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Abstract: This paper investigates the macroscopic anisotropic behavior of periodic cellular solids with
rigid-jointed microscopic truss-like architecture. A theoretical matrix-based procedure is presented
to calculate the homogenized stiffness and strength properties of the material which is validated
experimentally. The procedure consists of four main steps, namely, (i) using classical structural
analysis to determine the stiffness properties of a lattice unit cell, (ii) employing the Bloch’s theorem
to generate the irreducible representation of the infinite lattice, (iii) resorting to the Cauchy–Born
Hypothesis to express the microscopic nodal forces and deformations in terms of a homogeneous
macroscopic strain field applied to the lattice, and (iv) employing the Hill–Mandel homogenization
principle to obtain the macro-stiffness properties of the lattice topologies. The presented model
is used to investigate the anisotropic mechanical behavior of 13 2D periodic cellular solids. The
results are documented in three set of charts that show (i) the change of the Young and Shear
moduli of the material with respect to their relative density; (ii) the contribution of the bending
stiffness of microscopic cell elements to the homogenized macroscopic stiffness of the material; and
(iii) polar diagrams of the change of the elastic moduli of the cellular solid in response to direction of
macroscopic loading. The three set of charts can be used for design purposes in assemblies involving
the honeycomb structures as it may help in selecting the best lattice topology for a given functional
stiffness and strength requirement. The theoretical model was experimentally validated by means of
tensile tests performed in additively manufactured Lattice Material (LM) specimens, achieving good
agreement between the results. It was observed that the model of rigid-joined LM (RJLM) predicts
the homogenized mechanical properties of the LM with higher accuracy compared to those predicted
by pin-jointed models.
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1. Introduction

A periodic cellular solid, also known as a LM, is a periodic micro-architectured
structure designed by tessellating a unit cell in an infinite periodicity. The unit cell is
considered as the material’s Representative Volume Element (RVE), sufficient to predict
its macroscopic characteristics [1–3]. To be considered a periodic structure, the unit cell
must present a degree of symmetry, which is given by the Bravais lattice symmetry [4].
This category of structure is known for its unusual mechanical properties not found in
natural bulk solids, which makes them suitable for applications in a plethora of engineering
areas, such as mechanical [5–7], aerospace [8–10] or biomedical [11–13]. Some relevant
characteristics explored in recent works are related to auxetic behavior [14–16], elevated
mechanical strength and stiffness [17–19], exceptional elastodynamic behavior [20–24].

LMs are classified into two categories, bending and stretching dominated [25–27],
when considering the small deformations hypothesis. A stretching dominated lattice struc-
ture, does not present internal mechanisms, when performing a determinacy analysis,
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therefore its elements are mainly loaded in tension or compression [28]. Modeling a stretch-
ing dominated structure as pin-jointed is sufficient to predict its homogenized macroscopic
mechanical characteristics [29]. Even when its joints are considered as rigid, the arising
bending moments are often neglected. By relaxing the constraint of small deformations,
some special cases arise. For instance, a Triangular-Triangular lattice topology which is
classified as stretching-dominated, will be bending-dominated under the load of pure dila-
tion as this lattice tends to transform to the configuration of Kagome lattice [30]. Bending
dominated structures, on the other hand, contain internal active mechanisms that are not
developed by states of self-stress [31], hence being suppressed due to nodal rotational
stiffness within the lattice connectivity.

Several numeric and analytic methods have been proposed to effectively model
properties of RJLM [32] in which the response of a single unit cell or a finite number of
them are investigated. Other analytical methods modelled the LM as a continuum. Those
models provide inaccurate results when the in-plane bending of the cell elements of a
RJLM is taken into consideration [33]. To overcome this issue, a micro-polar continuum
model has been used for the characterization of LMs [34,35]. More recently, the use of
the Bloch’s theorem [36], commonly applied in solid state Physics, has been proposed to
model the propagation of the static and the kinematic wave-functions in an infinite lattice
structure [37–40]. An interesting research by Niu and Wang [41] presented the concurrent
determination of specific elastic properties of RJLM periodic Kagome honeycomb lattice
with its wave propagation directionality, where it was possible to characterize an optimum
configuration of the structure in order to achieve maximization of its stiffness and strength.

A novel matrix-based methodology is proposed in this paper to model the effective
stiffness properties of a RJLM. The classical matrix methods of structural analysis [38,42]
are used to derive the stiffness of the finite structure of the lattice unit cell. The Bloch’s
theorem is employed to reduce the stiffness system to the irreducible representation of the
infinite lattice structure. The Cauchy-Born Hypothesis [43–46], in turn, is used to determine
the micro-nodal forces and deformations defined by a homogeneous macro-strain field
applied to the lattice. Through the principle of virtual work [47] and Hill-Mandel [45] of
macro-homogenization, we derive the macro-stiffness properties of a RJLM. The method
is employed to formulate closed-form expressions of in plane stiffness of 13 2D lattice
topologies. In addition, the Bond-stress and strain orthogonal transformations [48,49] are
used to study the anisotropic behavior of the homogenized macroscopic stiffness of LMs
with selected cell topologies. Moreover, we experimentally validated the numerical method
implemented with tensile and shear test in a specimen designed following the criteria
presented in the paper, achieving low error in the prediction of the elastic moduli and
strength of the lattice materials. The framework created allows the designer to effectively
estimate the mechanical properties of any desired 2D periodic lattice unit-cell topology.
Finally, we also presented design charts for the 13 lattice topologies investigated, which
allows one to effectively estimate the elastic properties of the lattice unit-cells for a given
relative density, which can be calculated from the geometrical parameters of the unit-cell
designed. The design charts are also generated as polar coordinate maps, where it is
possible to capture the effect of anisotropic behavior of the lattice topologies, therefore
indicating the best orientation a LM can be loaded to resist a macroscopic loading applied
in a given direction.

The paper is divided in six sections. Succeeding this introduction, the modeling proce-
dure to characterize the stiffness properties of RJLMs is presented. In the third section, the
modeling procedure is used to determine the stiffness properties of 13 different topologies
of 2D LMs. Accuracy of the theoretical modeling procedure is verified experimentally in
Section 4. In the fifth section, the anisotropic response of the lattices is investigated and charts
that show the change of the elastic moduli with respect to macroscopic loading direction are
presented. In section six, the results are discussed along with the paper conclusions.
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2. Methodology

A LM is constructed by infinitely tessellating a unit cell. A similar construction is
commonly applied in solid state physics to describe the arrangement of atomic crystals in
a solid [4]. An atomic crystal is assumed as a mathematical superposition of two identities,
namely, the lattice and the bases. The lattice is defined as an infinitely periodic positioning
of nodes in space [50,51], where bases are the mathematical description of the pattern in
every cell translation.

