Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,008)

Search Parameters:
Keywords = higher–order systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

13 pages, 359 KiB  
Review
Numerical Methods for the Time-Dependent Schrödinger Equation: Beyond Short-Time Propagators
by Ryan Schneider and Heman Gharibnejad
Atoms 2025, 13(8), 70; https://doi.org/10.3390/atoms13080070 - 28 Jul 2025
Abstract
This article reviews several numerical methods for the time-dependent Schrödinger Equation (TDSE). We consider both the most commonly used approach—short-time propagation, which solves the TDSE by assuming that the Hamiltonian is time-independent over sufficiently small (time) intervals—as well as a number of higher-order [...] Read more.
This article reviews several numerical methods for the time-dependent Schrödinger Equation (TDSE). We consider both the most commonly used approach—short-time propagation, which solves the TDSE by assuming that the Hamiltonian is time-independent over sufficiently small (time) intervals—as well as a number of higher-order alternatives. Our goal is to dispel the notion that the latter are too computationally demanding for practical use. To that end, we cover methods whose numerical building blocks are shared by short-time propagators or can be handled by standard libraries. Moreover, we make the case that these methods are best positioned to take advantage of parallel computing environments. One of the alternatives considered is a “double DVR” solver, which applies an expansion in a product basis of functions in space and time to obtain a solution (over all space and at multiple time points simultaneously) with a single linear system solve. To our knowledge, and despite its simplicity, this approach has not previously been applied to the TDSE. Full article
Show Figures

Figure 1

17 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 56
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

18 pages, 3750 KiB  
Article
Design and Analysis of an Electro-Hydraulic Servo Loading System for a Pavement Mechanical Properties Test Device
by Yufeng Wu and Hongbin Tang
Appl. Sci. 2025, 15(15), 8277; https://doi.org/10.3390/app15158277 - 25 Jul 2025
Viewed by 70
Abstract
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control [...] Read more.
An electro-hydraulic servo loading system for a pavement mechanical properties test device was designed. The simulation analysis and test results showed that the PID control met the design requirements, but the output’s maximum error did not. Therefore, a fast terminal sliding mode control strategy with an extended state observer (ESO) was proposed. A tracking differentiator was constructed to obtain smooth differential signals from the input signals. The order of the system was reduced by considering the third and higher orders of the system as the total disturbance, and the states and the total disturbance of the system were estimated using the ESO. The fast terminal sliding mode control achieved fast convergence of the system within a limited time. The simulation results showed that the proposed control strategy improved the system accuracy and anti-disturbance ability, and system control performance was optimized. Full article
Show Figures

Figure 1

26 pages, 4820 KiB  
Article
Olive Oil Wastewater Revalorization into a High-Added Value Product: A Biofertilizer Assessment Combining LCA and MCI
by Roberto Petrucci, Gabriele Menegaldo, Lucia Rocchi, Luisa Paolotti, Antonio Boggia and Debora Puglia
Sustainability 2025, 17(15), 6779; https://doi.org/10.3390/su17156779 - 25 Jul 2025
Viewed by 190
Abstract
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs [...] Read more.
The olive oil sector constitutes a fundamental pillar in the Mediterranean region from socio-economic and cultural perspectives. Nonetheless, it produces significant amounts of waste, leading to numerous environmental issues. These waste streams contain valuable compounds that can be recovered and utilized as inputs for various applications. This study introduces a novel value chain for olive wastes, focused on extracting lignin from olive pomace by ionic liquids and polyphenols from olive mill wastewater, which are then incorporated as hybrid nanoparticles in the formulation of an innovative starch-based biofertilizer. This biofertilizer, obtained by using residual wastewater as a source of soluble nitrogen, acting at the same time as a plasticizer for the biopolymer, was demonstrated to surpass traditional NPK biofertilizers’ efficiency, allowing for root growth and foliage in drought conditions. In order to recognize the environmental impact due to its production and align it with the technical output, the circularity and environmental performance of the proposed system were innovatively evaluated through a combination of Life Cycle Assessment (LCA) and the Material Circularity Indicator (MCI). LCA results indicated that the initial upcycling process was potentially characterized by significant hot spots, primarily related to energy consumption (>0.70 kWh/kg of water) during the early processing stages. As a result, the LCA score of this preliminary version of the biofertilizer may be higher than that of conventional commercial products, due to reliance on thermal processes for water removal and the substantial contribution (56%) of lignin/polyphenol precursors to the total LCA score. Replacing energy-intensive thermal treatments with more efficient alternatives represents a critical area for improvement. The MCI value of 0.84 indicates limited potential for further enhancement. Full article
Show Figures

