Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Soil Erosion Models
2.2.1. RUSLE and SEMMA
2.2.2. Rainfall Erosivity Factor
2.2.3. Cover and Practice Factors
2.2.4. Soil Factor
2.2.5. Topography Factor
2.2.6. Simulation of Models
3. Results
3.1. Estimation of Erosion Rate
3.2. Evaluation of Erosion Risk in Wildfire Watersheds
3.3. Estimation of Models Considering Flow Accumulation
4. Discussions
4.1. Effect of Heavy Rainfall in Post-Fire Watersheds
4.2. Comparison of TVs and FAVs of RUSLE and SEMMA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Binskin, M.; Bennett, A.; Macintosh, A. Royal Commission into Natural Disaster Arrangements; Commonwealth of Australia: Sydney, Australia, 2020; p. 115. ISBN ISBN 978-1-921091-46-9. Available online: https://nla.gov.au/nla.obj-2916701335/view (accessed on 25 January 2021).
- Haque, M.K.; Azad, M.A.K.; Hossain, M.Y.; Ahmed, T.; Uddin, M.; Hossain, M.M. Wildfire in Australia during 2019–2020, Its Impact on Health, Biodiversity and Environment with Some Proposals for Risk Management: A Review. J. Environ. Prot. 2021, 12, 391–414. [Google Scholar] [CrossRef]
- Canadian Interagency Forest Fire Centre. National Fire Situation Reports (Archive); Canadian Interagency Forest Fire Centre: Winnipeg, MB, Canada, 2023. [Google Scholar]
- Alexander, H.; Moir, N. The monster’: A short history of Australia’s biggest forest fire. Sydney Morning Herald, 20 December 2019. [Google Scholar]
- Prociv, K. Pacific Northwest heat wave continues after historic weekend. NBC News, 16 May 2023. [Google Scholar]
- Leonard, D. Experts see climate change fingerprint in worsening heat waves and fires. The Washington Post, 18 May 2023. [Google Scholar]
- FAO. Global forest fire assessment 1990–2000. Forest Resources Assessment Programme. Working Paper No. 55. 2001. Available online: https://www.fao.org/forestry/fo/fra/docs/Wp55eng.pdf (accessed on 9 April 2014).
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U. S. ecoprovinces, 1916-2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Filkov, A.I.; Ngo, T.; Matthews, S. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Flannigan, M.; Cantin, A.S.; De Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Baek, S.; Lim, J.; Kim, W. Analysis on the Fire Progression and Severity Variation of the Massive Forest Fire Occurred in Uljin, Korea, 2022. Forests 2022, 13, 2185. [Google Scholar] [CrossRef]
- Pelletier, J.D.; Brad Murray, A.; Pierce, J.L.; Bierman, P.R.; Breshears, D.D.; Crosby, B.T.; Ellis, M.E.; Foufoula-Georgiou, A.; Heimsath, M.; Houser, C. Forecasting the response of Earth’s surface to future climatic and land use changes: A review of methods and research needs. Earth’s Future 2015, 3, 220–251. [Google Scholar] [CrossRef]
- Sankey, J.B.; Kreitler, J.; Hawbaker, T.J.; McVay, J.L.; Miller, M.E.; Mueller, E.R.; Vaillant, N.M.; Lowe, S.E.; Sankey, T.T. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds Geophys. Res. Lett. 2017, 44, 8884–8892. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Coscarelli, R.; Aguilar, E.; Petrucci, O.; Vicente-Serrano, S.M.; Zimbo, F. The Potential Role of Climate Indices to Explain Floods, Mass-Movement Events and Wildfires in Southern Italy. Climate 2021, 9, 156. [Google Scholar] [CrossRef]