Likewise, the above description can be adopted in continuum mechanics to model a
LM. The unit cell is the minimum division of the lattice and is defined as the superposition
of two identities, namely, the cell envelope and the bases. The former describing the
periodic structure is expressed with the primitive bases,

→
a k, of the lattice translational

symmetry, where k ∈ {1, . . . , n} and n = 2 or n = 3 in 2D or 3D, respectively. The latter
represents the physical network defined by two groups, the nodal and the bar bases group.

Figure 1 depicts the described concept, with respect to the 2D triangular lattice.
Figure 1a shows the microstructure of the LM. The envelope of a possible unit cell is shown
with the bold lines in Figure 1a,b. The latter also illustrates the primitive bases

→
a 1 and

→
a 2. Figure 1c, on the other hand, depicts the bar arrangement vectors, bm, and node
arrangement vectors, jl , of the physical structure of the unit cell, where m ∈ {1, 2, . . . b}
and l ∈ {1, 2, . . . j}. b and j are, respectively, the number of bars and nodes within the
unit cell.

Appl. Mech. 2021, 2, 20 333 
 

 

direction are presented. In section six, the results are discussed along with the paper con-
clusions. 

2. Methodology 
A LM is constructed by infinitely tessellating a unit cell. A similar construction is 

commonly applied in solid state physics to describe the arrangement of atomic crystals in 
a solid [4]. An atomic crystal is assumed as a mathematical superposition of two identities, 
namely, the lattice and the bases. The lattice is defined as an infinitely periodic positioning 
of nodes in space [50,51], where bases are the mathematical description of the pattern in 
every cell translation. 

Likewise, the above description can be adopted in continuum mechanics to model a 
LM. The unit cell is the minimum division of the lattice and is defined as the superposition 
of two identities, namely, the cell envelope and the bases. The former describing the peri-
odic structure is expressed with the primitive bases, 𝑎→ , of the lattice translational sym-
metry, where 𝑘 ∈ 1, . . , 𝑛  and n = 2 or n = 3 in 2D or 3D, respectively. The latter represents 
the physical network defined by two groups, the nodal and the bar bases group. 

Figure 1 depicts the described concept, with respect to the 2D triangular lattice. Fig-
ure 1a shows the microstructure of the LM. The envelope of a possible unit cell is shown 
with the bold lines in Figure 1a,b. The latter also illustrates the primitive bases 𝑎→  and 𝑎→ . 
Figure 1c, on the other hand, depicts the bar arrangement vectors, 𝑏 , and node arrange-
ment vectors, 𝑗 , of the physical structure of the unit cell, where 𝑚 ∈ 1, 2, . . . 𝑏  and 𝑙 ∈1, 2, . . . 𝑗 . b and j are, respectively, the number of bars and nodes within the unit cell. 

 

Figure 1. Triangular lattice. (a) Tessellated lattice, (b) Cell envelope, (c) Unit cell. 

2.1. Constitutive Stiffness of the RJLM Unit Cell 
The stiffness systems of a structure that contains b elements linked by j nodes can be 

written as the following: 𝑲𝒅 = 𝒇 (1) 
where 𝑲 ∈ 𝑅 ×  is the constitutive stiffness matrix of the structure that associates its 
nodal deformation vector, 𝒅 ∈ 𝑅 , to the applied force vector, 𝒇 ∈ 𝑅  [42]. On the other 
hand, the stiffness system of a frame element, k, can be expressed as: 

 𝑲 𝒅 = 𝑲 + 𝑲 𝒅 = 𝒇  (2) 

Figure 1. Triangular lattice. (a) Tessellated lattice, (b) Cell envelope, (c) Unit cell.

2.1. Constitutive Stiffness of the RJLM Unit Cell

The stiffness systems of a structure that contains b elements linked by j nodes can be
written as the following:

Kd = f (1)

where K ∈ Rnj×nj is the constitutive stiffness matrix of the structure that associates its
nodal deformation vector, d ∈ Rnj, to the applied force vector, f ∈ Rnj [42]. On the other
hand, the stiffness system of a frame element, k, can be expressed as:

Kl
kdl

k =
{

Kbar
kl

+ Kbeam
kl

}
dl

k = fl
k (2)

Kbar
kl

=
EA
lk



1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, Kbeam
kl

=
EI
l3
k



0 0 0 0 0 0
0 12 6lk 0 −12 6lk
0 6lk 4l2

k 0 −6lk 2l2
k

0 0 0 0 0 0
0 −12 −6lk 0 12 −6lk
0 6lk 2l2

k 0 −6lk 4l2
k

 (3)
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where Kbar
kl

and Kbeam
kl

are the local element axial and bending constitutive stiffness matrices,

respectively, as Kl
k = Kbar

kl
+ Kbeam

kl
is the frame element total stiffness matrix. E, A, I and lk

are, respectively, the Young’s modulus of the solid material, the cross-sectional area, the
second moment of area and the length of the bar element. fl

k and dl
k are, respectively, the

nodal force and the nodal displacement vectors of element k in the element local coordinate
system (x1− y1). It should be noted that E, A, and I are assumed as common for all elements
of the unit cell while the element length is varied.

A formulation similar to Equations (2) and (3) can be obtained for each element in
the unit cell, and the assembled global stiffness system of the unit cell finite structure is
given as:

Kd =
{

Kbar + Kbeam
}

d = f (4)

2.2. Stiffness System of a RJLM

The Bloch’s theorem [36] is employed to generate the irreducible form of the stiffness
system of the unit cell. This constitutes the stiffness of the unbounded lattice. Similar to
the approach found in [27,37], the Bloch’s theorem is used here to describe the propagation
of the wave-function over a LM.

2.2.1. Bloch’s Theorem

A wave-function, w(pl , ω) ∈ C2, propagating over an infinite lattice can be written as:

w(pl , ω) = w
(

jl +
→
R, ω

)
= w(jl , ω)e2πiω

→
R , ∀l ∈ {1, 2, . . . , J} (5)

w(qm, ω) = w
(

bm +
→
R, ω

)
= w(bm, ω)e2πiω

→
R , ∀l ∈ {1, 2, . . . , B} (6)

where pl = jl +
→
R and qm = bm +

→
R are, respectively, the position vectors of node l and bar

m of the LM and
→
R is the direct translational vector of any unit cell of the LM. ω = (ω1, ω2),

ω1 and ω2 being the covariant components of ω, are found from the irreducible Brillouin
zone of the reciprocal lattice space. J and B are, respectively, the independent nodes and
bars within the unit cell envelope. i =

√
−1 is the complex number and C is the set of

all complex numbers. The following section presents the transformation matrices that is
applied to reduce the wave-functions and constitutive matrices. The procedure imposes
periodic boundary conditions to the unit cell [52,53].

