillslope. Therefore, both different grass coverage and different grass arrangement patterns have an influence on erosion processes; any research that only takes care of the single factor mentioned above is not enough to reveal the effects of grass on erosion. In the process of erosion control in the Loess Plateau, taking effective measures both on the hillslope and gully slope will be effective methods of reducing soil erosion. Full article
(This article belongs to the Special Issue Flash Floods: Forecasting, Monitoring and Mitigation Strategies)
Show Figures

Figure 1

22 pages, 7182 KiB  
Article
Late-Holocene Sediment Storage in Upland Valley Systems in the Gamo Highlands of Southern Ethiopia
by Alemayehu Kasaye Tilahun, Gert Verstraeten, Margaret Chen, Guchie Gulie, Femke Augustijns and Ward Swinnen
Quaternary 2022, 5(4), 46; https://doi.org/10.3390/quat5040046 - 4 Nov 2022
Viewed by 2122
Abstract
Part of the eroded soil material from the hillslopes is temporarily stored on hillslopes and in river valleys as colluvial and alluvial storage, respectively. This storage component of a catchment’s sediment budget is an important archive reflecting past erosion and sediment delivery processes [...] Read more.
Part of the eroded soil material from the hillslopes is temporarily stored on hillslopes and in river valleys as colluvial and alluvial storage, respectively. This storage component of a catchment’s sediment budget is an important archive reflecting past erosion and sediment delivery processes in relation to both natural and anthropogenic environmental changes. Information on long-term sediment dynamics (i.e., centennial to millennial timescales) is generally lacking for tropical mountain environments. Here, we quantify long-term floodplain sediment storage and sedimentation dynamics in the Gamo highlands of the southern Ethiopia Rift Valley. In two upstream catchments (Chencha and Dembelle), a detailed survey of the floodplain sediment archive was conducted through hand augering of 37 cross-valley transects. Sediment thicknesses vary between 4 and 8 m and total storage equals 0.03 Mt ha−1 floodplain area for the Chencha area and 0.05 Mt ha−1 floodplain area for the Dembelle area. Radiocarbon dating of organic material retrieved from the sediment archives provided a temporal framework for interpretation of sedimentation processes dynamic. The mean sedimentation rate in the Chencha floodplain is ~3.22 ± 0.33 kt ha−1 catchment area, whereas it is ~3.76 ± 0.22 kt ha−1 catchment area for the Dembelle floodplain. Up to 70% of the total sediment mass is stored in the floodplains within the most recent 2000 years. Cumulative probability function plots of radiocarbon dates show that sedimentation started to increase from ca 2000 to ca 1600 cal BP, roughly coincident with an increase in human presence, as is indicated through archaeological data. Full article
Show Figures

Figure 1

Back to TopTop