Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = hill chart

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3451 KiB  
Article
Efficiency Testing of Pelton Turbines with Artificial Defects—Part 2: Needles and Seat Rings
by Florian Fahrni, Thomas Staubli and Ernesto Casartelli
Energies 2025, 18(11), 2725; https://doi.org/10.3390/en18112725 - 23 May 2025
Viewed by 497
Abstract
The erosion of Pelton turbine components in mountainous areas with high sediment input is a major challenge for energy- and cost-efficient operation. Quantitative data on possible efficiency losses associated with local damage are needed. A systematic experimental study was carried out on a [...] Read more.
The erosion of Pelton turbine components in mountainous areas with high sediment input is a major challenge for energy- and cost-efficient operation. Quantitative data on possible efficiency losses associated with local damage are needed. A systematic experimental study was carried out on a model turbine to determine the efficiency losses caused by damaged needles and seat rings. For this purpose, artificial patterns of erosion-like damage were generated on the surfaces of needles and seat rings. These patterns were gradually deepened, and hill charts were measured repeatedly. The combination of needle and seat ring defects was also studied, and the finding is that superimposing the individual efficiency losses of the needle and seat ring resulted in the same efficiency loss measured for both damaged parts. The results of the measurement campaign show that damaged needles should be replaced at an early stage of deterioration, as efficiency losses can quickly add up to several percent and become unacceptable at partial load operations of the turbines. Full article
Show Figures

Figure 1

22 pages, 6607 KiB  
Article
Efficiency Testing of Pelton Turbines with Artificial Defects—Part 1: Buckets
by Florian Fahrni, Thomas Staubli and Ernesto Casartelli
Energies 2025, 18(11), 2716; https://doi.org/10.3390/en18112716 - 23 May 2025
Cited by 1 | Viewed by 413
Abstract
Pelton turbines are susceptible to hydro-abrasive erosion from sediment-laden flows, resulting in a progressive loss of efficiency. Typical defect classes can be derived from the analysis of such damage observed in hydropower plants. A systematic strategy was developed to investigate the effect of [...] Read more.
Pelton turbines are susceptible to hydro-abrasive erosion from sediment-laden flows, resulting in a progressive loss of efficiency. Typical defect classes can be derived from the analysis of such damage observed in hydropower plants. A systematic strategy was developed to investigate the effect of locally damaged Pelton runners on the efficiency in laboratory tests using a model turbine. For this purpose, nine identical runners were fabricated and machined with an increasing size, depth, or number of different artificial defect types, such as splitter, rounded or sharp-edged, defects at the cutout, defects in the bucket base, and added ripples on the bucket sides. The processing steps, the efficiency measurement, and the extracted slopes of the efficiency drops are discussed in detail. The main findings are that the efficiency losses due to the various defects increase in a good approximation linearly with the machining depth and that the individual defect types can be superimposed. Defects at the splitter, bucket base, and bucket side dominate the losses at partial load of the turbine, while those at the cutout dominate at full load. Based on the results of this measurement campaign, power plant operators can estimate the magnitude of efficiency losses in their plant. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