2.2.2. Transformation Matrices

The kinematic transformation matrix is obtained as the following. Consider the generic
unit cell depicted in Figure 2; when applying the Bloch’s theorem the relations below can
be written:

qR = eµx qL, qT = eµy qB, qRB = eµx qLB,
qLT = eµy qLB, qRT = eµx+µy qLB

(7)

where q is the deformation function of a generic node; T, B, L and R denote top, bottom,
left and right, respectively; µx and µy are expressed as:

µx = 2πω1i, µy == 2πω2i (8)



Appl. Mech. 2021, 2 335

Appl. Mech. 2021, 2, 20 335 
 

 

 
𝑞 = 𝑒 𝑞 , 𝑞 = 𝑒 𝑞 , 𝑞 = 𝑒 𝑞 ,  𝑞 = 𝑒 𝑞 , 𝑞 = 𝑒 𝑞  

(7) 

where q is the deformation function of a generic node; T, B, L and R denote top, bottom, 
left and right, respectively; 𝜇  and 𝜇  are expressed as: 

 𝜇 = 2𝜋𝜔 𝑖, 𝜇 = 2𝜋𝜔 𝑖 (8) 

 
Figure 2. Generic unit cell with its periodic kinematic boundaries. 

Equation (7) can be written in matrix terms as: 
 𝒒 = 𝑻𝒒~ (9) 

 𝑻 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
𝑰 0 0 00 𝑰 0 00 𝑰𝑒 0 00 0 𝑰 00 0 𝑰𝑒 00 0 0 𝑰0 0 0 𝑰𝑒0 0 0 𝑰𝑒0 0 0 𝑰𝑒 ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤ , 𝒒 =

⎢⎢⎢
⎢⎢⎢
⎢⎢⎡

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ⎥⎥⎥
⎥⎥⎥
⎥⎥⎤ , 𝒒~ = 𝑞𝑞𝑞𝑞  (10) 

where T is the transformation matrix to the reduced degrees of freedom of the infinite LM 
structure, and 𝑰 is an identity matrix of same size as the unit cell nodal degrees of free-
dom. The reduced wave-functions of the nodal displacements, by application of the trans-
formation matrix, is given as: 

 𝒅 = 𝑻𝒅~ (11) 

where 𝒅~ is the reduced nodal displacement vector. The same concept, used for the kine-
matic transformation matrix, can be applied to generate the equilibrium transformation 
matrix. For the cluster of four generic unit cells shown in Figure 3, the application of the 
Bloch’s theorem allows writing the equations below: 

 
𝑓 + 𝑒 𝑓 = 0, 𝑓 + 𝑒 𝑓 = 0, 𝑓 + 𝑒 𝑓 + 𝑒 𝑓 + 𝑒 𝑓 = 0 

(12) 

Equation (12) can be arranged as: 
 𝒇~ = 𝑻 𝒇 = 0 (13) 

where 𝒇~ = [𝑓 𝑓 𝑓 𝑓 ] , 𝒇 = [𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 𝑓 ] and 𝑻  is 
the Hermitian (the conjugate transpose) of the transformation matrix T. 

  

Figure 2. Generic unit cell with its periodic kinematic boundaries.

Equation (7) can be written in matrix terms as:

q = Tq̃ (9)

T =



I 0 0 0
0 I 0 0
0 Ieµy 0 0
0 0 I 0
0 0 Ieµx 0
0 0 0 I
0 0 0 Ieµx

0 0 0 Ieµy

0 0 0 Ieµx+µy


,q =



qI
qB
qT
qL
qR
qLB
qRB
qLT
qRT


, q̃ =


qI
qB
qL
qLB

 (10)

where T is the transformation matrix to the reduced degrees of freedom of the infinite
LM structure, and I is an identity matrix of same size as the unit cell nodal degrees of
freedom. The reduced wave-functions of the nodal displacements, by application of the
transformation matrix, is given as:

d = Td̃ (11)

where d̃ is the reduced nodal displacement vector. The same concept, used for the kinematic
transformation matrix, can be applied to generate the equilibrium transformation matrix.
For the cluster of four generic unit cells shown in Figure 3, the application of the Bloch’s
theorem allows writing the equations below:

fR + eµx fL = 0, fT + eµy fB = 0,
fRT + eµx fLT + eµy fRB + eµx+µy fLB = 0

(12)
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Equation (12) can be arranged as:

f̃ = THf = 0 (13)
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where f̃ =
[

f I fB fL fLB
]T , f =

[
f I fB fT fL fR fLB fRB fLT fRT

]T

and TH is the Hermitian (the conjugate transpose) of the transformation matrix T.
Equations (11) and (13) are substituted in the constitutive global stiffness system of

the unit cell to derive its periodic reduced form as:

K̃d̃ = f̃ (14)

where K̃ is the reduced stiffness matrix of the LM, expressed as:

K̃ = THKT (15)

2.3. Effective Macro-Stiffness of a RJLM

The stiffness properties of the microstructure of the LM are homogenized to estab-
lish its macro-stiffness properties. This procedure can be performed by means of the
employment of the Cauchy-Born hypothesis [43–46], as described below.

2.3.1. Cauchy-Born Hypothesis

The definition of the Cauchy-Born hypothesis [43] states that the infinitesimal displace-
ment field of a periodic node in a LM structure is given by:

d
(

jl +
→
R, ε

)
= d(jl , ε = 0) + ε·

→
R (16)

where d(jl , ε = 0) is the l nodal displacement vector. Assuming that the nodes described

by the position vectors jl and jl +
→
R, are the two rigid nodes i and j within a LM structure,

then Equation (16) can be written as: dix
diy
θi

 =

 djx
djy
θj

+

 εxx εxy
εyx εyy
0 0

[ xi − xj
yi − yj

]
, in 2D (17)

where dix and diy are, respectively, the vectorial displacement components of the node in
the x and y directions and node i is the dependent node, while node j is the independent
node. The parameter θi represents the rotation of the node in the xy-plane. By using the
concept of engineering strain [54], Equation (17) is modified to: dix

diy
θi

 =

 djx
djy
θj

+

 εxx
1
2 εxy

1
2 εyx εyy

0 0

[ xi − xj
yi − yj

]
, in 2D (18)

which is given by: dix
diy
θi

 =

 djx
djy
θj

+


(

xi − xj
)

0 1
2
(
yi − yj

)
0

(
yi − yj

) 1
2
(
xi − xj

)
0 0 0

 εxx
εyy
εxy

 or di = dj + E
¯
ε (19)

Applying this boundary condition to the nodal displacement vector, d, of the unit
cell returns:

d = Td̃ + Eε (20)

Equation (20) is the rigid-jointed modified kinematic boundary condition of the Cauchy-
Born Hypothesis. Substituting Equation (17) into the constitutive stiffness system of the
unit cell (Equation (4)) yields:

K
{

Td̃ + Eε
}
=
{

Kbar + Kbeam
}{

Td̃ + Eε
}
= f (21)
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Pre-multiplying Equation (21) by the Hermitian of the transformation matrix, TH , and
substituting Equation (13) into the outcome, results in:

THK
{

Td̃ + Eε
}
= TH

{
Kbar + Kbeam

}{
Td̃ + Eε

}
= THf = f̃ = 0 (22)

Rearranging Equation (22), results in:

TH
{

Kbar + Kbeam
}

Td̃ = −TH
{

Kbar + Kbeam
}

Eε (23)

Equation (23) is divided into two matrix systems that are given by:

K̃
bar

d̃ = −THKbarEε (24)

K̃
beam

d̃ = −THKbeamEε (25)

where K̃
bar

= THKbarT and K̃
beam

= THKbeamT are respectively the axial (bar) and bending
(beam) stiffness matrices.