- Gründemann, G.J.; van de Giesen, N.; Brunner, L.; van der Ent, R. Rarest rainfall events will see the greatest relative increase in magnitude under future climate change. Commun. Earth Environ. Vol. 2022, 3, 235. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadisc, E.; Panagosa, P. Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. CATENA 2020, 187, 104320. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, Y.S.; Graña, A.M.; Santos- Francés, F. Remote Sensing Calculation of the Influence of Wildfire on Erosion in High Mountain Areas. Agronomy 2021, 11, 1459. [Google Scholar] [CrossRef]
- Tselka, I.; Krassakis, P.; Rentzelos, A.; Koukouzas, N.; Parcharidis, I. Assessing Post-Fire Effects on Soil Loss Combining Burn Severity and Advanced Erosion Modeling in Malesina, Central Greece. Remote Sens. 2021, 13, 5160. [Google Scholar] [CrossRef]
- Chéret, V.; Denux, J.P. Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data. J. Geophys. Res. 2007, 112, G02006. [Google Scholar] [CrossRef]
- Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. Int. J. Remote Sens. 2011, 32, 7905–7927. [Google Scholar] [CrossRef]
- Leon, J.R.R.; Van Leeuwen, W.J.D.; Casady, G.M. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments. Remote Sens. 2012, 4, 598–621. [Google Scholar] [CrossRef]
- Ryu, J.H.; Han, K.S.; Hong, S.; Park, N.W.; Lee, Y.W.; Cho, J. Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea. Remote Sens. 2018, 10, 918. [Google Scholar] [CrossRef]
- Argentiero, I.; Ricci, G.F.; Elia, M.; D’Este, M.; Giannico, V.; Ronco, F.V.; Gentile, F.; Sanesi, G. Combining methods to estimate post-fire soil erosion using remote sensing data. Forests 2021, 12, 1105. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture Handbook 703; US Department of Agriculture-Agricultural Search Service: Washington, DC, USA, 1997. [Google Scholar]
- Drake, N.A.; Zhang, X.; Berkhout, E.; Bonifacio, R.; Grimes, D.; Wainwright, J.; Mulligan, M. Modeling soil erosion at global and regional scales using remote sensing and GIS techniques. In Spatial Analysis for Remote Sensing and GIS; Atkinson, P., Ed.; Wiley: London, UK, 1998; pp. 241–261. [Google Scholar]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk in Italy; EUR 19022 EN; Office for Official Publications of the European Communities: Luxembourg, 1999. [Google Scholar]
- Lim, K.J.; Sagong, M.; Engel, B.A.; Tang, Z.; Choi, J.; Kim, K.S. GIS-based Sediment Assessment Tool. Catena 2005, 64, 61–80. [Google Scholar] [CrossRef]
- De Asis, A.M.; Omasa, K. Estimation of vegetation parameter for modeling soil erosion using linear spectral mixture analysis of landsat ETM data. J. Photogramm. Remote Sens. 2007, 62, 309–324. [Google Scholar] [CrossRef]
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Ban, J.K.; Yu, I.; Jeong, S. Estimation of Soil Erosion Using RUSLE Model and GIS Techniques for Conservation Planning from Kulekhani Reservoir Catchment, Nepal. J. Korean Soc. Hazard Mitig. 2016, 16, 323–330. [Google Scholar] [CrossRef]
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef]