14 pages, 3909 KiB  
Article
Application of Blasingame’s Modern Production-Decline Analysis Method in Production Performance Analysis of Buried Hill Condensate Gas Reservoir
by Lingang Lv, Peng Chen and Hang Lai
Processes 2025, 13(6), 1645; https://doi.org/10.3390/pr13061645 - 23 May 2025
Viewed by 479
Abstract
With the increase in exploration in recent years, buried hill condensate gas reservoirs have gradually become an important field for increasing reserves and production of offshore oil and gas in China, and efficient development of condensate gas reservoirs has also become a hot [...] Read more.
With the increase in exploration in recent years, buried hill condensate gas reservoirs have gradually become an important field for increasing reserves and production of offshore oil and gas in China, and efficient development of condensate gas reservoirs has also become a hot issue in hydrocarbon development. Due to the complex phase-change law and retrograde condensation phenomenon of deep condensate gas reservoirs, the reservoir properties and production dynamics data obtained by conventional pressure-recovery-test methods were greatly limited, and the dynamic data and evaluation parameters of the single well control area cannot be accurately determined. In this paper, using the production analysis method to analyze the production dynamics data of a single well, combined with static geological data and well-test analysis data, the reservoir parameters of a single well were evaluated. Specifically, the Blasingame method was applied to realize the production-decline law of production wells, and new dimensionless flow, pressure parameters, and pseudo-time functions were introduced. Using the unstable well test theory and the traditional production decline analysis technology, the IHS Harmony software is used to fit the production dynamic data with the theoretical chart. The evaluation parameters such as reservoir permeability, skin factor, well control radius, and well control reserves were calculated, providing strong support for the production decision-making of the petroleum industry and also providing a strong decision-making basis for the dynamic adjustment of oil–gas-well manufacture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 11701 KiB  
Article
Experimental Flow Performance Investigation of Francis Turbines from Model to Prototype
by Baig Mirza Umar, Xingxing Huang and Zhengwei Wang
Appl. Sci. 2024, 14(17), 7461; https://doi.org/10.3390/app14177461 - 23 Aug 2024
Cited by 3 | Viewed by 3288
Abstract
Investigating the flow performance of Francis turbines from model to prototype is a complex but essential process for ensuring reliable and efficient turbine operation in hydropower plants. It ensures that Francis turbine designs operate efficiently under various operating conditions, extending from laboratory reduced-scale [...] Read more.
Investigating the flow performance of Francis turbines from model to prototype is a complex but essential process for ensuring reliable and efficient turbine operation in hydropower plants. It ensures that Francis turbine designs operate efficiently under various operating conditions, extending from laboratory reduced-scale models to full-scale prototype installations. In this investigation, a Francis turbine model was tested under different operating conditions, and its properties were measured, including torque, hydraulic efficiency, power output, cavitation coefficient, rotational speed, flow rate, and pressure pulsations. The results of the Francis turbine model test indicate that it achieved the maximum torque with the designed discharge and designed head. The cavitation coefficient consistently remained higher than the critical cavitation coefficient. The initial cavitation bubbles were observed at 50% partial load but disappeared at full load. Pressure pulsations under different operating conditions showed the maximum peak-to-peak amplitude appearing at the turbine inlet domain and the minimum amplitude occurring at the draft tube elbow. A hill chart shows that the model’s best efficiency was 93.66%, and the estimated best efficiency of the prototype was 95.03% at the design head. The conclusions and methodology of this study can be generalized to other similar hydraulic turbines, especially prototype Francis turbines that lack experimental results. Full article
Show Figures

Figure 1

18 pages, 6378 KiB  
Article
Experimental Fitting of Efficiency Hill Chart for Kaplan Hydraulic Turbine
by Roberto Capata, Alfonso Calabria, Gian Marco Baralis and Giuseppe Piras
Designs 2024, 8(4), 80; https://doi.org/10.3390/designs8040080 - 13 Aug 2024
Cited by 1 | Viewed by 2041
Abstract
The development of hydroelectric technology and much of the “knowledge” on hydraulic phenomena derive from scale modeling and “bench” tests to improve machinery efficiency. The result of these experimental tests is mapping the so-called “hill chart”, representing the “DNA” of a turbine model. [...] Read more.
The development of hydroelectric technology and much of the “knowledge” on hydraulic phenomena derive from scale modeling and “bench” tests to improve machinery efficiency. The result of these experimental tests is mapping the so-called “hill chart”, representing the “DNA” of a turbine model. Identifying the efficiency values as a function of the specific parameters of the flow and energy coefficient (which both identify the operating point) allows us to represent the complete behavior of a turbine in hydraulic similarity with the original model developed in the laboratory. The present work carries out a “reverse engineering” operation that leads to the definition of “an innovative research model” that is relatively simple to use in every field. Thus, from the experimental survey of the degree of efficiency of several prototypes of machines deriving from the same starting model, the hill chart of the hydraulic profile used is reconstructed. The “mapping” of all the characteristic quantities of the machine, together with the physical parameters of the regulating organs of a four-blade Kaplan turbine model, also made it possible to complete the process, allowing to identify not only the iso-efficiency regions but also the curves relating to the trend of the angle of the impeller blades, the specific opening of the distributor, and the identification of critical areas of cavitation. The development of the hill chart was made possible by investigating the behavior of 33 actual prototypes and 46 characteristic curves derived from the same reference model based on practical experiments for finding the optimal blade distributor “setup curve”. To complete this, theoretical characteristic curves of “not physically realized” prototypes were also mapped, allowing us to complete the regions comprising the diagram. The study of the unified hill charts found in previous documentation of the most famous manufacturers was of great help. Finally, the validation of the “proposed procedure” was obtained through the experimental survey of the actual efficiency of the new prototype based on the theoretical values defined in the design phase on the chart obtained with the method described. Full article
(This article belongs to the Special Issue Design and Analysis of Offshore Wind Turbines)
Show Figures