2.3.2. Microscopic Nodal Deformations in Terms of Macro-Strain Field

The microscopic nodal deformation should be computed in terms of macro-strain field
using Equations (24) and (25). This can be done by multiplying both sides of Equations (24)
and (25) with the inverted stiffness matrices. To invert the stiffness matrices, all non-pivotal
modes in their column and row spaces have to be eliminated. The non-pivotal modes are
related to the rigid-body motion, since the LM is not constrained, and the modes associated
with microscopic internal mechanisms within the lattice. The non-pivotal modes can be

determined by computing the reduced row echelon form [55] of the two matrices K̃
bar

and

K̃
beam

. The resulting non-singular stiffness matrices can be inverted and an expression of
the microscopic nodal displacements, related to the given macroscopic strain field, can be
expressed as:

d̃bar = −
(

K̃
bar
red

)−1(
THKbarE

)
red

ε (26)

d̃beam = −
(

K̃
beam
red

)−1(
THKbeamE

)
red

ε (27)

where d̃bar and d̃beam are, respectively, the microscopic nodal deformations corresponding

to the axial and the bending behavior of the LM. K̃
bar
red and K̃

beam
red are, respectively, the bar

and the beam non-singular, reduced, stiffness matrices generated after eliminating modes
associated with the rigid-body modes and the internal network mechanisms.

The deformation of the unit cell nodes is found by substituting Equations (26) and (27)
into Equation (20), which results in:

dbar = Td̃bar + Eε =

{
−T
(

K̃
bar
red

)−1(
THKbarE

)
red

+ E
}

ε (28)

dbeam = Td̃beam + Eε =

{
−T
(

K̃
beam
red

)−1(
THKbeamE

)
red

+ E
}

ε (29)

The equations of the generalized microscopic nodal forces, with respect to the macro-
scopic strain field, can be computed by direct substitution of Equations (28) and (29) into
Equation (4) as:

fbar = Kbardbar = Kbar
{
−T
(

K̃
bar
red

)−1(
THKbarE

)
red

+ E
}

ε (30)
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fbeam = Kbardbeam = Kbar
{
−T
(

K̃
beam
red

)−1(
THKbeamE

)
red

+ E
}

ε (31)

2.3.3. Homogenized Macro-Stiffness of LMs

The generalized nodal forces and deformations, formulated in the previous section,
are used to derive the macro-stiffness properties of the RJLMs by applying the principle of
virtual work [47] and the Hill-Mandel macro-homogeneity principle [45], as:

Kbar
L =

(
EA

2|A|

)((
M f

bar

)T(
Md

bar

))
(32)

Kbeam
L =

(
EI

2|A|

)((
M f

beam

)T(
Md

beam

))
(33)

where |A| is the planar area of the unit cell. Kbar
L and Kbeam

L are, respectively, the homog-
enized, fourth order, axial and bending stiffness tensors of the LM. M f

bar and M f
beam are

respectively the compatibility matrices of macroscopic strain field and microscopic force
vector that is applied to the unit-cell nodes, considering the axial and bending stiffness
contribution. Similarly, Md

bar and Md
beam are respectively the compatibility matrices between

the macroscopic strain field and the microscopic nodal displacements in the lattice unit-
cell structure, considering the axial and bending components of the stiffness matrix. The
relative density, ρL, of a 2D LM is given by:

ρL =
ρL
ρ

= Cρ

(
H
L

)
(34)

where Cρ is a constant parameter that depends on the geometry of the unit cell and H is the
in-plane thickness of the microscopic element of the 2D lattice; ρL, ρL and ρ are respectively,
the relative density of the LM, the LM density and the density of the solid material. If we
consider an out-of-plane depth of the 2D lattice equal to a unit length, L = 1, and substitute
Equation (34) into Equations (32) and (33) we obtain:

Kbar
L =

(
E

2|A|

)(
ρL
Cρ

)((
M f

bar

)T
Md

bar

)
(35)

Kbeam
L =

(
E

2|A|

)(
ρL
Cρ

)3((
M f

beam

)T
Md

beam

)
(36)

With the macroscopic stiffness matrix determined, the macro-compliance matrix can
be found by calculating the inverse of the stiffness matrix, where CL = KL

−1 is the linearly
elastic fourth order compliance tensor of the LM, that can be further used to calculate the
LM elastic moduli, which is described by:

CL =
(

Kbar
L + Kbeam

L

)−1
=

 Cxxxx Cxxyy Cxxxy
Cyyxx Cyyyy Cyyxy
Cxyxx Cxyyy Cxyxy

 (37)

It is possible, then, to write a relation between the macroscopic strain field,
ε =

[
εxx εyy εxy

]T, and the stress field, σ =
[
σxx σyy σxy

]T, as in the elastic stress Hooke’s
law equation:

ε = CLσ (38)

The elastic moduli and Poisson coefficient can finally be determined by:

(EL)xx =
1

Cxxxx
, (EL)yy =

1
Cyyyy

, (GL)xy =
1

Cxyxy
(39)
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(νL)yx =
−Cxxyy

Cxxxx
, (νL)xy =

−Cyyxx

Cyyyy
(40)

where (EL)xx, (EL)yy, (GL)xy are the homogenized Young moduli and shear modulus,
respectively, for each principal direction in the cartesian plane. (νL)yx and (νL)xy are the
directional Poisson coefficients of the lattice material.