- Jazouli, A.E.; Barakat, A.; Ghafri, A.; Moutaki, S.E.; Ettaqy, A.; Khellouk, R. Soil erosion modeled with USLE, GIS, and remote sensing: A case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 2017, 4, 25. [Google Scholar] [CrossRef]
- Park, S.D.; Lee, K.S.; Shin, S.S. Statistical Soil Erosion Model for Burnt Mountain Areas in Korea-RUSLE Approach. J. Hydrol. Eng. 2012, 17, 292–304. [Google Scholar] [CrossRef]
- Park, S.D.; and Shin, S.S. Evaluation for Application of Soil Erosion Models in Burnt Hillslopes—RUSLE, WEPP, and SEMMA. KSCE J. Civ. Environ. Eng. Res. 2011, 31, 221–232. [Google Scholar]
- Shin, S.S.; Park, S.D.; Lee, J.S.; Lee, K.S. SEMMA revision to evaluate soil erosion on mountainous watershed of large scale. KSCE J. Civ. Environ. Eng. Res. 2013, 46, 885–896. [Google Scholar]
- Shin, S.S.; Park, S.D.; Kim, G. Risk Assessment of Soil Erosion Using a GIS-Based SEMMA in Post-Fire and Managed Watershed. Sustainability 2022, 14, 7339. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C.G.; Lee, K.S.; Choung, Y. Effects of Post-Fire Vegetation Recovery on Soil Erosion in Vulnerable Montane Regions in a Monsoon Climate: A Decade of Monitoring. J. Plant Biol. 2021, 64, 123–133. [Google Scholar] [CrossRef]
- Kim, J.C.; Koh, H.J.; Lee, S.R.; Lee, C.B.; Choi, S.J.; Park, G.H. Explanatory Note of the Gangreung-Sokcho Sheet; Korea Institute of Geoscience and Mineral Resources: Daejeon, Republic of Korea, 2001. [Google Scholar]
- U.S. Department of Agriculture. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; Agriculture Handbook 436; U.S. Department of Agriculture: Washington, DC, USA, 1975. [Google Scholar]
- The National Atlas of Korea II. 2020. Available online: https://nationalatlas.ngii.go.kr/pages/page_2298.php (accessed on 31 December 2020).
- Shin, S.S.; Park, S.D.; Lee, S.K.; Ji, M.G. Estimating critical stream power by the distribution of gravel-bed materials in the meandering river. J. Korea Water Resour. Assoc. 2012, 45, 151–163. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; and Lee, K.S. Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed. J. Hydrol. 2013, 499, 154–166. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar]
- Heusch, B. L’érosion du Pré-Rif. Une étude quantitative de l’érosion hydraulique dans les collines marneuses du Pré-Rif occidental. Ann. De Pech. For. De Maroc 1970, 12, 9–176. [Google Scholar]
- Odemerho, F.O. Variation in erosion-slope relationship on cut slopes along a tropical highway. Singap. J. Trop. Geogr. 1986, 7, 98–107. [Google Scholar] [CrossRef]
- Brown, L.C.; Foster, G.R. Storm erosivity using idealized intensity distributions. Trans. ASAE 1987, 30, 379–386. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Bruijnzeel, L.A.; Rosewell, C.J. Rainfall intensity-kinetic energy relationships. J. Hydrol. 2002, 261, 1–23. [Google Scholar] [CrossRef]
- Gonzalez-Hidalgo, J.C.; Batalla, R.J.; Cerda, A.; de Luis, M. A regional analysis of the effects of largest events on soil erosion. Catena 2012, 95, 85–90. [Google Scholar] [CrossRef]