Figure 1

15 pages, 5916 KiB  
Article
Application of Multi-Dimensional Hill Chart in the Condition Monitoring and Cost Estimation of the Francis Turbine Unit
by Bin Jian, Weiqiang Zhao, Rongfu Guo, Shuping Chen, Ming Xia and Zhengwei Wang
Processes 2024, 12(6), 1243; https://doi.org/10.3390/pr12061243 - 17 Jun 2024
Cited by 1 | Viewed by 1031
Abstract
With a large-range-operation head, the Francis turbine unit is the most widely used type of hydraulic turbine in the world. The general range of the Francis turbine is 20–700 m. Because of this, the operating stability of the Francis turbine needs to be [...] Read more.
With a large-range-operation head, the Francis turbine unit is the most widely used type of hydraulic turbine in the world. The general range of the Francis turbine is 20–700 m. Because of this, the operating stability of the Francis turbine needs to be focused on. In this paper, a multi-dimensional hill chart is applied to a low-head Francis turbine unit to describe its vibration characteristics. Firstly, a field test was conducted on the unit in order to obtain vibration data under different operating conditions. Secondly, the condition indicators were calculated and extracted from the experimental data. Then, the condition indicators under different head values and outputs were fitted to form a multi-dimensional hill chart. In the end, the vibration characteristics of the researched low-head Francis turbine unit were analyzed based on the multi-dimensional hill chart. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