2.4. Strength Properties of a RJLM

From the previously determined equations, it is possible to extend them to estimate
the RJLM strength. To do so, it is necessary to define the microscopic cell deformation
vector, d, with respect to the macroscopic strain field, ε. This is possible by means of the
application of the compatibility matrix previously introduced, Md

bar and Md
beam. They are

related as in the following equation:

d = dbar + dbeam =
(

Md
bar + Md

beam

)
ε = MGε (41)

where dbar and dbeam are the cell element deformations, and MG is defined as the global
compatibility matrix. An in-depth explanation about the calculation of the compatibility
matrix can be found in the work of ElSayed and Pasini [27]. The element strain can be
computed my pre-multiplying Equation (49) by the reciprocal element length matrix, ML,
establishing the relationship between the microscopic cell element strain, εµ, and the
macroscopic strain field, as in the following relation:

εµ = MLd = MLMGε (42)

The macroscopic strain is translated into microscopic strain with significant portion
being imparted by microscopic bending stiffness in bending dominated lattices and mainly
imparted by tensional stiffness in stretching dominated lattices. Using Equation (38) in
Equation (42) and multiplying by the material Young modulus, E, one obtains:

σµ = Γσ, Γ = EMLMGCL (43)

where σµ is the microscopic cell element stress, and Γ is a matrix dependent on the unit cell
topology analyzed and on the microscopic cell element deformations. Equation (43) is used
to evaluate the strength properties of the lattice topologies by means of the application
of three macroscopic stress fields, σ, considering a single direction in each case. The
least resistant element in the lattice unit cell, when subjected to the stress field, will
represent the critical macroscopic strength of the lattice material. The relation is given by
the following equation:

σL
cr =

σµ
cr

max(Γ(:, i))
= Cσ(i)σµ

cr (44)

where Cσ(i) is a coupling coefficient between the macroscopic and microscopic strength of
the lattice material, for the x-, y- and xy- directions. This criterion to assess the macroscopic
strength of the lattice material conservatively considers that the entire lattice fails when
one microscopic element of a unit cell fails. The parameter σµ

cr refers to the solid material
property of comparison for failure analysis. In this paper, the solid material plastic yield
strength is considered to evaluate the tensile strength of the lattice. Therefore, the critical
microscopic element stress is set equal to the material yield strength, i.e., σµ

cr = σys. For an
isotropic and ductile material, the plastic shear strength can be easily determined by the
relation τys = σys/2, which is obtained from the Mohr’s circle in pure shear loading, and
thus is used to estimate the critical shear strength of the lattice material.

3. Stiffness Property Charts

The methodology described in Section 2 is applied here to compute the relative
stiffness of 13 RJLM topologies. The lattice topologies and their respective unit cells with
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the direct lattice bases are depicted in the Appendix A of the paper. Details regarding the
lattice unit-cell topologies are discussed in the Supplementary Material of the paper. The
results obtained are reported in Figures 4–6. The relative density was limited to the range
ρL ∈ [0, 0.5] in order to limit the microscopic lattice element maximum aspect ratio, due
to the assumption of Euler-Bernoulli beams as the constitutive model for the formulation
derived in the previous section [56].
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material elastic modulus. The results are plotted for the full range of relative density; how-
ever, it should be noted that practical ranges of porosity have a reduced range of relative 
density depending on the porous media [57]. These charts assist in the selection of the best 
topology of a LM for a given design requirement. The results provide a thorough compar-
ison of elastic properties between different LM topologies, demonstrating the propor-
tional effect of filling the periodic voids of a LM with respect to the mechanical properties. 
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From Figure 4 and Figure 5 it is possible to conclude that the axial stiffness dominates 
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expected due to the fact that this lattice presents the orientation of the micro-elements of 
the unit cell aligned with the macro-load applied. This characteristic allows the square 
lattice topology to be the best selection in applications where the macro-loads applied 
come from a single principal direction. On the other hand, the disadvantage lies in the fact 
that it presents a low Shear stiffness, as it can be seen in Figure 6. This makes it compliant 
to deform through this mechanism, when compared to other topologies, in the case of a 
combination of macro-loads applied in multiple directions. 
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The bending stiffness behavior contribution of the unit cell elements to the macro-
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Equations (45)–(47) are plotted in Figure 7–9 for all lattice topologies considered. The 
curves show that the closer the topology to the full triangulated lattice, the less the partic-
ipation of the micro-bending stiffness to the homogenized macro-stiffness of the LM. It is 
found that, at relative density 0.3, the microscopic bending contribution is almost 1% in 
the direct stiffness of the Kagome lattice and 2.2% in the shear stiffness of the Semi-Uni-
Braced square lattice. These values can theoretically increase respectively to 8% and 17% 
for higher relative density, e.g., 0.9. However, for higher density the lattice cells overlap 
and merge together; thus, the results lose physical significance. 

Since LMs are generally manufactured as RJLM, Figure 7–9 give an estimate of the 
expected error involved in the elastic properties of stretching dominated topologies that 
are modelled as pin-jointed lattice structures. Such analysis is useful to compare the 

Figure 6. Relative shear modulus for the xy-direction versus relative density of the 2D LMs analyzed
in the study.

Figures 4–6, the relative Young and Shear modulus of the LM with respect to a
variation of relative density, the relative elastic modulus being the ratio of the LM to
the solid material elastic modulus. The results are plotted for the full range of relative
density; however, it should be noted that practical ranges of porosity have a reduced
range of relative density depending on the porous media [57]. These charts assist in
the selection of the best topology of a LM for a given design requirement. The results
provide a thorough comparison of elastic properties between different LM topologies,
demonstrating the proportional effect of filling the periodic voids of a LM with respect to
the mechanical properties.

From Figures 4 and 5 it is possible to conclude that the axial stiffness dominates
the macro-stiffness behavior of the LM. This is illustrated by the nearly-straight lines
representing the variation of the relative elastic moduli versus the relative density of the
LM. However, the contribution of the bending stiffness of the microscopic cell elements
to the macroscopic shear stiffness of the LM is significant in LMs that have a bending
dominated behavior, such as the square and the 33.42 lattice topologies [27]. This is shown
by the non-linear curves (Figure 6), representing the variation of the elastic shear moduli of
the LMs versus its relative density.

From Figures 4 and 5 it can be concluded that the square lattice topology presents the
most significant values of relative stiffness in both directions analyzed. This is expected
due to the fact that this lattice presents the orientation of the micro-elements of the unit cell
aligned with the macro-load applied. This characteristic allows the square lattice topology
to be the best selection in applications where the macro-loads applied come from a single
principal direction. On the other hand, the disadvantage lies in the fact that it presents
a low Shear stiffness, as it can be seen in Figure 6. This makes it compliant to deform
through this mechanism, when compared to other topologies, in the case of a combination
of macro-loads applied in multiple directions.