Figure 1

28 pages, 3832 KiB  
Article
Design of Message Formatting and Utilization Strategies for UAV-Based Pseudolite Systems Compatible with GNSS Receivers
by Guanbing Zhang, Yang Zhang, Hong Yuan, Yi Lu and Ruocheng Guo
Drones 2025, 9(8), 526; https://doi.org/10.3390/drones9080526 - 25 Jul 2025
Viewed by 142
Abstract
This paper proposes a GNSS-compatible method for characterizing the motion of UAV-based navigation enhancement platforms, designed to provide reliable navigation and positioning services in emergency scenarios where GNSS signals are unavailable or severely degraded. The method maps UAV trajectories into standard GNSS navigation [...] Read more.
This paper proposes a GNSS-compatible method for characterizing the motion of UAV-based navigation enhancement platforms, designed to provide reliable navigation and positioning services in emergency scenarios where GNSS signals are unavailable or severely degraded. The method maps UAV trajectories into standard GNSS navigation messages by establishing a correspondence between ephemeris parameters and platform positions through coordinate transformation and Taylor series expansion. To address modeling inaccuracies, the approach incorporates truncation error analysis and motion-assumption compensation via parameter optimization. This design enables UAV-mounted pseudolite systems to broadcast GNSS-compatible signals without modifying existing receivers, significantly enhancing rapid deployment capabilities in complex or degraded environments. Simulation results confirm precise positional representation in static scenarios and robust error control under dynamic motion through higher-order modeling and optimized broadcast strategies. UAV flight tests demonstrated a theoretical maximum error of 0.4262 m and an actual maximum error of 3.1878 m under real-world disturbances, which is within operational limits. Additional experiments confirmed successful message parsing with standard GNSS receivers. The proposed method offers a lightweight, interoperable solution for integrating UAV platforms into GNSS-enhanced positioning systems, supporting timely and accurate navigation services in emergency and disaster relief operations. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles for Enhanced Emergency Response)
Show Figures

Figure 1

30 pages, 964 KiB  
Review
Impact of Biodegradable Plastics on Soil Health: Influence of Global Warming and Vice Versa
by Pavlos Tziourrou, John Bethanis, Dimitrios Alexiadis, Eleni Triantafyllidou, Sotiria G. Papadimou, Edoardo Barbieri and Evangelia E. Golia
Microplastics 2025, 4(3), 43; https://doi.org/10.3390/microplastics4030043 - 23 Jul 2025
Viewed by 194
Abstract
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where [...] Read more.
The presence of plastics in the soil environment is an undeniable global reality. Biodegradable plastics (BPs) possess several key properties that make them more environmentally sustainable compared to other categories of plastics. However, their presence induces significant changes in soil systems health where they are found, due to a combination of environmental, soil, and climatic factors, as well as the simultaneous presence of other pollutants, both inorganic and organic. In the present work, a review has been conducted on published research findings regarding the impact of various types of BPs on the parameters that regulate and determine soil health. In particular, the study examined the effects of BPs on physical, chemical, and biological indices of soil quality, leading to several important conclusions. It was observed that silty and loamy soils were significantly affected, as their physical properties were altered. Moreover, significant changes in both chemical and microbiological indicators were observed with increasing environmental temperatures. The presence of all types of biodegradable microplastics led to a significant reduction in soil nitrogen content as temperature increased. This study highlights the profound effects of the climate crisis on the properties of soils already contaminated with plastics, as the effects of rising temperatures on soil properties appear to be amplified in the presence of plastics. On the other hand, higher temperatures also trigger a series of chemical reactions that accelerate the degradation of BPs, thereby reducing their volume and mass in the soil environment. These processes lead to increased emissions of gases and higher ambient temperatures, leading to global warming. The types and quantities of plastics present, along with the environmental changes in a study area, are critical factors that must be taken into account by policymakers in order to mitigate the impacts of climate change on soil health and productivity. Full article
Show Figures