- Ministry of Environment. Development of Program for Rainfall Frequency Analysis; Report of Republic of Korea; Ministry of Environment: Sejong, Republic of Korea, 2020. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; p. 1008. [Google Scholar]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Tian, P.; Zhu, Z.; Yue, Q.; He, Y.; Zhang, Z.; Hao, F. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. Int. Soil Water Conserv. Res. 2021, 9, 433–444. [Google Scholar] [CrossRef]
- Yariv, S. Comments on the mechanism of soil detachment by rainfall. Geoderma 1976, 15, 393–399. [Google Scholar] [CrossRef]
- Poesen, J. Rainwash experiments on the erodibility of loose sediments. Earth Surf. Process. Landf. 1981, 6, 285–307. [Google Scholar] [CrossRef]
- Savat, J. Common an uncommon selectivity in the process of fluid transportation: Field observations and laboratory experiments on bare surfaces. CATENA Supplement. 1982, 1, 139–160. [Google Scholar]
- Brakensiek, D.L.; Rawls, W.J.; Stephenson, G.R. Determining the saturated hydraulic conductivity of a soil containing rock fragments. Soil Sci. Soc. Am. J. 1986, 50, 834–835. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479, 189–200. [Google Scholar] [CrossRef]
- Poesen, J.W.; Torri, D.; Bunte, K. Effects of rock fragments on soil erosion by water at different spatial scales: A review. Catena 1994, 23, 141–166. [Google Scholar] [CrossRef]
- Luce, C.H. Forests and wetlands. In Environmental Hydrology; Ward, A.D., Elliot, W.J., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1995; pp. 253–283. [Google Scholar]
- Voroney, R.P.; van Veen, J.A.; Paul, E.A. Organic carbon dynamics in grassland soils. II. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci. 1981, 61, 211–224. [Google Scholar] [CrossRef]
- Ekwue, E.I.; Ohu, J.O. A model to describe soil detachment by rainfall. Soil Tillage Res. 1990, 16, 299–306. [Google Scholar] [CrossRef]
- Quinn, N.W.; Morgan, R.P.C.; Smith, A.J. Simulation of soil erosion induced by human trampling. J. Environ. Manag. 1980, 10, 155–165. [Google Scholar]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Wilkinson, M.T.; Humphreys, G.S. The soil protection function: A brief history and its rediscovery. Geoderma 2007, 139, 73–78. [Google Scholar]
- National Institute of Agricultural Sciences, RDA. Korean Soil Information System. 2016. Available online: https://soil.rda.go.kr/geoweb/soilmain.do# (accessed on 13 April 2022).
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. Am. Soc. Agric. Eng. 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- McCool, D.K.; Foster, G.R.; Weesies, G.A. Slope length and steepness factor. In Predicting Soil Erosion by Water—A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., Eds.; USDA-ARS Special Publication: Washington, DC, USA, 1993; Chapter 4. [Google Scholar]
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope length factor for the Universal Soil Loss Equation. Trans. Am. Soc. Agric. Eng. 1989, 32, 1571–1576. [Google Scholar] [CrossRef]
- Foster, G.R.; Meyer, L.D.; Onstad, D.A. A runoff erosivity factor and variable slope length exponents for soil loss estimates. Trans. Am. Soc. Agric. Eng. 1977, 20, 683–687. [Google Scholar] [CrossRef]
- Scott, D.F.; Van Wyk, D.B. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. J. Hydrol. 1990, 121, 239–256. [Google Scholar] [CrossRef]
