Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Data Analysis
3. Results and Discussion
3.1. Total Soil Carbon and Soil Carbon Stock on A 40-Year No-till System
3.2. Long-Term Soil Carbon Stocks in No-till System: Local Context
No-Till (Year) | Average (Year) | TOC (g kg−1) | N | 1 TOC (g kg−1) | 2 Soil Carbon Stock | Source | |
---|---|---|---|---|---|---|---|
(0–20 cm) | kg C m−2 | kg C cm−1 | |||||
6–10 | 8 | § 34.75 ± 5.40 | 5 | 26.07 | 8.18 | 0.409 | [36,41] |
11–15 | 13 | § 31.48 ± 6.43 | 6 | 23.61 | 7.41 | 0.370 | [36] |
16–20 | 18 | § 36.83 ± 6.28 | 12 | 27.62 | 8.67 | 0.433 | [36] |
21–25 | 23 | § 40.88 ± 3.46 | 5 | 30.66 | 9.62 | 0.481 | [27,34,40] |
3 31 | - | §§ 27.26 | 1 | 27.26 | 8.55 | 0.428 | [30] |
38 | - | §§ 25.00 ± 1.26 | 4 | 25.00 | 7.84 | 0.392 | [41] |
40 | - | §§ 23.53 ± 3.63 | 16 | 23.53 | 7.33 | 0.366 | this study |
Forest | - | §§ 34.72 ± 4.29 | 11 | 34.72 | 9.82 | 0.491 | [29,39] and this study |
4 Conventional Tillage | - | §§ 28.00 | 1 | 28.00 | - | - | [29] |
3.3. Long-Term Land Conversion and Its Effect on Soil Carbon
3.4. Effects of Landforms on Soil Erosion and Soil Carbon Redistribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prăvălie, R. Exploring the multiple land degradation pathways across the planet. Earth-Sci. Rev. 2021, 220, 103689. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Thomaz, E.L.; Marcatto, F.S.; Antoneli, V. Soil erosion on the Brazilian sugarcane cropping system: An overview. Geogr. Sustain. 2022, 3, 129–138. [Google Scholar] [CrossRef]
- Aghapour Sabbaghi, M.; Nazari, M.; Araghinejad, S.; Soufizadeh, S. Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran. Agric. Water Manag. 2020, 241, 106323. [Google Scholar] [CrossRef]
- Abdalla, K.; Mutema, M.; Hill, T. Soil and organic carbon losses from varying land uses: A global meta-analysis. Geogr. Res. 2020, 58, 167–185. [Google Scholar] [CrossRef]
- Gross, C.D.; Harrison, R.B. The case for digging deeper: Soil organic carbon storage, dynamics, and controls in our changing world. Soil Syst. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Govers, G.; Merckx, R.; Van Wesemael, B.; Van Oost, K. Soil conservation in the 21st century: Why we need smart agricultural intensification. Soil 2017, 3, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Kassam, A.; Friedrich, T.; Derpsch, R. Overview of the global spread of conservation agriculture. Sustain. Dev. Org. Agric. Hist. Perspect. 2015, 8, 53–68. [Google Scholar]
- Blanco-Canqui, H.; Lal, R. Principles of Soil Conservation and Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; ISBN 1402087098. [Google Scholar]
- Castro Filho, C.; Lourenço, A.; Guimarães, M.D.F.; Fonseca, I.C.B. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Tillage Res. 2002, 65, 45–51. [Google Scholar] [CrossRef]
- De Moraes Sá, J.C.; Tivet, F.; Lal, R.; Briedis, C.; Hartman, D.C.; dos Santos, J.Z.; dos Santos, J.B. Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil Tillage Res. 2014, 136, 38–50. [Google Scholar] [CrossRef]
- Amado, T.J.C.; Bayer, C.; Conceição, P.C.; Spagnollo, E.; de Campos, B.-H.C.; da Veiga, M. Potential of Carbon Accumulation in No-Till Soils with Intensive Use and Cover Crops in Southern Brazil. J. Environ. Qual. 2006, 35, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- Bayer, C.; Dieckow, J.; Amado, T.J.C.; Eltz, F.L.F.; Vieira, F.C.B. Cover crop effects increasing carbon storage in a subtropical no-till sandy Acrisol. Commun. Soil Sci. Plant Anal. 2009, 40, 1499–1511. [Google Scholar] [CrossRef]
- De Freitas, P.L.; Landers, J.N. The Transformation of Agriculture in Brazil Through Development and Adoption of Zero Tillage Conservation Agriculture. Int. Soil Water Conserv. Res. 2014, 2, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Angers, D.A.; Ren, T.; Zhang, Q.; Li, G. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: A meta-analysis. Agric. Ecosyst. Environ. 2017, 236, 1–11. [Google Scholar] [CrossRef]