14 pages, 262 KiB  
Article
Prenatal Exposures, Diagnostic Outcomes, and Life Experiences of Children and Youths with Fetal Alcohol Spectrum Disorder
by Svetlana Popova, Danijela Dozet, Mary-Rose Faulkner, Lesley Howie and Valerie Temple
Nutrients 2024, 16(11), 1655; https://doi.org/10.3390/nu16111655 - 28 May 2024
Cited by 3 | Viewed by 1985
Abstract
Children and youths diagnosed with FASD may experience a range of adverse health and social outcomes. This cross-sectional study investigated the characteristics and outcomes of children and youths diagnosed with FASD between 2015 and 2018 at the Sunny Hill Centre in British Columbia, [...] Read more.
Children and youths diagnosed with FASD may experience a range of adverse health and social outcomes. This cross-sectional study investigated the characteristics and outcomes of children and youths diagnosed with FASD between 2015 and 2018 at the Sunny Hill Centre in British Columbia, Canada and examined the relationships between prenatal substance exposures, FASD diagnostic categories, and adverse health and social outcomes. Patient chart data were obtained for 1187 children and youths diagnosed with FASD and analyzed. The patients (mean age: 9.7 years; range: 2–19) had up to 6 physical and 11 mental health disorders. Prenatal exposure to other substances (in addition to alcohol) significantly increased the severity of FASD diagnosis (OR: 1.18): the odds of FASD with sentinel facial features (SFF) were 41% higher with prenatal cigarette/nicotine/tobacco exposure; 75% higher with exposure to cocaine/crack; and two times higher with exposure to opioids. Maternal mental health issues and poor nutrition also increase the severity of FASD diagnosis (60% and 6%, respectively). Prenatal exposure to other substances in addition to alcohol significantly predicts involvement in the child welfare system (OR: 1.52) and current substance use when adjusted for age (aOR: 1.51). Diagnosis of FASD with SFF is associated with an increased number of physical (R2 = 0.071, F (3,1183) = 30.51, p = 0.000) and mental health comorbidities (R2 = 0.023, F (3,1185) = 9.51, p = 0.000) as compared to FASD without SFF adjusted for age and the number of prenatal substances. Screening of pregnant women for alcohol and other substance use, mental health status, and nutrition is extremely important. Full article
(This article belongs to the Special Issue Alcohol Intake and Human Health)
14 pages, 4671 KiB  
Article
A New Approach of Well Productivity Evaluation for Fractured Buried Hill Gas Reservoirs Based on Imaging Logging Data
by Hongri Bi and Peng Chen
Appl. Sci. 2023, 13(22), 12328; https://doi.org/10.3390/app132212328 - 15 Nov 2023
Cited by 1 | Viewed by 1555
Abstract
Fractures function as storage spaces and effective seepage channels for metamorphic rock buried hill reservoirs. Their effectiveness and permeability govern the content and enrichment of oil and gas. Owing to the convoluted distribution patterns of fractures, it is arduous to gauge the effectiveness [...] Read more.
Fractures function as storage spaces and effective seepage channels for metamorphic rock buried hill reservoirs. Their effectiveness and permeability govern the content and enrichment of oil and gas. Owing to the convoluted distribution patterns of fractures, it is arduous to gauge the effectiveness and permeability of fractures with precision, thus rendering well productivity prediction difficult. This article cites fractured gas reservoirs in a metamorphic rock buried hill as an example. Through comprehensive usage of core and imaging logging data to finely interpret fractures, calculate the fracture parameters that control productivity, including fracture density, fracture width, and fracture porosity. According to the evaluation index of fracture effectiveness, the method of constructing effectiveness index is proposed to quantitatively evaluate the effectiveness. Combined with the study of the law of influence of fracture parameters on reservoir permeability, the permeability index is established to reflect permeability. Productivity coefficients for fractured reservoirs with pollution factors have been established by using well-test interpretation data. To evaluate the well productivity of buried hill reservoirs, a productivity assessment chart is constructed by integrating the fracture effectiveness index, permeability index, and productivity coefficient. This chart enables prompt predictions of the buried hill reservoir’s productivity. In order to verify the reliability of the method, a comprehensive comparison is made through conventional, array acoustic logging data and test data. The results show that the method is well applied in the evaluation of metamorphic rock buried hill reservoirs and provides a new idea for the rapid prediction of well productivity. Full article
(This article belongs to the Special Issue Geomechanics and Reservoir Simulation)
Show Figures

Figure 1

23 pages, 13545 KiB  
Article
Implementation and Evaluation of a Complex Pumped-Storage Hydropower Plant with Four Units, Common Penstock, and Surge Tank in a Real-Time Digital Simulator
by Hasan Akbari, Juan I. Pérez-Díaz, José-Ignacio Sarasúa and Robert Schürhuber
Energies 2023, 16(9), 3828; https://doi.org/10.3390/en16093828 - 29 Apr 2023
Cited by 3 | Viewed by 2068
Abstract
The demand for energy storage systems is rising together with the proportion of renewable energy sources (RES) in power systems. The highest capacity among the various energy storage systems in power systems is provided by pumped-storage hydropower (PSH). In this paper, the ability [...] Read more.
The demand for energy storage systems is rising together with the proportion of renewable energy sources (RES) in power systems. The highest capacity among the various energy storage systems in power systems is provided by pumped-storage hydropower (PSH). In this paper, the ability of the real-time digital simulator (RTDS), e.g., dSpace–SCALEXIO, to emulate a complex pumped-storage hydropower plant with four units, two common penstocks, a surge tank, and a long headrace tunnel is investigated. The RTDS is the smart brain of an advanced lab setup called power hardware in the loop (PHIL), which is an extremely safe and useful lab system for electrical power system research and testing hardware and methods under various conditions. In this research, the capability of an RTDS to emulate the behavior of a pumped-storage hydropower plant including four Francis pump-turbines, four short penstocks, two common penstocks, a surge tank, and a long headrace tunnel is evaluated. Francis pump-turbines are modelled based on the hill chart-based interpolation and waterways including penstocks and headrace tunnel are modelled based on the polynomial approximation of a hyperbolic function. Finally, the results from the RTDS are presented and discussed. According to the results of the paper, we confirm that the RTDS can accurately emulate the hydraulic, mechanical, and electrical transients of a pumped-storage hydropower plant with a complex configuration. Full article
Show Figures