Figure 1

26 pages, 24382 KiB  
Article
Carboxylated Mesoporous Carbon Nanoparticles as Bicalutamide Carriers with Improved Biopharmaceutical and Chemo-Photothermal Characteristics
by Teodora Popova, Borislav Tzankov, Marta Slavkova, Yordan Yordanov, Denitsa Stefanova, Virginia Tzankova, Diana Tzankova, Ivanka Spassova, Daniela Kovacheva and Christina Voycheva
Molecules 2025, 30(15), 3055; https://doi.org/10.3390/molecules30153055 - 22 Jul 2025
Viewed by 238
Abstract
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these [...] Read more.
Prostate cancer is a serious, life-threatening condition among men, usually requiring long-term chemotherapy. Due to its high efficacy, bicalutamide, a non-steroidal anti-androgen, has widespread use. However, its poor water solubility, low oral bioavailability, and nonspecific systemic exposure limit its application. To overcome these obstacles, our study explored the potential of non-carboxylated and carboxylated mesoporous carbon nanoparticles (MCN) as advanced drug carriers for bicalutamide (MCN/B and MCN-COOH/B). The physicochemical properties and release behaviour were thoroughly characterized. Functionalization with carboxylic groups significantly improved wettability, dispersion stability, as well as loading efficiency due to enhanced hydrogen bonding and π–π stacking interactions. Moreover, all systems exhibited sustained and near-infrared (NIR) triggered drug release with reduced burst-effect, compared to the release of free bicalutamide. Higher particle size and stronger drug–carrier interactions determined a zero-order kinetics and notably slower release rate of MCN-COOH/B compared to non-functionalized MCN. Cytotoxicity assays on LNCaP prostate cancer cells demonstrated that both MCN/B and MCN-COOH/B possessed comparable antiproliferative activity as free bicalutamide, where MCN-COOH/B exhibited superior efficacy, especially under NIR exposure. These findings suggest that MCN-COOH nanoparticles could be considered as a prospective platform for controlled, NIR-accelerated delivery of bicalutamide in prostate cancer treatment. Full article
Show Figures

Graphical abstract

20 pages, 709 KiB  
Article
SKGRec: A Semantic-Enhanced Knowledge Graph Fusion Recommendation Algorithm with Multi-Hop Reasoning and User Behavior Modeling
by Siqi Xu, Ziqian Yang, Jing Xu and Ping Feng
Computers 2025, 14(7), 288; https://doi.org/10.3390/computers14070288 - 18 Jul 2025
Viewed by 204
Abstract
To address the limitations of existing knowledge graph-based recommendation algorithms, including insufficient utilization of semantic information and inadequate modeling of user behavior motivations, we propose SKGRec, a novel recommendation model that integrates knowledge graph and semantic features. The model constructs a semantic interaction [...] Read more.
To address the limitations of existing knowledge graph-based recommendation algorithms, including insufficient utilization of semantic information and inadequate modeling of user behavior motivations, we propose SKGRec, a novel recommendation model that integrates knowledge graph and semantic features. The model constructs a semantic interaction graph (USIG) of user behaviors and employs a self-attention mechanism and a ranked optimization loss function to mine user interactions in fine-grained semantic associations. A relationship-aware aggregation module is designed to dynamically integrate higher-order relational features in the knowledge graph through the attention scoring function. In addition, a multi-hop relational path inference mechanism is introduced to capture long-distance dependencies to improve the depth of user interest modeling. Experiments on the Amazon-Book and Last-FM datasets show that SKGRec significantly outperforms several state-of-the-art recommendation algorithms on the Recall@20 and NDCG@20 metrics. Comparison experiments validate the effectiveness of semantic analysis of user behavior and multi-hop path inference, while cold-start experiments further confirm the robustness of the model in sparse-data scenarios. This study provides a new optimization approach for knowledge graph and semantic-driven recommendation systems, enabling more accurate capture of user preferences and alleviating the problem of noise interference. Full article
Show Figures