- Cerdà, A.; Flanagan, D.C.; Le Bissonnais, Y.; Boardman, J. Soil erosion and agriculture. Soil Tillage Res. 2009, 106, 107–108. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Pierson, F.B.; Williams, C.J. Evaluation of physical erosivity factor for interrill erosion on steep vegetated hillslopes. J. Hydrol. 2019, 571, 559–572. [Google Scholar] [CrossRef]
- Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [Google Scholar] [CrossRef]
- Moore, I.D.; Burch, G.J. Physical basis of the length slope factor in the universal soil loss equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 629–641. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Elnashar, A.; Zeng, H.; Wu, B.; Fenta, A.A.; Nabil, M.; Duerler, R. Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. Sci. Total Environ. 2021, 793, 148466. [Google Scholar] [CrossRef] [PubMed]
- Poesen, J. The influence of slope angle on infiltration rate and Hortonian overland flow volume. Z. Für Geomeorphologie Suppl. 1984, 49, 117–131. [Google Scholar]
- Food and Agriculture Organization of the United Nations [FAO]. Metodologia Provisional para Evaluación de la Degradación de los Suelos; FAO/PNUMA: Rome, Italy; UNEP: Nairobi, Kenya; UNESCO: Paris, France, 1980. [Google Scholar]
- Moody, J.A.; Martin, D.A. Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. Int. J. Wildland Fire 2009, 18, 96–115. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Shin, S.S.; Park, S.D.; Sim, Y.J.; Rye, J.H. Hydraulic conditions of incipient rill by raindrop-induced overland flow on steep slopes of sandy soil. Water 2023, 15, 502. [Google Scholar] [CrossRef]
- Gupta, H.S. Terrain Evaluation for Eco-Restoration using Remote Sensing and GIS. In Proceedings of the 4th AGILE conference on GIScience, Brno, Czech Republic, 19–21 April 2001; pp. 424–434. [Google Scholar]
- Mallinis, G.; Maris, F.; Kalinderis, I.; Koutsias, N. Assessment of Post-fire Soil Erosion Risk in Fire-Affected Watersheds Using Remote Sensing and GIS. GIScience Remote Sens. 2009, 46, 388–410. [Google Scholar] [CrossRef]
Slope (°) | Description | Area Ratio (%) | |
---|---|---|---|
Bugucheon Watershed | Namdaecheon Watershed | ||
<8 | Flat | 11.5 | 16.9 |
8~15 | General | 9.0 | 12.6 |
15~25 | Moderately steep | 22.5 | 25.2 |
25~35 | Steep | 33.0 | 28.7 |
>35 | Very steep | 24.0 | 16.6 |
Rainfall Depth (mm) | Vegetation Index | Multiple Regression Model | Correlation Coefficient r (n) |
---|---|---|---|
Rd > 270 | 0.0 < Ic ≤ 0.7 | Qs = 0.2112 R0.946 Ic−3.1005 S0.719 To−0.473 (3) | r = 0.854 (23) |
0.7 < Ic ≤ 1.0 | Qs = 0.000938 R1.045 Ic−11.651 So−0.4665 To0.530 (4) | r = 0.763 (66) | |
0.0 < Ic ≤ 1.0 | Qs = 0.0111 R1.073 Ic−3.832 So0.478 To0.375 (5) | r = 0.864 (89) |
Probability Frequency (yr) | Rainfall Parameters | RUSLE | SEMMA | ||||||
---|---|---|---|---|---|---|---|---|---|
P (mm) | T (h) | I (mm/h) | I30 (mm/h) | Iave (mm/h) | E (J/m2) | R (J/m/h) | E (J/m2) | R (J/m/h) | |
50 | 271.6 | 24 | 50.9 | 63.6 | 11.32 | 6162 | 392.1 | 6263 | 414.5 |
80 | 292.5 | 24 | 53.7 | 67.1 | 12.19 | 6755 | 453.5 | 6829 | 476.9 |
No. | Land Use | P Factor | Correction Factor |
---|---|---|---|
1 | City | 0.01 | 0.01 |
2 | Agriculture | 0.53 | 1.0 |