Figure 1

16 pages, 2069 KiB  
Review
Discrepancies in Embryonic Staging: Towards a Gold Standard
by Sander Flierman, Melanie Tijsterman, Melek Rousian and Bernadette S. de Bakker
Life 2023, 13(5), 1084; https://doi.org/10.3390/life13051084 - 26 Apr 2023
Cited by 7 | Viewed by 6783
Abstract
For over half a century, the Carnegie staging system has been used for the unification of chronology in human embryo development. Despite the system’s establishment as a “universal” system, Carnegie staging reference charts display a high level of variation. To establish a clear [...] Read more.
For over half a century, the Carnegie staging system has been used for the unification of chronology in human embryo development. Despite the system’s establishment as a “universal” system, Carnegie staging reference charts display a high level of variation. To establish a clear understanding for embryologists and medical professionals, we aimed to answer the following question: does a gold standard of Carnegie staging exist, and if so, which set of proposed measures/characteristics would it include? We aimed to provide a clear overview of the variations in published Carnegie staging charts to compare and analyze these differences and propose potential explanatory factors. A review of the literature was performed, wherein 113 publications were identified and screened based on title and abstract. Twenty-six relevant titles and abstracts were assessed based on the full text. After exclusion, nine remaining publications were critically appraised. We observed consistent variations in data sets, especially regarding embryonic age, varying as large as 11 days between publications. Similarly, for embryonic length, large variations were present. These large variations are possibly attributable to sampling differences, developing technology, and differences in data collection. Based on the reviewed studies, we propose the Carnegie staging system of Prof. Hill as a gold standard amongst the available data sets in the literature. Full article
(This article belongs to the Special Issue Fetal Life: Normal and Abnormal Development)
Show Figures

Figure 1

25 pages, 11674 KiB  
Article
Multiscale Modelling and Mechanical Anisotropy of Periodic Cellular Solids with Rigid-Jointed Truss-Like Microscopic Architecture
by Victor E. L. Gasparetto and Mostafa S. A. ElSayed
Appl. Mech. 2021, 2(2), 331-355; https://doi.org/10.3390/applmech2020020 - 1 Jun 2021
Cited by 6 | Viewed by 4602
Abstract
This paper investigates the macroscopic anisotropic behavior of periodic cellular solids with rigid-jointed microscopic truss-like architecture. A theoretical matrix-based procedure is presented to calculate the homogenized stiffness and strength properties of the material which is validated experimentally. The procedure consists of four main [...] Read more.
This paper investigates the macroscopic anisotropic behavior of periodic cellular solids with rigid-jointed microscopic truss-like architecture. A theoretical matrix-based procedure is presented to calculate the homogenized stiffness and strength properties of the material which is validated experimentally. The procedure consists of four main steps, namely, (i) using classical structural analysis to determine the stiffness properties of a lattice unit cell, (ii) employing the Bloch’s theorem to generate the irreducible representation of the infinite lattice, (iii) resorting to the Cauchy–Born Hypothesis to express the microscopic nodal forces and deformations in terms of a homogeneous macroscopic strain field applied to the lattice, and (iv) employing the Hill–Mandel homogenization principle to obtain the macro-stiffness properties of the lattice topologies. The presented model is used to investigate the anisotropic mechanical behavior of 13 2D periodic cellular solids. The results are documented in three set of charts that show (i) the change of the Young and Shear moduli of the material with respect to their relative density; (ii) the contribution of the bending stiffness of microscopic cell elements to the homogenized macroscopic stiffness of the material; and (iii) polar diagrams of the change of the elastic moduli of the cellular solid in response to direction of macroscopic loading. The three set of charts can be used for design purposes in assemblies involving the honeycomb structures as it may help in selecting the best lattice topology for a given functional stiffness and strength requirement. The theoretical model was experimentally validated by means of tensile tests performed in additively manufactured Lattice Material (LM) specimens, achieving good agreement between the results. It was observed that the model of rigid-joined LM (RJLM) predicts the homogenized mechanical properties of the LM with higher accuracy compared to those predicted by pin-jointed models. Full article
(This article belongs to the Special Issue Mechanics Applied in Construction Engineering)
Show Figures