- McBratney, A.B.; Stockmann, U.; Angers, D.A.; Minasny, B.; Field, D.J. Challenges for soil organic carbon research. In Soil Carbon; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3–16. [Google Scholar]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Robert, M. Global change and carbon cycle: The position of soils and agriculture. In Soil Erosion and Carbon Dynamics; Roose, E.J., Lal, R., Feller, C., Barthes, B., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2006; pp. 3–12. [Google Scholar]
- Hartemink, A.E.; McSweeney, K. Soil Carbon; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014; ISBN 3319040847. [Google Scholar]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-Use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef] [Green Version]
- Van Oost, K.; Quine, T.A.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.W.; Ritchie, J.C.; McCarty, G.W.; Heckrath, G.; Kosmas, C.; et al. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base For Soil Resources; FAO: Rome, Italy, 2006; p. 103. [Google Scholar]
- Costa, F.S.; Albuquerque, J.A.; Bayer, C.; Fontoura, S.M.V.; Wobeto, C. Physical properties of an Oxisol affected by no-tillage and conventional tillage systems (in Portuguese). Rev. Bras. Ciência Solo 2003, 27, 527–535. [Google Scholar] [CrossRef]
- Nitsche, P.R.; Caramori, P.H.; Ricce, W.S.; Pinto, L.F.D. Climate Atlas of the State of Paraná; IAPAR: Londrina, Brazil, 2019; 210p. (In Portuguese) [Google Scholar]
- Jaster, F.; Eltz, F.L.F.; Fernandes, F.F.; Merten, G.H.; Gaudêncio, C.d.A.; de Oliveira, M.C.N. Grain Yield in Different Tillage and Soil Management Systems; Report 61; CNPSo-Centro Nacional de Pesquisa de Soja: Londrina, Brazil, 1993; 37p. (In Portuguese) [Google Scholar]
- Da Silva, F.R. Thirty-One Years of Management Systems in Oxisol: Physical and Chemical Attributes and Crop Yield. Ph.D Thesis, UDESC—Universidade do Estado de Santa Catarina, Florianópolis, Brazil, 2013. (In Portuguese). [Google Scholar]
- Bayer, C.; Dick, D.P.; Ribeiro, G.M.; Scheuermann, K.K. Carbon stocks in organic matter fractions as affected by land use and soil management, with emphasis on no-tillage effect. Ciência Rural 2002, 32, 401–406. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An Examination of The Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Veldkamp, E. Organic Carbon Turnover in Three Tropical Soils under Pasture after Deforestation. Soil Sci. Soc. Am. J. 1994, 58, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.d.S.; Bayer, C.; Albuquerque, J.A.; Fontoura, S.M.V. Increase of organic matter in a brown oxisol under no-tillage. Ciência Rural 2004, 34, 587–589. (In Portuguese) [Google Scholar] [CrossRef]
- Ribas, C. Characterization of the Current Fertility of Soils in the Region of Guarapuava-Pr. Master’s Thesis, UNICENTRO—Universidade Estadual do Centro-Oeste, Guarapuava, Brazil, 2010. (In Portuguese). [Google Scholar]
- Fontoura, S.M.V.; Bayer, C. Nitrogen fertilization for high corn yield in no-tillage in the south-central region of Paraná. Rev. Bras. Ciência Solo 2009, 33, 1721–1732. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Roose, E.; Barthès, B. Soil carbon erosion and its selectivity at the plot scale in tropical and Mediterranean regions. In Soil Erosion and Carbon Dynamics; CRC Press: Boca Raton, FL, USA, 2006; pp. 55–72. [Google Scholar]
- Ogeh, J.S. Soil Organic Carbon Stocks Under Plantation Crops and Forest in the Rainforest Zone of Nigeria. In Soil Carbon; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 467–473. [Google Scholar] [CrossRef]
- Beltrán, M.J.; Sainz-Rozas, H.; Galantini, J.A.; Romaniuk, R.I.; Barbieri, P. Cover crops in the Southeastern region of Buenos Aires, Argentina: Effects on organic matter physical fractions and nutrient availability. Environ. Earth Sci. 2018, 77, 428. [Google Scholar] [CrossRef]