3 | Forest | 0.28 | 1.0 |
4 | Pasture | 0.23 | 1.0 |
5 | Wetland | 0.01 | 0.01 |
6 | Bare land | 0.8 | 1.0 |
7 | Water | 0.001 | 0.001 |
Watersheds | Area (ha) | Models | Year | Probability Frequency | Maximum Erosion Rate (t/ha) | Mean Erosion Rate (t/ha) | Total Soil Erosion (kt) | Erosion Ratio |
---|---|---|---|---|---|---|---|---|
Bugucheon | 5458 | RUSLE | 2021 | 50 yr | 269.7 | 2.08 | 11.4 | 1.0 |
80 yr | 314.2 | 2.43 | 13.2 | 1.0 | ||||
2022 | 50 yr | 478.0 | 26.39 | 144.1 | 12.7 | |||
80 yr | 558.0 | 30.77 | 168.0 | 12.7 | ||||
2023 | 50 yr | 495.5 | 22.87 | 124.8 | 11.0 | |||
80 yr | 577.5 | 26.66 | 145.5 | 11.0 | ||||
SEMMA | 2021 | 50 yr | 19.5 | 0.25 | 1.4 | 1.0 | ||
80 yr | 22.8 | 0.29 | 1.6 | 1.0 | ||||
2022 | 50 yr | 502.9 | 7.91 | 43.2 | 31.6 | |||
80 yr | 588.0 | 9.31 | 50.8 | 31.7 | ||||
2023 | 50 yr | 220.4 | 3.45 | 18.8 | 13.8 | |||
80 yr | 259.1 | 4.05 | 22.1 | 13.8 | ||||
Namdaecheon | 12,748 | RUSLE | 2021 | 50 yr | 343.5 | 1.62 | 20.7 | 1.0 |
80 yr | 397.2 | 1.88 | 24.0 | 1.0 | ||||
2022 | 50 yr | 659.0 | 14.54 | 185.3 | 9.0 | |||
80 yr | 762.2 | 16.88 | 215.2 | 9.0 | ||||
2023 | 50 yr | 643.8 | 14.69 | 187.2 | 9.1 | |||
80 yr | 744.7 | 17.06 | 217.4 | 9.1 | ||||
SEMMA | 2021 | 50 yr | 86.2 | 0.11 | 1.4 | 1.0 | ||
80 yr | 100.3 | 0.13 | 1.6 | 1.0 | ||||
2022 | 50 yr | 247.6 | 2.91 | 37.1 | 27.0 | |||
80 yr | 288.1 | 3.41 | 43.4 | 27.1 | ||||
2023 | 50 yr | 230.4 | 1.79 | 22.9 | 16.7 | |||
80 yr | 269.5 | 2.09 | 26.7 | 16.7 |
Watersheds | Area (ha) | Models | Probability Frequency | Maximum Erosion Rate (t/ha) | Mean Erosion Rate (t/ha) | Total Soil Erosion (kt) | Ratio of FAV to TV |
---|---|---|---|---|---|---|---|
Bugucheon | 5458 | RUSLE | 50 yr | 9261 | 60.89 | 332.2 | 2.31 |
80 yr | 10,812 | 70.98 | 387.2 | 2.30 | |||
SEMMA | 50 yr | 795 | 9.40 | 51.3 | 1.19 | ||
80 yr | 932 | 11.03 | 60.2 | 1.18 | |||
Namdaecheon | 12,748 | RUSLE | 50 yr | 11,750 | 24.06 | 306.7 | 1.65 |
80 yr | 13,637 | 27.95 | 356.2 | 1.66 | |||
SEMMA | 50 yr | 966 | 3.02 | 38.4 | 1.04 | ||
80 yr | 1127 | 3.52 | 44.9 | 1.03 |
Rainfall Stations | Observed Data | 50-year Probability of Rainfall | |||
---|---|---|---|---|---|
24 h Max. Rainfall (mm) | 1 h Max. Rainfall (mm/h) | 30 min Max. Rainfall (mm/h) | 24 h Max. Rainfall (mm) | 1 h Max. Rainfall (mm/h) | |
Uljin MS | 150.1 | 33.2 | 40.5 | 274.3 | 50.9 |
Jukbyeon AWS | 171.0 | 38.0 | 45.5 | ||
Sogok AWS | 221.0 | 51.5 | 57.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.S.; Park, S.D.; Kim, G. Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds. Remote Sens. 2024, 16, 932. https://doi.org/10.3390/rs16050932
Shin SS, Park SD, Kim G. Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds. Remote Sensing. 2024; 16(5):932. https://doi.org/10.3390/rs16050932
Chicago/Turabian StyleShin, Seung Sook, Sang Deog Park, and Gihong Kim. 2024. "Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds" Remote Sensing 16, no. 5: 932. https://doi.org/10.3390/rs16050932
APA StyleShin, S. S., Park, S. D., & Kim, G. (2024). Applicability Comparison of GIS-Based RUSLE and SEMMA for Risk Assessment of Soil Erosion in Wildfire Watersheds. Remote Sensing, 16(5), 932. https://doi.org/10.3390/rs16050932