Figure 1

22 pages, 6259 KiB  
Article
Reduced-Scale Models of Variable Speed Hydro-Electric Plants for Power Hardware-in-the-Loop Real-Time Simulations
by Baoling Guo, Amgad Mohamed, Seddik Bacha, Mazen Alamir, Cédric Boudinet and Julien Pouget
Energies 2020, 13(21), 5764; https://doi.org/10.3390/en13215764 - 3 Nov 2020
Cited by 10 | Viewed by 3343
Abstract
Variable Speed Hydro-Electric Plant (VS-HEP) equipped with power electronics has been increasingly introduced into the hydraulic context. This paper is targeting a VS-HEP Power Hardware-In-the-Loop (PHIL) real-time simulation system, which is dedicated to different hydraulic operation schemes tests and control laws validation. Then, [...] Read more.
Variable Speed Hydro-Electric Plant (VS-HEP) equipped with power electronics has been increasingly introduced into the hydraulic context. This paper is targeting a VS-HEP Power Hardware-In-the-Loop (PHIL) real-time simulation system, which is dedicated to different hydraulic operation schemes tests and control laws validation. Then, a proper hydraulic model will be the key factor for building an efficient PHIL real-time simulation system. This work introduces a practical and generalised modelling hydraulic modelling approach, which is based on ‘Hill Charts’ measurements provided by industrial manufacturers. The hydraulic static model is analytically obtained by using mathematical optimization routines. In addition, the nonlinear dynamic model of the guide vane actuator is introduced in order to evaluate the effects of the induced dynamics on the electric control performances. Moreover, the reduced-scale models adapted to different laboratory conditions can be established by applying scaling laws. The suggested modelling approach enables the features of decent accuracy, light computational complexity, high flexibility and wide applications for their implementations on PHIL real-time simulations. Finally, a grid-connected energy conversion chain of bulb hydraulic turbine associated with a permanent magnet synchronous generator is chosen as an example for PHIL design and performance assessment. Full article
(This article belongs to the Special Issue Advancements in Real-Time Simulation of Power and Energy Systems)
Show Figures

Figure 1

18 pages, 6499 KiB  
Article
Investigating the Performance of a Super High-head Francis Turbine under Variable Discharge Conditions Using Numerical and Experimental Approach
by Zheming Tong, Hao Liu, Jianfeng Ma, Shuiguang Tong, Ye Zhou, Qiang Chen and Yunzhe Li
Energies 2020, 13(15), 3868; https://doi.org/10.3390/en13153868 - 29 Jul 2020
Cited by 11 | Viewed by 1940
Abstract
A super high-head Francis turbine with a gross head of nearly 700 m was designed with computational fluid dynamics (CFD) simulation and laboratory tests. Reduced-scale (1:3.7) physical and numerical models of the real-scale prototype were created to investigate the hydraulic performance. According to [...] Read more.
A super high-head Francis turbine with a gross head of nearly 700 m was designed with computational fluid dynamics (CFD) simulation and laboratory tests. Reduced-scale (1:3.7) physical and numerical models of the real-scale prototype were created to investigate the hydraulic performance. According to the CFD analysis, a strong rotor–stator interaction (RSI) between guide vanes and runner blades is observed as a result of the high-speed tangential flow towards runner created by the super high water head as well as the small gaps between the radial blades. At the designed best efficiency point (BEP), there is no significant flow recirculation inside the flow passage and minor loss occurs at the trailing edge of the stay vanes and guide vanes. Maximum velocity is observed at runner inlets due to flow acceleration through the narrow passages between the guide vanes. The elbow-shaped draft tube gradually decreases the flow velocity to keep the kinetic energy loss at a minimum. The laboratory test was conducted on a reduced-scale physical model to investigate the pressure pulsations and guide vane torque (GVT) under variable-discharge configurations, which are key concerns in the design of a high head turbine. Pressure sensor networks were installed at the inlet pipe, vaneless space and draft tube, respectively. The most intense pressure variation occurs at the inlet pipe and elbow at 0.04–0.2 GVOBEP and 1.5–1.8 GVOBEP with a low frequency about 0.3 times of the runner frequency, while the vibration in vaneless zone performs stable with the blade passing frequency caused by RSI. The GVT shows a declining trend and then keeps stable as GVOs increases at synchronized condition. For the misaligned conditions, the torque of adjacent guide vanes differs a lot except at the synchronous angle and maximum absolute value at least doubles than the synchronized condition. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Energy Systems Ⅱ)
Show Figures