- Albuquerque, J.A.; Mafra, Á.L.; Fontoura, S.M.V.; Bayer, C.; dos Passos, J.F.M. Evaluation of tillage and liming systems in an aluminum Latosol. Rev. Bras. Ciência Solo 2005, 29, 963–975. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.A. Soil Erodibility in No-Tillage System Increases with Management Time. Ph.D Thesis, UEPG—Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil, 2017. (In Portuguese). [Google Scholar]
- Ciotta, M.N.; Bayer, C.; Ernani, P.R.; Fontoura, S.M.V.; Albuquerque, J.A.; Wobeto, C. Acidification of an Oxisol under no-tillage (in Potuguese). Rev. Bras. Ciência Solo 2002, 26, 1055–1064. [Google Scholar] [CrossRef]
- Albuquerque, J.A.; Argenton, J.; Bayer, C.; Do Prado Wildner, L.; Kuntze, M.A.G. Relationship of soil attributes with aggregate stability of a hapludox under distinct tillage systemsand summer cover crops. Rev. Bras. Cienc. Solo 2005, 29, 415–424. (In Potuguese) [Google Scholar] [CrossRef]
- Merten, G.H.; de Araújo, A.G.; de Cesare Barbosa, G.M. Erosion in the State of Paraná: Fundamentals, Experimental Studies and Challenges; Instituto Agronômico do Paraná: Londrina, Brazil, 2016. (In Portuguese)
- Tornquist, C.G.; Giasson, E.; Mielniczuk, J.; Cerri, C.E.P.; Bernoux, M. Soil Organic Carbon Stocks of Rio Grande do Sul, Brazil. Soil Sci. Soc. Am. J. 2009, 73, 975–982. [Google Scholar] [CrossRef]
- Huggins, D.R.; Reganold, J.P. No-till: The quiet revolution. Sci. Am. 2008, 299, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Chang. 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Bernoux, M.; Cerri, C.C.; Cerri, C.E.P.; Neto, M.S.; Metay, A.; Perrin, A.-S.; Scopel, E.; Tantely, R.; Blavet, D.; de Piccolo, M.C. Cropping systems, carbon sequestration and erosion in Brazil: A review. Sustain. Agric. 2009, 26, 75–85. [Google Scholar]
- De Oliveira Ferreira, A.; Amado, T.J.C.; Rice, C.W.; Ruiz Diaz, D.A.; Briedis, C.; Inagaki, T.M.; Gonçalves, D.R.P. Driving factors of soil carbon accumulation in Oxisols in long-term no-till systems of South Brazil. Sci. Total Environ. 2018, 622–623, 735–742. [Google Scholar] [CrossRef]
- Gerrard, J. Rocks and Landforms; Unwin Hyman Ltd.: London, UK, 1988; ISBN 9401159831. [Google Scholar]
- Birkeland, P.W. Soils and Geomorphology; Oxford University Press: Oxford, UK, 1999; ISBN 0195033981. [Google Scholar]
- Rieke-Zapp, D.H.; Nearing, M.A. Slope shape effects on erosion: A laboratory study. Soil Sci. Soc. Am. J. 2005, 69, 1463–1471. [Google Scholar] [CrossRef]
- Dos Reis Castro, N.M.; Auzet, A.; Chevallier, P.; Leprun, J. Land use change effects on runoff and erosion from plot to catchment scale on the basaltic plateau of Southern Brazil. Hydrol. Process. 1999, 13, 1621–1628. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van Der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- PBMC. Scientific Basis of Climate Change. Contribution of Working Group 1 of the Brazilian Panel on Climate Change to the First Report of the National Assessment on Climate Change; COPPE. Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2014; ISBN 9788528502077. (In Portuguese) [Google Scholar]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomaz, E.L.; Kurasz, J.P. Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil. Soil Syst. 2023, 7, 60. https://doi.org/10.3390/soilsystems7020060
Thomaz EL, Kurasz JP. Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil. Soil Systems. 2023; 7(2):60. https://doi.org/10.3390/soilsystems7020060
Chicago/Turabian StyleThomaz, Edivaldo L., and Julliane P. Kurasz. 2023. "Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil" Soil Systems 7, no. 2: 60. https://doi.org/10.3390/soilsystems7020060
APA StyleThomaz, E. L., & Kurasz, J. P. (2023). Long Term of Soil Carbon Stock in No-Till System Affected by a Rolling Landscape in Southern Brazil. Soil Systems, 7(2), 60. https://doi.org/10.3390/soilsystems7020060