The bending stiffness behavior contribution of the unit cell elements to the macro-
stiffness of stretching dominated LMs can be assessed by the relations given below:(

∆EL
)

xx = 100
((

EL
)

xx −
(

Ebar
L

)
xx

)
/
(
EL
)

xx[%] (45)

(
∆EL

)
yy = 100

((
EL
)

yy −
(

Ebar
L

)
yy

)
/
(
EL
)

yy[%] (46)

∆GL = 100
(

GL − Gbar
L

)
/GL[%] (47)
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Equations (45)–(47) are plotted in Figures 7–9 for all lattice topologies considered.
The curves show that the closer the topology to the full triangulated lattice, the less the
participation of the micro-bending stiffness to the homogenized macro-stiffness of the LM.
It is found that, at relative density 0.3, the microscopic bending contribution is almost 1%
in the direct stiffness of the Kagome lattice and 2.2% in the shear stiffness of the Semi-Uni-
Braced square lattice. These values can theoretically increase respectively to 8% and 17%
for higher relative density, e.g., 0.9. However, for higher density the lattice cells overlap
and merge together; thus, the results lose physical significance.
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shear modulus versus the relative density of the LM. 
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of the LM with Schlafli symbol of 34 × 6 are characterized experimentally through uniaxial 
tensile and pure shear quasi-static tests. The A2X Arcam Electron Beam Melting (EBM) 
system is utilized to manufacture the experimental specimens using the Ti6Al4V ELI Ti-
tanium Alloy. The alloy used has the mechanical properties of yield strength: 𝜎 =940 MPa, ultimate strength: 𝜎 = 990 MPa, Young’s modulus: 𝐸 = 120 GPa and shear 
modulus: 𝐺 = 45 GPa. 

4.1. Specimens Design 
The LM test specimen was designed according to ElSayed and Pasini [27], in order to 

predict the elastic buckling and plastic yielding failure of unit cell elements, based on the 
solid material properties. The length of each unit cell element is set as 5mm, such that a 
safety factor of 2 is adopted. To compute the tensile specimen height and width, the ASTM 
standards C363-00 is followed. The shear test was executed utilizing the three-rail shear 
method, considering the ASTM Standards, D 4255/D 4255M-01. Figure 10 depicts the di-
mensions utilized for the LM specimens and the test specimen installed in the three-rail 
shear fixture and testing machine for the shear test. Previous executed experiments 
demonstrated that the boundary stiffening phenomena, due to clamping of the specimen 
to the three-rail fixture, is minimal for dimensional ratios of specimen length with respect 
to unit cell size higher than 3 [58,59]. Thus, the specimen width at both sides of the testing 
rig is defined as 42 mm. 

Figure 9. Contribution percentage of the bending stiffness of unit cell elements to the macroscopic
shear modulus versus the relative density of the LM.

Since LMs are generally manufactured as RJLM, Figures 7–9 give an estimate of the
expected error involved in the elastic properties of stretching dominated topologies that
are modelled as pin-jointed lattice structures. Such analysis is useful to compare the theo-
retical results of pin-jointed lattices with their experimental counter parts [27]. In summary,
for LMs with high relative density, the bending stiffness term in the total homogenized
macroscopic stiffness increases its significance. Therefore, it becomes necessary to con-
sider the rigid-joint modelling if one intends to achieve accurate expected results of the
mechanical properties.

4. Experimental Validation

Intending to validate the theoretical model proposed, the effective elastic properties
of the LM with Schlafli symbol of 34.6 are characterized experimentally through uniaxial
tensile and pure shear quasi-static tests. The A2X Arcam Electron Beam Melting (EBM)
system is utilized to manufacture the experimental specimens using the Ti6Al4V ELI Tita-
nium Alloy. The alloy used has the mechanical properties of yield strength: σys = 940 MPa,
ultimate strength: σus = 990 MPa, Young’s modulus: E = 120 GPa and shear modulus:
G = 45 GPa.

4.1. Specimens Design

The LM test specimen was designed according to ElSayed and Pasini [27], in order
to predict the elastic buckling and plastic yielding failure of unit cell elements, based on
the solid material properties. The length of each unit cell element is set as 5 mm, such
that a safety factor of 2 is adopted. To compute the tensile specimen height and width, the
ASTM standards C363-00 is followed. The shear test was executed utilizing the three-rail
shear method, considering the ASTM Standards, D 4255/D 4255M-01. Figure 10 depicts
the dimensions utilized for the LM specimens and the test specimen installed in the three-
rail shear fixture and testing machine for the shear test. Previous executed experiments
demonstrated that the boundary stiffening phenomena, due to clamping of the specimen
to the three-rail fixture, is minimal for dimensional ratios of specimen length with respect
to unit cell size higher than 3 [58,59]. Thus, the specimen width at both sides of the testing
rig is defined as 42 mm.
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Figure 10. (a,b) Specimen LM schematics utilized in the experiment, (c) Shear LM specimen installed into the three-rail shear fix-
ture and testing machine. 

CAD models of the test specimens are created based on the designed dimensions for 
the different configurations. In total, six specimens are manufactured, i.e., three assigned 
for the different design models. Therefore, for each tensile and shear characterization, the 
results were based on three sets of data. The relative density of the LM is computed as 
0.495 which is used to compute the stiffness and strength properties of the designed LM 
which are reported in Table 1. 

4.2. Experimental Set-up and Instrumentation 
The experimental set-up used is shown Figure 11. It is composed of an MTS® hydrau-

lic tensile test machine with maximum applied force of 100 KN; MTS 685 hydraulic con-
troller; 632-31E-24 extensometer; MTS FLEX Test SE data acquisition system (DAq); a 
computer controlling the test using the FLEX Test SE Station Manager program (under 
version 3.5C 1815). 
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mounted test specimen (d) 632-31E-24 extensometer (e) DAq (f) monitoring software (g) MTS 685 
hydraulic controller. 

Figure 10. (a,b) Specimen LM schematics utilized in the experiment, (c) Shear LM specimen installed into the three-rail
shear fixture and testing machine.

CAD models of the test specimens are created based on the designed dimensions for
the different configurations. In total, six specimens are manufactured, i.e., three assigned
for the different design models. Therefore, for each tensile and shear characterization, the
results were based on three sets of data. The relative density of the LM is computed as
0.495 which is used to compute the stiffness and strength properties of the designed LM
which are reported in Table 1.

Table 1. Comparison between the characterization results obtained with the proposed numerical
model and the experimental tests.

Numerical Experimental Error (%)
Rigid Pin Rigid Pin

Tension

(
σ

y
L

)
xx

(MPa) 97.8 96.7 98.1 0.3 1.4

Exxxx (GPa) 18.8 18.6 18.9 0.5 1.5

Shear
τ

y
L (MPa) 65.1 63.0 68.7 5.5 9.04
G (GPa) 6.2 6.0 6.5 4.8 8.33

4.2. Experimental Set-Up and Instrumentation

The experimental set-up used is shown Figure 11. It is composed of an MTS® hydraulic
tensile test machine with maximum applied force of 100 KN; MTS 685 hydraulic controller;
632-31E-24 extensometer; MTS FLEX Test SE data acquisition system (DAq); a computer
controlling the test using the FLEX Test SE Station Manager program (under version
3.5C 1815).
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Figure 11. Experimental set-up and instrumentation. (a) 100 KN MTS machine (b) load cell
(c) mounted test specimen (d) 632-31E-24 extensometer (e) DAq (f) monitoring software (g) MTS
685 hydraulic controller.