Figure 1

15 pages, 6324 KiB  
Article
Micro Axial Turbine Hill Charts: Affinity Laws, Experiments and CFD Simulations for Different Diameters
by Mariana Simão and Helena M. Ramos
Energies 2019, 12(15), 2908; https://doi.org/10.3390/en12152908 - 28 Jul 2019
Cited by 8 | Viewed by 3914
Abstract
Water supply systems are one of the main hydraulic systems with significant potential for the installation of micro-hydropower devices. Although there are already some mini-hydropower applications in water supply systems, it is still a huge potential that continues to be under-exploited. The arrangement [...] Read more.
Water supply systems are one of the main hydraulic systems with significant potential for the installation of micro-hydropower devices. Although there are already some mini-hydropower applications in water supply systems, it is still a huge potential that continues to be under-exploited. The arrangement based on an axial turbine, such as an inline tubular propeller, with different diameters and rotational speeds suitable to exploit the existing potential in the water sector, is fully tested. The turbine with the nominal diameter of 85 mm was analysed through experimental campaigns and numerical models for a large range of heads and flow measurements to access its performance. A good correlation between the physical model and the numerical results were obtained, with mean values of deviation less than 5% regarding flow, mechanical power and efficiency. These results were extrapolated to other similar turbine with 170 mm, using affinity laws to investigate the power extraction performance. Both geometries were also numerically investigated using computational fluid dynamics (CFD) models and comparisons were made between the affinity model and experimental results. The results identified differences when compared with the classical affinity curves. Therefore, new formulations based on affinity equations were proposed for the analyzed axial turbine with different diameters without imposing a constant turbine efficiency since actually it does not keep constant as CFD calibrated model proved. Compared to experimental test efficiencies for different rotational speeds, the new proposed affinity laws provided a maximum error of 12% for both diameters. Full article
(This article belongs to the Special Issue Electrical Energy Production in the Water Sector)
Show Figures

Figure 1

21 pages, 18339 KiB  
Article
Bathymetry and Canyons of the Eastern Bering Sea Slope
by Mark Zimmermann and Megan M. Prescott
Geosciences 2018, 8(5), 184; https://doi.org/10.3390/geosciences8050184 - 21 May 2018
Cited by 17 | Viewed by 14789
Abstract
We created a new, 100 m horizontal resolution bathymetry raster and used it to define 29 canyons of the eastern Bering Sea (EBS) slope area off of Alaska, USA. To create this bathymetry surface we proofed, edited, and digitized 18 million soundings from [...] Read more.
We created a new, 100 m horizontal resolution bathymetry raster and used it to define 29 canyons of the eastern Bering Sea (EBS) slope area off of Alaska, USA. To create this bathymetry surface we proofed, edited, and digitized 18 million soundings from over 200 individual sources. Despite the vast size (~1250 km long by ~3000 m high) and ecological significance of the EBS slope, there have been few hydrographic-quality charting cruises conducted in this area, so we relied mostly on uncalibrated underway files from cruises of convenience. The lack of hydrographic quality surveys, anecdotal reports of features such as pinnacles, and reliance on satellite altimetry data has created confusion in previous bathymetric compilations about the details along the slope, such as the shape and location of canyons along the edge of the slope, and hills and valleys on the adjacent shelf area. A better model of the EBS slope will be useful for geologists, oceanographers, and biologists studying the seafloor geomorphology and the unusually high productivity along this poorly understood seafloor feature. Full article
(This article belongs to the Special Issue Marine Geomorphometry)
Show Figures

Graphical abstract

Back to TopTop