Figure 1

11 pages, 7216 KiB  
Article
Low-Finesse Fabry–Perot Cavity Design Based on a Reflective Sphere
by Ju Wang, Ye Gao, Jinlong Yu, Hao Luo, Xuemin Su, Xu Han, Yang Gao, Ben Cai and Chuang Ma
Photonics 2025, 12(7), 723; https://doi.org/10.3390/photonics12070723 - 17 Jul 2025
Viewed by 191
Abstract
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. [...] Read more.
Low-finesse Fabry–Perot (F–P) cavities, widely applied in the field of micro-displacement measurement, offer significant advantages in reducing the influence of higher-order reflections and improving the accuracy of measurement systems. Generally, an F–P cavity finesse of 0.5 is required to achieve high-precision micro-displacement measurements. However, in optical design, low-finesse cavities impose strict requirements on reflectivity, and maintaining fine stability during cavity movement is challenging. Achieving ideal orthogonal interference with a finesse of 0.5 thus presents considerable difficulties. This study proposes a novel low-finesse F–P cavity design that employs a high-reflectivity spherical reflector and the end face of a fiber collimator as the reflective surfaces of the cavity. By utilizing beam divergence characteristics and geometric parameters, a structure with a finesse of approximately 0.5 is quantitatively designed, enabling a simplified implementation without the need for angular alignment. Compared with conventional approaches, this method eliminates the need for precise angular alignment of the reflective surfaces, significantly simplifying implementation. The experimental results show that, under fixed receiving field angles and beam radii of the fiber collimators, ideal orthogonal interference can be achieved by selecting the radius of the reflective sphere. Under varying working distances, the average finesse values of the interference spectra measured by Collimators 1 and 2 are 0.496 and 0.502, respectively, both close to the theoretical design value of 0.5, thereby meeting the design requirements. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

7 pages, 482 KiB  
Proceeding Paper
Parameters Characterizing the Performance of Automotive Electronic Control Systems on Petrol Engine Emissions
by Hristo Konakchiev and Evgeni Dimitrov
Eng. Proc. 2025, 100(1), 41; https://doi.org/10.3390/engproc2025100041 - 15 Jul 2025
Viewed by 194
Abstract
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles [...] Read more.
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles to the highest possible level, primarily through software modifications of the parameters determining the performance of the internal combustion engine (ICE). The potential for advancement in this area is evidenced by the presence of systems that enhance environmental efficiency, even in Euro 2 vehicles. These include exhaust gas recirculation, catalytic converter, lambda sensor, electronic control fuel injection, and ignition timing. It is precisely these vehicles that are subject to optimization, a process which would allow the maximum service life of otherwise more reliable but older vehicles to be exploited. Full article
Show Figures

Figure 1

26 pages, 3728 KiB  
Article
Structural Properties, Mechanical Behavior, and Food Protecting Ability of Chickpea Protein-Derived Biopolymer Films
by Mehmet Şükrü Karakuş
Polymers 2025, 17(14), 1938; https://doi.org/10.3390/polym17141938 - 15 Jul 2025
Viewed by 354
Abstract
This study aimed to enhance the characteristic properties of chickpea proteins enriched with quercetin by incorporating whey proteins. For this, whey proteins were supplemented into the film systems at 10, 20, 30, 40, and 50% of the total protein content, and these formulations [...] Read more.
This study aimed to enhance the characteristic properties of chickpea proteins enriched with quercetin by incorporating whey proteins. For this, whey proteins were supplemented into the film systems at 10, 20, 30, 40, and 50% of the total protein content, and these formulations were labeled as CWF1, CWF2, CWF3, CWF4, and CWF5, in that order. Negative control (CF) was designed with chickpea protein alone. Essential amino acid content of chickpea protein (16.48%) was higher than that of whey protein (8.09%). FTIR spectra revealed protein–protein interactions occurred within film systems. Raising the whey protein content above 40% led to morphological issues in the films. Differences in moisture content, thickness, color, and opacity were obvious (p < 0.05). As the protein content boasted, a decrease in solubility and an increase in the swelling ratio of the films was detected (p < 0.05). CWF4 exhibited enhanced barriers and mechanical properties, followed by CWF3, CWF2, CWF1, CF, and CWF5 (p < 0.05). Moreover, in food simulators, quercetin release from films was monitored, and the highest release of quercetin occurred in 50% ethanol, followed by water and 95% ethanol. Ultimately, highly functional quercetin-loaded edible films, especially CWF4, stood out in protecting fresh strawberries. Full article
(This article belongs to the Special Issue Mechanical Behavior of Polymer Materials and Its Applications)
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Periodic Oscillatory Solutions for a Nonlinear Model with Multiple Delays
by Chunhua Feng
Mathematics 2025, 13(14), 2275; https://doi.org/10.3390/math13142275 - 15 Jul 2025
Viewed by 210
Abstract
For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system [...] Read more.
For systems such as the van der Pol and van der Pol–Duffing oscillators, the study of their oscillation is currently a very active area of research. Many authors have used the bifurcation method to try to determine oscillatory behavior. But when the system involves n separate delays, the equations for bifurcation become quite complex and difficult to deal with. In this paper, the existence of periodic oscillatory behavior was studied for a system consisting of n coupled equations with multiple delays. The method begins by rewriting the second-order system of differential equations as a larger first-order system. Then, the nonlinear system of first-order equations is linearized by disregarding higher-degree terms that are locally small. The instability of the trivial solution to the linearized equations implies the instability of the nonlinear equations. Periodic behavior often occurs when the system is unstable and bounded, so this paper also studied the boundedness here. It follows from previous work on the subject that the conditions here did result in periodic oscillatory behavior, and this is illustrated in the graphs of computer simulations. Full article
Show Figures