Quasi-static tests are considered employing a strain rate of magnitude of 10−3 s−1 is
used [60]. The tensile test is executed until the fracture of the specimens is characterized. A
ruptured tensile specimen is shown in Figure 12 and tensile test results are presented in
Figure 13. Tensile yield strength is taken as the highest admissible stress achieved in the
stress-strain diagram. Due the ductile nature of the material which the lattice specimens
are manufactured with, the admissible stress can be estimated with a 0.2% offset of the
plastic strain, parallel to the nearly straight-line elastic region of the material [61].
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Figure 12. Results comparison of tensile test versus theoretical models. 

As previously described, the standard three-rail shear method (ASTM Standards, D 
4255/D 4255M-01) is utilized to execute the mechanical shear test. The load is applied at a 
crosshead displacement rate of 0.5 mm/min. The average shear strain rate is calculated by 
dividing the crosshead displacement rate by the width of the LM. This results in a rate of 
1.98 × 10−4 rad/s. The test is performed until the fracture of the specimen is observed. Shear 
test results are shown in Figure 13. The shear yield strength is taken as the maximum 
stress reached during the test. 

Table 1 presents a comparison between the numerically predicted mechanical prop-
erties values and the ones experimentally obtained. The percentage error is calculated as 
a percentual difference between the experimental and the theoretical results. Table 1 

Figure 12. Tension specimens. (a) Tensile test specimen, with y-direction orientation, with the
clamping device. (b) Failed LM test specimen, with x-direction orientation, tensile specimen.
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Figure 13. Results comparison of tensile test versus theoretical models.

As previously described, the standard three-rail shear method (ASTM Standards, D
4255/D 4255M-01) is utilized to execute the mechanical shear test. The load is applied at a
crosshead displacement rate of 0.5 mm/min. The average shear strain rate is calculated
by dividing the crosshead displacement rate by the width of the LM. This results in a rate
of 1.98× 10−4 rad/s. The test is performed until the fracture of the specimen is observed.
Shear test results are shown in Figure 14. The shear yield strength is taken as the maximum
stress reached during the test.
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  Numerical Experimental Error (%) 
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Figure 13. Results comparison of Shear test versus theoretical models. 

Additionally, the error propagation analysis in experimental investigations results in 
different origins for the source of errors for the data obtained. For instance, in the mechan-
ical characterization of structural foams, the error propagation is significantly affected by 
uncertainties related to the definition of the microscopic structure of the material, because 
of the stochastic nature of the foam’s microstructure [62]. Another possible source of er-
rors relies on the intrinsic hypothesis adopted for the formulation of the constitutive equa-
tions of the method. For instance, the theoretical results are obtained by considering the 
lattice material as a microscopic pin-jointed truss structure. This assumption implies that 
the axial stiffness of the microscopic cell elements is the dominant in the model. However, 
in reality, a LM structure is manufactured with a rigid-jointed network, and, as a conse-
quence, the bending stiffness of the microscopic elements contributes to the overall mate-
rial stiffness and strength, even if the material theoretical microstructure is kinematically 
determinate. Moreover, the mechanical properties of the Ti6Al4V are usually dependent 
upon the manufacturing technique and parameters utilized to fabricate the specimen, 
which affect the phase content and grain size of the solid material microstructure, thus 
resulting in uncertainties in the prediction of the final mechanical properties [63]. 

  

Figure 14. Results comparison of Shear test versus theoretical models.

Table 1 presents a comparison between the numerically predicted mechanical proper-
ties values and the ones experimentally obtained. The percentage error is calculated as a
percentual difference between the experimental and the theoretical results. Table 1 shows
that, compared to the experimental results, the model of RJLM presented in this paper can
predict the homogenized mechanical properties of the LM with higher accuracy compared
to those predicted by pin-jointed models. This superiority becomes significant in the shear
properties prediction. This result verifies the accuracy of the theoretical model developed
in this paper.
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Additionally, the error propagation analysis in experimental investigations results
in different origins for the source of errors for the data obtained. For instance, in the
mechanical characterization of structural foams, the error propagation is significantly
affected by uncertainties related to the definition of the microscopic structure of the material,
because of the stochastic nature of the foam’s microstructure [62]. Another possible source
of errors relies on the intrinsic hypothesis adopted for the formulation of the constitutive
equations of the method. For instance, the theoretical results are obtained by considering
the lattice material as a microscopic pin-jointed truss structure. This assumption implies
that the axial stiffness of the microscopic cell elements is the dominant in the model.
However, in reality, a LM structure is manufactured with a rigid-jointed network, and,
as a consequence, the bending stiffness of the microscopic elements contributes to the
overall material stiffness and strength, even if the material theoretical microstructure is
kinematically determinate. Moreover, the mechanical properties of the Ti6Al4V are usually
dependent upon the manufacturing technique and parameters utilized to fabricate the
specimen, which affect the phase content and grain size of the solid material microstructure,
thus resulting in uncertainties in the prediction of the final mechanical properties [63].

5. Anisotropic Stiffness Response of LMs

To examine the anisotropic behavior of the homogenized stiffness characteristics of
LMs, consider an infinitesimal stress field, as depicted in Figure 15. The 2D stress field(
σx, σy, τxy

)
is transformed counterclockwise by an angle θ ∈

[
0
◦
, 360

◦]
to the stress field(

σxθ
, σyθ

, τxθ yθ

)
. To transform the material elastic properties from the (x− y) coordinates

to the (xθ − yθ) coordinates we resort to the Bond-stress and strain transformation matri-
ces [48,49,64–66]. The linearly elastic stress field in the (x− y) coordinates can be related
to the strain field in the same coordinate system by Hooke’s law [54]. As demonstrated
by Bond [64], the stress field in the (x− y) coordinates, σ, can be transformed to a stress
field in the (xθ − yθ) coordinates, σθ , using the Bond-Stress Transformation matrix, Mσ,
such that:

σθ = Mσσ (48)
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Figure 15. Infinitesimal stress field of LM.