Figure 1

19 pages, 2610 KiB  
Article
Influence of Flow Field on the Imaging Quality of Star Sensors for Hypersonic Vehicles in near Space
by Siyao Wu, Ting Sun, Fei Xing, Haonan Liu, Kang Yang, Jiahui Song, Shijie Yu and Lianqing Zhu
Sensors 2025, 25(14), 4341; https://doi.org/10.3390/s25144341 - 11 Jul 2025
Viewed by 178
Abstract
When hypersonic vehicles fly in near space, the flow field near the optical window leads to light displacement, jitter, blurring, and energy attenuation of the star sensor. This ultimately affects the imaging quality and navigation accuracy. In order to investigate the impact of [...] Read more.
When hypersonic vehicles fly in near space, the flow field near the optical window leads to light displacement, jitter, blurring, and energy attenuation of the star sensor. This ultimately affects the imaging quality and navigation accuracy. In order to investigate the impact of aerodynamic optical effects on imaging, the fourth-order Runge–Kutta and the fourth-order Adams–Bashforth–Moulton (ABM) predictor-corrector methods are used for ray tracing on the density data. A comparative analysis of the imaging quality results from the two methods reveals their respective strengths and limitations. The influence of the optical system is included in the image quality calculations to make the results more representative of real data. The effects of altitude, velocity, and angle of attack on the imaging quality are explored when the optical window is located at the tail of the vehicle. The results show that altitude significantly affects imaging results, and higher altitudes reduce the impact of the flow field on imaging quality. When the optical window is located at the tail of the vehicle, the relationship between velocity and offset is no longer simply linear. This research provides theoretical support for analyzing the imaging quality and navigation accuracy of a star sensor when a vehicle is flying at hypersonic speeds in near space. Full article
Show Figures

Figure 1

39 pages, 16838 KiB  
Article
Control of Nonlinear Systems Using Fuzzy Techniques Based on Incremental State Models of the Variable Type Employing the “Extremum Seeking” Optimizer
by Basil Mohammed Al-Hadithi and Gilberth André Loja Acuña
Appl. Sci. 2025, 15(14), 7791; https://doi.org/10.3390/app15147791 - 11 Jul 2025
Viewed by 186
Abstract
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator [...] Read more.
This work presents the design of a control algorithm based on an augmented incremental state-space model, emphasizing its compatibility with Takagi–Sugeno (T–S) fuzzy models for nonlinear systems. The methodology integrates key components such as incremental modeling, fuzzy system identification, discrete Linear Quadratic Regulator (LQR) design, and state observer implementation. To optimize controller performance, the Extremum Seeking Control (ESC) technique is employed for the automatic tuning of LQR gains, minimizing a predefined cost function. The control strategy is formulated within a generalized framework that evolves from conventional discrete fuzzy models to a higher-order incremental-N state-space representation. The simulation results on a nonlinear multivariable thermal mixing tank system validate the effectiveness of the proposed approach under reference tracking and various disturbance scenarios, including ramp, parabolic, and higher-order polynomial signals. The main contribution of this work is that the proposed scheme achieves zero steady-state error for reference inputs and disturbances up to order N−1 by employing the incremental-N formulation. Furthermore, the system exhibits robustness against input and load disturbances, as well as measurement noise. Remarkably, the ESC algorithm maintains its effectiveness even when noise is present in the system output. Additionally, the proposed incremental-N model is applicable to fast dynamic systems, provided that the system dynamics are accurately identified and the model is discretized using a suitable sampling rate. This makes the approach particularly relevant for control applications in electrical systems, where handling high-order reference signals and disturbances is critical. The incremental formulation, thus, offers a practical and effective framework for achieving high-performance control in both slow and fast nonlinear multivariable processes. Full article
Show Figures

Figure 1

Back to TopTop