The 2D Bond-Stress Transformation matrix is given by:

Mσ =

 cos2(θ) sin2(θ) sin(2θ)

sin2(θ) cos2(θ) −sin(2θ)
−0.5sin(2θ) 0.5sin(2θ) cos(2θ)

 (49)
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Similarly, the corresponding strain field in the (x− y) coordinates, ε, can be trans-
formed to a strain field in the (xθ − yθ) coordinates, εθ using the Bond-Strain Transforma-
tion matrix, Mε, such that:

εθ = Mεε (50)

Inverting the matrices in Equations (48) and (50) and substituting the results into
stress-strain relation (Hooke’s law), gives:

σθ = MσKM−1
ε εθ (51)

Here, Kθ = MσKMT
σ where M−1

ε = MT
σ [48]. Equation (51) is utilized to compute the

transformation of the stiffness properties of LMs through an angle θ ∈
[
0
◦
, 360

◦]
. The LM

relative density is set to unity, i.e., ρL = 1., Figures 16–21 illustrate the polar diagram of
the Young’s modulus (for the xθ and yθ directions as well as the shear modulus in the xθyθ

direction) for the 13 topologies studied in this paper.
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Figure 15. Polar plot showing the Young’s modulus of the LM in the x-direction as a function 
loading angle 𝜃 ∈ [0 , 360 ]. 

 

Figure 16. Polar plot showing the Young’s modulus of the LM in the x-direction as a function 
loading angle 𝜃 ∈ [0 , 360 ]. 

Figure 16. Polar plot showing the Young’s modulus of the LM in the x-direction as a function loading
angle θ ∈

[
0
◦
, 360

◦ ]
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Figure 17. Polar plot showing the Young’s modulus of the LM in the y-direction as a function of 
loading angle 𝜃 ∈ [0 , 360 ]. 

 

Figure 18. Polar plot showing the Young’s modulus of the LM in the y-direction as a function 
loading angle 𝜃 ∈ [0 , 360 ]. 

Figure 18. Polar plot showing the Young’s modulus of the LM in the y-direction as a function of
loading angle θ ∈

[
0
◦
, 360

◦ ]
.
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Figure 17. Polar plot showing the Young’s modulus of the LM in the y-direction as a function of 
loading angle 𝜃 ∈ [0 , 360 ]. 

 

Figure 18. Polar plot showing the Young’s modulus of the LM in the y-direction as a function 
loading angle 𝜃 ∈ [0 , 360 ]. Figure 19. Polar plot showing the Young’s modulus of the LM in the y-direction as a function loading
angle θ ∈

[
0
◦
, 360

◦ ]
.
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Figure 19. Polar plot showing the shear modulus of the LM as a function of loading angle 𝜃 ∈[0 , 360 ]. 

 

Figure 20. Polar plot showing the shear modulus of the LM as a function loading angle 𝜃 ∈[0 , 360 ]. 

Figure 20. Polar plot showing the shear modulus of the LM as a function of loading angle
θ ∈

[
0
◦
, 360

◦ ]
.
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Figure 19. Polar plot showing the shear modulus of the LM as a function of loading angle 𝜃 ∈[0 , 360 ]. 

 

Figure 20. Polar plot showing the shear modulus of the LM as a function loading angle 𝜃 ∈[0 , 360 ]. Figure 21. Polar plot showing the shear modulus of the LM as a function loading angle θ ∈
[
0
◦
, 360

◦ ]
.

6. Discussion and Concluding Remarks

This work presented a method to calculate the elastic properties of micro-truss LMs
with rigid-jointed architecture. The procedure consists of four main steps. The first in-
volves the use of classical matrix methods of structural analysis to determine the stiffness
properties of the lattice unit cell. In the second, the Bloch’s theorem is employed to generate
the irreducible representation of the LM structure. The third resorts to the Cauchy-Born
Hypothesis to express the microscopic nodal forces and deformations in terms of a ho-
mogenized macro-strain field applied to the lattice. Finally, the Hill-Mandel principle is
used to obtain the macro-stiffness properties of the RJLM. The accuracy of the model is
verified experimentally.

Using the theoretical model, three set of charts are developed, the first set, Figures 4–6,
shows the variation of the elastic moduli with respect to their relative density for 13 lattice
topologies. Besides cell topology, lattice orientation governs the axial stiffness of the unit
cell network, which in turn influences the macroscopic stiffness of the LM. We learn from
these charts the importance of examining the lattice resistant to deformation in both axial
and shear direction with respect to the macroscopic loading applied to the material. For
example, consider the square lattice. Its cell elements are aligned with the direction of the
external loadings. Hence, the direct stiffness to mass ratio is the highest among the selected
topologies. Its shear stiffness characteristics, however, are the lowest. If a macroscopic
loading triggered the element shear stiffness, then its superior stiffness in the axial direction
would be overshadowed by its high shear compliance. This example shows that to assess
the performance of a lattice, it is necessary to consider the macroscopic load applied to the
material as well as the type of deformation that this load triggers on the cell members.

The second set of charts, Figures 7–9, has been presented to estimate the errors between
theoretical results of pin-jointed micro-trusses and their rigid-jointed counterpart. The
charts show the participation of the bending stiffness of stretching dominated unit cell
beams to the homogenized macro-stiffness. For a stretching dominated LM, the main
observation is that the closer the cell topology to the full triangulation, the less the cell
elements contribute to the bending stiffness. In particular, the contribution is negligible
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for lattice structures that possess no microscopic internal mechanisms in their pin-jointed
versions of the lattice. At 0.3 relative density, we find that the bending resistant of the
Kagome lattice members contribute up to 1% to the total stiffness of the material. This is
the highest contribution among the selected topologies. On the other hand, at the same
relative density, the bending stiffness contribution of the cell members is limited to 0.3%
for the Uni-Braced square lattice topology, which has internal mechanisms.

Finally, the third set of plots, Figures 15–20, includes polar diagrams showing the
magnitude of the elastic moduli in response to a load from any in-plane direction. These
charts provide insight into their anisotropic as well as indicate the best orientation a
LM can be loaded to withstand a macroscopic loading applied in a given direction. For
instance, the fully triangulated lattice is isotropic. Its properties represented by a circle are
invariant to the direction of the macroscopic loading. The square lattice, on the other hand,
has orthotropic characteristics, as illustrated by the four-point star shape of the moduli.
The DHT and 34.6 topologies exhibit quasi-isotropic stiffness properties as shown by the
roughly circular plot of the variation of their elastic moduli correspondent to the direction
of macroscopic loading.

The three set of charts depicted in this paper can be used for analysis and design
purposes of LM. In general, the charts might help to gain insight into the selection of the
best lattice topology for a given design application, as well as to explore the potential of
novel lattice topologies in populating unfilled areas of the material properties charts.
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Figure A1. Lattice topologies investigated in the study. Unit-cells: (a) Triangular, (b) Kagome, (c) Kagome patched, (d) Square, (e) 
Single-braced square, (f) Double-braced square, (g) Semi single-braced square, (h) Semi double-braced square, (i) Double hexagonal 
triangulation, (j) Schlafli symbol 33 × 42, (k) Semi-hexagonal triangulation, (l) Schlafli symbol 34.6, (m) Triangular-triangular. 
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